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Introduction

This thesis is devoted to the study of some interesting and challenging aspects of
PI-theory, i.e., the theory of algebras that satisfy a non-trivial polynomial identity (PI-
algebras).

Let A be an associative algebra over an infinite field F'. A polynomial identity of A
is a polynomial in non-commuting variables vanishing under all evaluations in A. We
denote by Id(A) the T-ideal of all polynomial identities of A.

The description of the identities of an algebra is in general a hard problem. In
fact, even if every T-ideal is finitely generated (see [34]), the polynomial identities are
far from being understood. Also it is quite impossible in general to deduce from the
generators of Id(A) information on the polynomials of A of a given degree. To overcome
some of these difficulties it is natural to introduce some numerical invariants allowing
to give a quantitative description of the growth of the polynomial identities of A.

Alongside the ordinary polynomial identities, it is often convenient to study the
polynomial identities of algebras with an additional structure such as group-graded
algebras, algebras with an action of a group by automorphism and anti-automorphism,
algebras with an action of a Lie algebra by derivations, or more in general algebras with
a generalized Hopf algebra action (see, for instance, [4, 6, 7, 19, 21, 36]). In fact, such
identities theoretically determine the ordinary ones and also they allow to construct
finer invariants that can be related to the ordinary ones.

The purpose of this thesis is the study of some invariants of polynomial identities of
algebras with derivation (algebras with an action of a Lie algebra by derivations) and
of algebras with involution (algebras with an action of an anti-automorphism of order
two).

A very useful numerical invariant measuring the growth of the polynomial identities
of A is the codimensions sequence, {c,(A)},>;. In general ¢,(A4) is bounded from
above by n!, but in case A is a Pl-algebra a celebrated theorem of Regev asserts that

{en(A)},>1 is exponentially bounded (see [47]). Later Kemer (see [35]) showed that,
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Introduzione 6

given any Pl-algebra A, {cn(A)}n21 cannot have intermediate growth, i.e., either is
polynomially bounded or grows exponentially. Moreover, Giambruno and Zaicev in [22]
and [23] computed the exponential rate of growth of a Pl-algebra and proved that it is
a non-negative integer.

In this context it is often convenient to use the language of varieties of algebras.
Given a variety of algebras V, the growth of V is defined as the growth of the sequence
of codimensions of any algebra A generating V, i.e., V = var(A). The algebra of 2 x 2
upper triangular matrices UT»(F') and the infinite dimensional Grassmann algebra G
are crucial in the investigation of the growth of the polynomial identities of algebras. In
fact, a well known theorem of Kemer (see [33]) states that var(UT»(F')) and var(G) are
the only varieties of almost polynomial growth, i.e., they grow exponentially but any
proper subvariety grows polynomially.

In light of the above, it seems interesting to study the structure of the polynomial
identities of the algebras UT,(F) and G with an additional structure. In this perspective,
one of the aims of this thesis is to study the growth of the differential identities of these
two algebras.

In case the base field is of characteristic zero, there is another useful invariant that
can be attached to the identities of an algebra A, the so-called cocharacter sequence.
Since the base field is of characteristic zero, every T-ideal is completely determined
by its multilinear elements. Hence, one considers, for every n > 1, the space P, of
all multilinear polynomials in a given fixed set of n variables and acts on it with the
symmetric group S,. The space P, modulo Id(A) becomes an S,-module, its character,
Xn(A), is called the nth-cocharacter of A and {xn(A)},~; is the cocharacter sequence
of A. By complete reducibility we can write the nth-cocharacter of A as a sum of
irreducible characters with corresponding multiplicities.

We already know that, in case A is a Pl-algebra, the multiplicities of its cocharacter
are polynomially bounded. Thus it seems interesting to characterize the cocharacter
sequence when stronger conditions hold for the multiplicities. Consequently in this
thesis we characterize the cocharacter sequence of algebras with involution when the

corresponding multiplicities are bounded by a constant.

The first chapter of this thesis is preliminary and contains the basic definitions and
results needed for the further exposition. We introduce the algebras with polynomial
identity by giving their basic definitions and properties. Then we give a brief intro-

duction to the classical representation theory of the symmetric group via the theory
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of Young diagrams. In the last part of the chapter we deal with the basic numerical
invariants of the polynomial identities of a given algebras: the codimensions sequence
and cocharacter sequence of the T-ideal an the algebra. Moreover we present some
important results about the asymptotic behaviour of the sequence of codimensions.

In the second chapter we extend our approach to algebras with derivations and to
algebras with involution. We first give a complete view of algebras with a Hopf algebra
action and their identities. Then, as a particular case, we introduce the differential
identities. Finally, in order to include the algebras with involution, we extend the
Hopf algebra action to a more general action and then we present some relevant results
concerning algebras with involution.

In the third chapter we study in detail the differential polynomial identities of the
algebra of 2 x 2 upper triangular matrices over a field of characteristic zero when two
distinct Lie algebras of derivations act on it. We explicitly determine a basis of the
corresponding differential identities, the sequence of codimensions and the sequence of
cocharacters in both cases. Furthermore, we study the growth of differential identities
in both cases. In particular we prove that when the Lie algebra L of all derivations
acts on UT,(F), then the variety of differential algebras with L action generated by
UT,(F') has no almost polynomial growth (unlike the ordinary case and the graded
case); nevertheless we exhibit a subvariety of almost polynomial growth.

The fourth chapter is devote to the study of the differential identities of the infinite
dimensional Grassmann algebra over a field F' of characteristic different from two with
respect to the action of a finite dimensional Lie algebra L of inner derivations. We
explicitly construct a set of generators for the ideal of differential identities of G and also
we compute its differential codimensions. As a consequence it turns out that the growth
of the differential identities of GG is exponential, as in the ordinary case. However, we
prove that unlike the ordinary case G with the action of a finite dimensional Lie algebra
of inner derivations does not generate a variety of almost polynomial growth; in fact
we exhibit a subvariety of exponential growth. Furthermore, when the base field is of
characteristic zero, we determine the decomposition of the differential cocharacter of G
in its irreducible components by computing all the corresponding multiplicities.

Finally, in the fifth chapter we introduce the Grassmann envelope of a superalgebra
with superinvolution and we describe a useful connection between varieties of algebras
with involution and vareities of superalgebras with superinvolution. Then we study and
characterize the algebras with involution over a field F of characteristic zero satisfying a

polynomial identity such that the multiplicities in the corresponding x-cocharacter are
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Chapter 1

A general setting

In this first chapter we introduce the main object of study, i.e., PI-algebras and we
give their basic properties.

In the first section we present the notions of T-ideal of the free algebra and of
variety of algebras. We also discuss the so-called multilinear polynomials and some of
their properties.

In the second section, we introduce ordinary representation theory of the symmetric
group 5, through the theory of Young tableaux. We also define a natural action of the
symmetric group S, on the space of multilinear polynomials in n variables which has
the basic property of leaving T-ideals invariant. Our main objective in this setting is to
understand the decomposition of the corresponding module into irreducibles.

As a consequence in the last section we introduce two numerical invariants of a
T-ideal: the sequence of codimensions and the sequence of cocharacters. We give two
typical examples of Pl-algebras: the Grassmann algebra and UT5(F), the upper trian-
gular matrices of order 2 over a field F', that we shall use later.

Finally, we present some celebrated theorems about the growth of the codimension

sequence of a Pl-algebra.

1.1 Basic definitions

We start with the definition of free algebra. Let F' be a field and X = {x1,x9,...}
a countable set. The free associative algebra on X over F is the algebra F(X) of
polynomials in the non-commuting indeterminates x € X. A basis of F/(X) is given by
all words in the alphabet X, adding the empty word 1. Such words are called monomials

and the product of two monomials is defined by juxtaposition. The elements of F(X)
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are called polynomials and if f € F(X), then we write f = f(x1,...,2,) to indicate
that x1,...,x, € X are the only indeterminates occurring in f.

We define degu, the degree of a monomial u, as the length of the word u. Also
deg,. u, the degree of u in the indeterminate z;, is the number of the occurrences of z;
in w. Similarly, the degree deg f of a polynomial f = f(x1,...,z,) is the maximum
degree of a monomial in f and deg, f, the degree of f in x;, is the maximum degree of
deg,, u, for u monomial in f.

The algebra F'(X) is defined, up to isomorphism, by the following universal property:
given an associative F-algebra A, any map X — A can be uniquely extended to a
homomorphism of algebras F(X) — A. The cardinality of X is called the rank of
F(X).

Definition 1.1.1. Let A be an associative F-algebra and f = f(z1,...,2,) € F(X).
We say that f is a polynomial identity for A, and we write f =0, if f(a1,...,a,) =0,
forallay,...,a, € A.

We shall usually say also that A satisfies f = 0 or, sometimes, that f itself is an
identity of A. Since the trivial polynomial f = 0 is an identity for any algebra A, we
say that A is a Pl-algebra if it satisfies a non-trivial polynomial identity.

For a,b € A, let [a,b] = ab — ba denote the Lie commutator of a and b. Now we are

able to give some examples of Pl-algebras.

Example 1.1.1. If A is a commutative algebra, then A is a Pl-algebra since it satisfies

the identity [x1,z2] = 0.

Example 1.1.2. If A is a nilpotent algebra, with A™ =0, then A is a Pl-algebra since

it satisfies the identity x1 - - x, = 0.

Example 1.1.3. Let UT,,(F) be the algebra of n x n upper triangular matrices over F.
Then UT,(F') satisfies the identity:

[xl, xg] e [l‘gn_l, l’gn] = 0.

Example 1.1.4. Let G be the Grassmann algebra on a countable dimension vector

space over a field F' of characteristic different from 2. Then G satisfies the identity
[[2,y],2] = 0.

A central role in the theory of Pl-algebras is played by the T-ideal of polynomial

identities of an algebra A over a field F'.



Chapter 1. A general setting 11

Definition 1.1.2. Given an algebra A, the two-sided ideal of polynomial identities of
A is defined as
Id(A) ={f e F(X)|f=0 on A}.

Recalling that an ideal I of F(X) is a T-ideal if p(I) C I, for all endomorphism ¢
of F(X), it is easy to check that Id(A) is a T-ideal of F'(X). Moreover, given a T-ideal
I, we have that Id(F(X)/I) = I. Hence every T-ideal of F/(X) is actually the ideal of
polynomial identities of a suitable algebra A.

Since many algebras may correspond to the same set of polynomial identities (or

T-ideal) we need to introduce the notion of variety of algebras.

Definition 1.1.3. Given a non-empty set S C F(X), the class of all algebras A such
that f =0 on A, for all f € S, is called the variety ¥V = V(S) determined by S.

A variety V is called non-trivial if S # 0 and V is proper if it is non-trivial and

contains a non-zero algebra.

Example 1.1.5. The class of all commutative algebras is a proper variety with S =
{lz1, z2]}-

Example 1.1.6. The class of all nil algebras of exponent bounded by n is a variety with

S = {z"}.

Observe that a variety V is closed under taking homomorphic images, subalgebras
and direct products. As a matter of fact, a theorem of Birkhoff (see, for instance, [14,
Theorem 2.3.2]) shows that these properties characterize the varieties of algebras.

There is a close correspondence between T-ideals and varieties of algebras. In fact,
if V is the variety determined by the set S and (S)7 is the T-ideal of F(X) generated
by S, then V(S) = V((S)r) and (S)r = [4eyp Id(A). We write (S)7 = Id(V). Thus
to each variety corresponds a T-ideal of F(X). Actually, the converse is also true. In

order to show the converse, we introduce the concept of relatively free algebra.

Definition 1.1.4. Let V be a variety, A € V an algebra and Y C A a subset of A. We
say that A is relatively free on'Y (with respect to V), if for any algebra B € V and for
every function « : Y — B, there exists a unique homomorphism 3 : A — B extending

Q.

When V is the variety of all algebras, this is just the definition of a free algebra on
Y. The cardinality of Y is called the rank of A.

Relatively free algebras are easily described in terms of free algebras (see, for in-
stance, [24, Theorem 1.2.4]).
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Theorem 1.1.1. Let X be a non-empty set, F(X) a free algebra on X and V a variety
with corresponding ideal Id(V) C F(X). Then F(X)/Id(V) is a relatively free algebra
on the set X = {x+ 1d(V) | x € X}. Moreover, any two relatively free algebras with

respect to V of the same rank are isomorphic.

Thus the correspondence between T-ideals and varieties is well understood (see, for
instance, [14, Theorem 2.2.7] ).

Theorem 1.1.2. There is a one-to-one correspondence between T-ideals of F(X) and
varieties of algebras. More precisely, a variety V corresponds to the T-ideal of identities
Id(V) and a T-ideal I corresponds to the variety of algebras satisfying all the identities
of 1.

If V is a variety and A is an algebra such that Id(A) = Id(V), then we say that V is
the variety generated by A and we write V = var(A). Also, we shall refer to F/(X)/1d(V)
as the relatively free algebra of the variety V of rank |X|.

The study of polynomial identities of an algebra A over a field F' can be reduced
to the study of the homogeneous or multilinear polynomials, if the ground field F' is
infinite. This reduction is very useful because this kind of polynomials is easier to deal
with.

Let F,, = F(x1,...,x,) be the free algebra of rank n > 1 over F. This algebra can

be naturally decomposed as

where, for every k > 1, FT(Lk) is the subspace spanned by all monomials of total degree
k. The Fy(f)s are called the homogeneous components of F,,. This decomposition can be

further refined as follows: for every k > 1, write

o s
i1+ Hin=k

where FV(L“Z") is the subspace spanned by all monomials of degree 71 in x1, ..., i, in

Ty

Definition 1.1.5. A polynomial [ € FT(Lk), for some k > 1, is called homogeneous of
degree k. Any f € F,gil""’i”) will be called multihomogeneous of multidegree (i1, ..., in).
We also say that a polynomial f is homogeneous in the variable x; if x; appears with

the same degree in every monomial of f.
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If f(z1,...,2,) € F(X) is a polynomial, then f can be decomposed into a sum of

multihomogeneous polynomials. In fact, it can be written as:

f‘ — Z f(k1,...,kn)

k120,....kn >0

where f(kukn) ¢ FT(L“Z") The polynomial f(¥1#n) which are non-zero are called
the multihomogeneous components of f.
The importance of the multihomogeneous polynomials turns out from the following

theorem (see, for instance, [14, Proposition 4.2.3]).

Theorem 1.1.3. Let F' be an infinite field. If f = 0 is a polynomial identity of the
algebra A, then every multihomogeneous component of f is still a polynomial identity

of A.

One of the most important consequences of the previous theorem is that over an
infinite field every T-ideal is generated by its multihomogeneous polynomials.
Among multihomogeneous polynomials a special role is played by the multilinear

ones.

Definition 1.1.6. A polynomial f € F(X) is called linear in the variable x; if x; occurs
with degree 1 in every monomial of f. Moreover f is called multilinear if f is linear in

each of its variables (multihomogeneous of multidegree (1,...,1)).

One of the most interesting features of the multilinear polynomials is given by the

following remark.

Remark 1.1.1. Let A be an algebra over F. If a multilinear polynomial f vanishes on

a basis of A, then f is a polynomial identity of A.

It is always possible to reduce an arbitrary polynomial to a multilinear one. This
process, called process of multilinearization, can be found, for instance, in [24, Theorem
1.3.7].

Definition 1.1.7. Let S be a set of polynomials in F(X) and f € F(X). We say that
f is a consequence of the polynomials in S (or follows from the polynomials in S) if
f € (S)r, the T-ideal generated by the set S.

Definition 1.1.8. Two sets of polynomials are equivalent if they generate the same
T-ideal.
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One of the main consequences of the process of multilinearization is the following.

Theorem 1.1.4. If charF = 0, every non-zero polynomial f € F(x) is equivalent to a

finite set of multilinear polynomials.
In the language of T-ideals the previous result takes the following form.

Theorem 1.1.5. If charF =0, every T-ideal is generated, as a T-ideal, by the multi-

linear polynomials it contains.

1.2 Representations of finite groups and S,,-representations

As a necessary background, we shall briefly describe the representation theory of
finite groups and in particular that of the symmetric group (see, for instance, [24,
Chapter 2]).

Let V' be a vector space over a field F' and let GL(V) be the group of invertible

endomorphisms of V. We recall the following.

Definition 1.2.1. A representation of a group G on V is a homomorphism of groups
p:G— GL(V).

Let us denote by End(V') the algebra of F-endomorphisms of V. If F'G is the group
algebra of G over F' and p is a representation of G on V, it is clear that p induces a
homomorphism of F-algebras p' : FG — End(V') such that p/(1pg) = 1.

Throughout we shall be dealing only with the case of finite dimensional representa-
tions. In this case, n = dimp V is called the dimension or the degree of the representa-
tion p.

There is a one-to-one correspondence between the representations of a group G on a
finite dimensional vector space and the finite dimensional F'G-modules (or G-modules).
In fact, if p : G — GL(V) is a representation of G, V becomes a (left) G-module by
defining gv = p(g)(v), for all g € G and v € V. Tt is also clear that if M is a G-module
which is finite dimensional as a vector space over F, then p : G — GL(M), such that

p(g)(l) = gl, for g € G and | € M, defines a representation of G on M.

Definition 1.2.2. If p: G — GL(V) and p' : G — GL(W) are two representations of
a group G, we say that p and p' are equivalent, and we write p ~ p', if V. and W are

isomorphic as G-modules.
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Definition 1.2.3. A representation p : G — GL(V) is irreducible if V is an irre-
ducible G-module and p is completely reducible if V' is the direct sum of its irreducible

submodules.

Recall that an algebra A is simple if A% # 0 and it does not contain non-trivial
two-side ideals, A is semisimple if J(A) = 0, where J(A) is the Jacobson radical of A.

We now state the two important structure theorems of Wedderburn and Wedderburn-
Artin concerning simple and semisimple artinian rings. Recall that a ring R is left ar-
tinian if it satisfies the descending chain condition on left ideals (i.e., if every strictly

descending sequence of left ideals eventually terminates) (see, for instance, [29, Chapter

1]).
Theorem 1.2.1 (Wedderburn, Wedderburn-Artin). Let R be a ring. Then

1. R is simple left artinian if and only if R = My(D), the ring of k X k matrices over
a division ring D, k > 1.

2. R is semisimple left artinian if and only if R=1,®---® I,,, where I, ..., I, are

simple left artinian rings and they are all the minimal two-sided ideals of R.

The basic tool for studying the representations of a finite group in case char F' = 0,

is Maschke’s theorem.

Theorem 1.2.2 (Maschke). Let G be a finite group and let charF = 0 or charF' = p > 0
and p1|G|. Then the group algebra FG is semisimple.

As a consequence of the theorems of Wedderburn and Wedderburn-Artin, it follows

that, under the hypothesis of Maschke’s theorem,
FG = M,,(DWY@---® M,, (D®),

where DO ..., D®*) are finite dimensional division algebras over F.
It can also be deduced that every G-module V is completely reducible. Hence if
dimp V < oo, V is the direct sum of a finite number of irreducible G-modules. We

record this fact in the following.

Corollary 1.2.1. Let G be a finite group and let charF' = 0 or charF = p > 0 and
p1|G|. Then every representation of G is completely reducible and the number of non-
equivalent irreducible representations of G equals the number of simple components in

the Wedderburn decomposition of the group algebra F'G.
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In representation theory, the theory of characters represents a fundamental tool.
Throughout we shall assume that char F' = 0 and let tr : End(V) — F be the trace
function on End(V).

Definition 1.2.4. Let p : G — GL(V) be a representation of G. Then the map x, :
G — F such that x,(9) = tr(p(g)) is called the character of the representation p.
Moreover, dimp V' = degx, is called the degree of the character x,. We say that the

character x, is irreducible if p is irreducible.

Notice that x, is constant on the conjugacy classes of G, i.e., X, is a class function
of G, and also that x,(1) = deg x,.

The following theorem shows that the knowledge of the character gives a lot of
information for the representation and the number of the non-isomorphic irreducible

representations (G-modules) is determined by a purely group property of the group.
Theorem 1.2.3. Let G be a finite group and let the field F be algebraically closed.

1. FEvery finite dimensional representation of G is determined, up to isomorphism,

by its character.

2. The number of non isomorphic irreducible representations (G-modules) is equal to

the number of conjugacy classes of G.

Next we introduce the necessary background on the representation theory of the

symmetric group Sp, n > 1.

Definition 1.2.5. Let n > 1 be an integer. A partition A of n is a finite sequence of
integers A = (A1,..., Ap) such that Ay > -+ > X\, >0 and >.;_; \i =n. In this case we

write A= mn or |\ =n.

It is well known that there is a one-to-one correspondence between partitions of n
and conjugacy classes of .S,,. Hence, by Theorem 1.2.3, all the irreducible non-isomorphic
Sp-modules are indexed by partitions of n. Thus let us denote by x) the irreducible

Sp-character corresponding to A - n. Therefore we state the following result.

Proposition 1.2.1. Let F be a field of characteristic zero and n > 1. There is a
one-to-one correspondence between irreducible Sy-characters and partitions of n. Let
{xa | A n} be a complete set of irreducible characters of Sy and let dy = xA(1) be the
degree of xx, AFn. Then

FS, =PI = P My, (F),

AFn AFn
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where Iy = e 'Sy, and ey = Z xx(o)o is, up to a scalar, the unit element of I.
O'GSn

It is always possible to associate to A - n a diagram.

Definition 1.2.6. Let A = (\1,...,\.) b n. The Young diagram associated to \ is the
finite subset of Z x Z defined as Dy ={(i,j) €EZXZ | i=1,...,r, j=1,..., N}

A Young diagram is denoted as an array of boxes with the convention that the first
coordinate i (the row index) increases from top to bottom and the second coordinate j
(the column index) increases left to right.

For a partition A = (A1,...,\) b n we shall denote by X = (\},...,\}) the conju-
gate partition of X in which A}, ..., A} are the lengths of the columns of D). Hence Dy
is obtained from Dy by flipping D) along its main diagonal.

Definition 1.2.7. Let A\Fn. A Young tableau T of the diagram Dy is a filling of the
bozxes of Dy with the integers 1,2,...,n. We shall say that T is a tableau of shape .

Of course there are n! distinct tableaux. Among these a prominent role is played by

the so-called standard tableaux.

Definition 1.2.8. A tableau T\ of shape X is standard if the integers in each row and

in each column of Ty increase from left to right and from top to bottom, respectively.
Given a diagram Dy, A F n, we identify a box of D) with the corresponding point
(4, 7)-
Definition 1.2.9. For any box (i,j) € Dy, we define the hook number of (i,7) as
hij =X+ X, —i—j+1,
where X' is the conjugate partition of \.

Note that h;; counts the number of boxes in the "hook” with edge in (i, j), i.e., the
boxes to the right and below (3, j).
Next we give a formula to compute de degree d of the irreducible character x (see,

for instance, [31]).

Proposition 1.2.2 (The hook formula). The number of standard tableauz of shape

AEnis
n!

Hi,j hij ’

where the product runs over all boxes of Dy .

dy =
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It is possible calculate the number of standard tableau of shape A. In fact, there
is a strict connection between standard tableaux and degrees of the irreducible S,-

characters.

Theorem 1.2.4. Given a partition \ F n, the number of standard tableauz of shape \

equals dy, the degree of x», the irreducible character corresponding to .

Given a partition A = (A1,..., ;) F n, we denote by Ty = Dy(ai;) the tableau T)
of shape A in which a;; is the integer in the box (7, 7). Then we can give the following

definitions.

Definition 1.2.10. The row-stabilizer of T is

Rr, = Sy (a11,a12, ..., a10,) X -+ X Sy (ar1,ar2, ... apy,)

where Sy, (a1, a2, ..., a;y,) denotes the symmetric group acting on the integers a;1, a2,
sy Q) -

Definition 1.2.11. The column-stabilizer of T is

Cr, = Sy (a1, @01, ay1) X - - X Sy (a1ng, oy - - ax)
where X' = (N}, ..., \,) is the conjugate partition of \.

Hence Ry, (Cr, resp.) are the subgroups of S,, consisting of all permutations sta-

bilizing the rows (columns resp.) of T).

Definition 1.2.12. For a given tableau T\ we define

er, = Z (sgnT)oT,

O'ERTA
7'€CVTA

where sgnT, the sign of the permutation T, is equal to 1 or —1 according as T is an even

or an odd permutation, respectively.

1. . . .
It can be shown that e% = aer,, where a = C%‘ is a non-zero integer, i.e., e, is an

essential idempotent of F'S,,.
We conclude this section with the following result that record the most important

fact about e, .

Proposition 1.2.3. For every Young tableau Ty of shape A = n, the element er, is a
minimal essential idempotent of F'S, and FSper, is a minimal left ideal of F'S,, with
character xx. Moreover, if Ty and T} are Young tableauz of the same shape, then er,

and ery are conjugated in FS,, through some o € S,,.
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Remark 1.2.1. For any two tableaux T and T>’\ of the same shape A\ = n, FSper, =

FSneTi, as S,-modules.

1.3 Invariants of T-ideals and Codimensions growth

In this section we shall describe some numerical invariants of a T-ideal of F/(X). In
order to define these invariants, we shall introduce an action of the symmetric group S,
on the space of multilinear polynomials of degree n.

We state the following lemmas concerning arbitrary irreducible S,-modules (see [24,
Lemma 2.4.1, Lemma 2.4.2]).

Lemma 1.3.1. Let M be a left S,-module.

1. If M is irreducible with character x(M) = xx, A F n., then M can be generated, as
an Sp-module, by an element of the form er, f, for some f € M and some Young
tableau Ty. And also for any Young tableau T3 of shape A, there exists f' € M
such that M = FSper, f.

2.If M = My &® --- ® My, where My,..., My are irreducible S,-submodules with
character x, then k is equal to the number of linearly independent elements g € M

such that og = g, for all 0 € R, .

Let now A be a Pl-algebra over an infinite field ' and Id(A) its T-ideal. We introduce

P, = span {‘To(l) © To(n) ’ (S Sn}

the vector space of multilinear polynomials in the variables x1, ..., x, in the free algebra
F(X).
Definition 1.3.1. The non-negative integer
P
A) = di L
en(4) = dimr 5707

is called the nth codimension of the algebra A. The sequence {cn(A)}, >, is the codi-

mension sequence of A.

If char F' = 0, then Id(A) is determined by its multilinear polynomials (Theorem
1.1.5). Hence, in this case, it suffices to study the multilinear identities of A, that is
{P.N1d(A)}, 5. It is clear that the codimension sequence of an algebra A gives us, in
some sense, the growth of the identities of A. Notice that dim(P, NId(A)) = n!—c,(A).
Also A is a Pl-algebra if and only if ¢,(A) < n! for some n > 1.

If V is a variety of algebras and V = var(A) then we define ¢, (V) = ¢, (4).
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Example 1.3.1. If A is a nilpotent algebra, i.e., A¥ =0, then c,(A) =0 for alln > k.
Example 1.3.2. If A is commutative then c,(A) <1, for all n > 1.

We next present two more examples in which we can compute explicitly the sequence
of codimensions.

Let UTs be the algebra of 2 x 2 upper triangular matrices over I’ and let G be
the infinite dimensional Grassmann algebra over F', i.e., the algebra generated by a
countable set of elements {eq, ez, ...} satisfying the condition e;e; = —eje;.

In the following theorems we collect the results of [17], [37] and [39] concerning the
T-ideals and the codimension sequences of these two algebras. Recall that (f1,..., fu)r

denotes the T-ideal generated by the polynomials f1,..., f, € F(X).

Theorem 1.3.1. Let UT»(F) be the algebra of 2 x 2 upper triangular matrices over a
field F' of characteristic zero. Then

1. [d(UTQ) = <[$1,$2H.%’3,.%’4]>T.

2. {xh---xim[xk,$j1,~--7$jn_m_1] i < e < lﬂ%k > J1 < < Jn-m—1,M 7é
n — 1} is a basis of P, mod. P, N Id(UTy).

3. cp(UTy) =21 (n—2) +2.

Theorem 1.3.2. Let G be the infinite dimensional Grassmann algebra over a field F

of characteristic p # 2. Then
1. Id(G) = ([z1, z2, x3]) 7.

2. {wiy i, [T, T ] [Ty, T2g) i < <y 1 < -ov < Jiag, 2¢ +m = n} s
a basis of P, mod. P, N 1d(G).

3. cn(G) =2n"1,

It is possible to define an action of the symmetric group S, on P,. If o € S, and
f(x1,...,2) € Py, then o acts on f(z1,...,z,) by permuting the variables in the
following way:

of(x1,-- s 2n) = f(To(1) > Ta(n))
Since T-ideals are invariant under permutation of the variables, we obtain that the
subspace P, N 1d(A) is invariant under this action, that is P, N Id(A) is a left S,-

submodule of P,,. Hence
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has an induced structure of left S,,-module.
If F is a field of characteristic zero, then we can consider the character of P (A)

and we give the following definition.

Definition 1.3.2. For n > 1, the Sy-character of P,(A) = P, /(P, N 1d(A)), denoted
by xn(A), is called the nth cocharacter of A.

If A is an algebra over a field of characteristic zero, we can decompose the nth

cocharacter into irreducibles as follows:

Xn(A) =D maxa,

AFn

where ) is the irreducible S,-character associated to the partition A = n and my > 0
is the corresponding multiplicity.

By the proof of Lemma 3.5 in [8] we have the following.

Theorem 1.3.3. Let UTy(F) be the algebra of 2 x 2 upper triangular matrices over a
field F of characteristic zero. If xn(UTs) =3 \.,, maXx s the nth cocharacter of UTy,

then we have:
1. mapy =1;
2.my=q+1ifA={p+qp) or \=(p+qp1);
3. my =0 in all other cases.

Given integers d,l > 0, we define a hook shaped part of the plane of arm d and leg
[ as

H(d,l)={A= (A1, A,...) Fn>1|Ag41 <1}
In particular, if A is a partition of n > 1, then A C H(1,1) if
A=(p1,...,1)=(p,1"P), p>1

Let xn(G) = >\, maxx be the nth cocharacter of G. Then we have the following
theorem (see [43]).

Theorem 1.3.4. If G is the infinite dimensional Grassmann algebra over a field F' of

characteristic zero, then xn(G) =Y. An  Xi-
ACH(L,1)
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One of the most interesting and challenging problem in PI-theory is to compute the
growth of the codimension sequence of an algebra.

Let A be a Pl-algebra over a field F' of characteristic zero and let {c,(A)}, >, be its
codimension sequence. The starting point for understanding the asymptotic behaviour

of the sequence of codimensions is the following result due to Regev (see [47]).
Theorem 1.3.5 (Regev). If A is a Pl-algebra then {cn(A)},5, is exponentially bounded.

Kemer in [35] proved another fundamental result about the growth of the sequence

of codimensions.

Theorem 1.3.6 (Kemer). Let A be a Pl-algebra. Then {c,(A)}, >, is polynomially

bounded or grows exponentially.

In the 80’s, Amitsur conjectured that the exponential rate of growth of an Pl-algebra
is a non-negative integer. This conjecture was proved in 1999 by Giambruno and Zaicev
(see [22] and [23]). We record this in the following.

Theorem 1.3.7 (Giambruno and Zaicev). For any Pl-algebra A, lim,,_o {/cn(A) ez-

1sts and s a non-negative integer.
At the light of the previous theorem we can define the exponent of A.

Definition 1.3.3. Let A be a Pl-algebra. The integer

exp(A) = lim /¢, (A)

n—oo

is called the exponent (or PI-exponent) of A.

Example 1.3.3. exp(A) =0 if and only if A is nilpotent
Example 1.3.4. exp(UT5(F)) =2

Example 1.3.5. exp(G) =2

If V is a variety of algebras, then the growth of V is defined as the growth of the
sequence of codimensions of any algebra A generating V), i.e., V = var(A). One of the
main advantages of the exponent is that now we have an integer scale allowing us to
measure the growth of any non-trivial variety.

As a consequence of what we said before we give the following.
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Definition 1.3.4. A wvariety V has polynomial growth if its sequence of codimensions
{en(V)},>1 18 polynomially bounded, i.e., ¢, (V) < an®, for some constants a and b. We
say that V has almost polynomial growth if {c,(V)},~; is not polynomially bounded but

any proper subvariety of V has polynomial growth.

Next we state a celebrated result of Kemer (see [32] and [33]) that give a character-

ization of varieties of polynomial growth.

Theorem 1.3.8 (Kemer). A variety of algebras V has polynomial growth if and only if
G, ULy ¢V.

Corollary 1.3.1. The varieties var(G) and var(UTs) are the only varieties of almost

polynomaial growth.



Chapter 2

Algebras with a generalized Hopf

algebra action

In this chapter we extend the concepts developed in the previous chapter to algebras
with a generalized Hopf algebra action.

The first section is devoted to the study of algebras with an action of a Hopf algebra
and their identities. Since the universal enveloping algebra of a Lie algebra is a Hopf
algebra, we are able to define algebras with derivations, i.e., algebras on which a Lie
algebra acts as derivations.

In the last two sections we generalize the concepts of the first section in order to
include the case of algebras with involution *, and then we present some relevant results

concerning x-varieties of almost polynomial growth.

2.1 Action of Hopf algebras on algebras and H-identities
Let H be a Hopf algebra over a field F' with comultiplication A : H — H ® H,
counit € : F' — H, and antipode S : H — H.

Definition 2.1.1. An associative algebra A is a (left) H-module algebra or an algebra
with a H-action, if A is a left H-module with action h ® a — ha for all h € H,a € A,
such that

h(ab) = (hya)(h@b) Vh € H,a,b € A,

where Ah = h(;) ® h(g) (Sweedler’s notation,).

We refer the reader to [12, 42, 49] for an account of Hopf algebras and algebras with

Hopf algebra actions.

24
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Next we give some relevant examples of algebras with a Hopf action.
Example 2.1.1. Every algebra A is an H-module algebra for H = F.

Definition 2.1.2. Let A be an associative algebra over F. A derivation of A is a linear
map 0 : A — A such that

d(ab) = 9(a)b+ ad(b), Va,b € A.

In particular an inner derivation induced by x € A is the derivation adx : A — A of A
define by
(adx)(y) = [xvyL Vy € A.

The set of all derivations of A is a Lie algebra denoted by Der(A), and the set ad(A) of

all inner derivations of A is a Lie subalgebra of Der(A).

Example 2.1.2 (Algebras with derivations). Let L be a Lie algebra and A an
associative algebra such that L acts on A as derivations. Then the universal enveloping
algebra U(L) of L is a Hopf algebra with comultiplication A defined by A(m) = 1®@m+
m ® 1, counit € defined by e(m) = 0, and antipode S defined by S(m) = —m, for all
m € L. Since the L-action on A can be naturally extended to the U(L)-action, A is a
U(L)-module algebra.

Example 2.1.3 (Algebras with group-action). Let G be a finite group acting as
automorphisms on an F-algebra A. Then the group algebra F'G is a Hopf algebra with
Alg) = g®g, elg) =1, S(g) = g1, for all g € G. 1t is easy to see that A is a
FG-module algebra.

Let A be an F-algebra and G any group. Recall the following.

Definition 2.1.3. The algebra A is a G-graded algebra if A can be written as the direct

sum of subspaces A = @ . Ag such that for all g,h € G, AgA, C Agy,.

geG

It is clear that any a € A can be uniquely written as a finite sum a = ) 9eG g with

ag € Ay. The subspaces A, are called the homogeneous components of A.

Example 2.1.4 (Group-graded algebras). Let A be an algebra graded by a finite
group G and let (FG)* be the dual algebra of FG. If B = {hy | g € G} is a basis
of (FG)* dual to the basis {g | g € G} of FG, i.e., hg (g2) = 04,9, where 6g, g, is
the Kronecker symbol, then (FG)* is a Hopf algebra with A(hg) = 3_ hglg{1 ® hg,,
€(hg) = 04,1, S(hy) = hy-1, for all hy € B.

Therefore A is an (FG)*-module algebra where hga = ag4, for all hy € B and a € A.
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Let H be a Hopf algebra over an infinite field F' and A an H-modulo algebra. Next
we shall study the H-identities of A. To this end we introduce a universal object called
the free H-module algebra.

Let V be a vector space with countable basis X = {x1,x9,...}. The tensor algebra
T(V®H)=F(X|H) is the free associative algebra over F' with free formal generators
Vi Qx; = l’;/i, j>1,i€ I, where {v;|i € I} is a basis of H. We write z; = x}, 1 € H.

Notice that F'(X|H) has a structure of left H-module via the following:

Yir | Yig Yiny . PyYip h@)vig h(n)Yin
h(z;te;? ..o ) =z, g, T
for h € Hiy,ig,...,in € I, where h() @ h(z) ® - -+ ® h,) is the image of h under the

comultiplication A applied (n — 1) times.

Definition 2.1.4. F(X|H) is called the free associative H-module algebra on the count-

able set X and its elements are called H-polynomials.

F(X|H) satisfies the following universal property: any map ¢ : X — A extends
uniquely to an algebra homomorphism @ : F(X|H) — A such that B(f") = hi(f), for
any f € F(X|H) and h € H.

Definition 2.1.5. An H-polynomial f = f(x1,...,2,) € F(X|H) is an H-polynomial
identity for A (or H-identity) if (f) = 0 for any map ¢ : X — A. In other words, f is
an H-identity of A if and only if f(a1,...,a,) =0 for any a; € A, and we write f = 0.

The set
Id%(A) = {f € F(X|H)|f =0 on A}

is a Ty-ideal of F(X|H), i.e., an ideal of F(X|H) invariant under the H-action.

The H-identities satisfy many of the same general properties as ordinary polynomial
identities. Next we indicate some of them.

By naturally extending the ordinary case (H = F'), the degree of a monomial M
in a variable z € X, is defined as the number of times the variables z" appear in M
(regardless of the exponent h € H). Thus it is possible to define in a natural way the
homogeneous H-polynomials and the multilinear H-polynomials.

Since F is an infinite field, we can state the following results (see [7]).

Lemma 2.1.1. Let f € F(X|H) be an H-identity for A. Then each homogeneous

components of f is also an H-identity for A.
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Lemma 2.1.2. Let A and B be algebras with H-action such that, for all n > 1, every
multilinear H-identity of degree n for A is also an identity for B. Then every H-identity
for A is an identity for B.

In light of the above, it is reasonable to pay particular attention to the multilinear

H-identities. We denote by
h hn
PH — span{xah) . .xg(n)\a €Sy, hi € H}
the space of multilinear H-polynomials in x1,...,x,, n > 1.

Definition 2.1.6. The non-negative integer

P

¢ (A) = dimp PH N IdH (A)

is called the nth H-codimension of the algebra A.

Notice that P! has a natural structure of left S,-module induced by defining for

o € S,

o(a]) =l

Since P N Id"(A) is invariant under the S, action, the space

i

Pl (4) = PH N TdH(A)

n

has a structure of left S,,-module.
If Fis a field of characteristic zero, then Id(A) is generated by is multilinear
differential polynomials. In this case, i.e., char F' = 0, we can consider the character of

PH(A) and we give the following definition.

Definition 2.1.7. For n > 1, the S,-character of P (A), denoted by x(A), is called
nth H-cocharacter of A.

Thus, if we assume that F' is a field of characteristic zero, we decompose the nth

differential cocharacter into irreducibles as follows:

X (A) =Y milx,
AFn

where m# > 0 is the multiplicity of x, in xZ(A).
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We now want to compare the sequence of H-codimensions and the sequence of
ordinary codimensions of an algebra. Since F' = F1lp is a Hopf subalgebras of H, we

can identify in a natural way P, with a subspace of PX. Thus we have P, C P! and
P,N1d(A) = P, n1dH (A).

Next lemma holds for any algebra A.

Lemma 2.1.3. For alln > 1, ¢,(A) < cH(A).

In the case of Pl-algebras the H-codimensions can be bounded from above (see [26,

Lemma 5]).

Lemma 2.1.4. Let A be an associative algebra with a H-action over any field F, and
let H be a Hopf algebra. Then

cn(A) < (A) < (dim H)"¢, (A)
for alln > 1.

In this context (as in the ordinary case) it is often convenient to use the language
of varieties of algebras.

Let V be a variety of H-modulo algebras. We write V = var’(A) in case V is
generated by an algebra A with H-action. As in the ordinary case, we write ¢ (V) =
cH(A) and the growth of V is the growth of the sequence cX(V),n > 1. Recall that we
say that V has polynomial growth if ¢/ (V) is polynomially bounded and V has almost
polynomial growth if ¢(V) is not polynomially bounded but every proper subvariety

of V has polynomial growth.

2.2 Differential identities

In this section we let H = U(L) be the universal enveloping algebra of a Lie algebra
L and A an associative algebra such that L acts on A as derivations. Since A is a
U(L)-module algebra (see the Example 2.1.2), then we define the polynomial identities
with derivation of A as a particular case of H-identities (see [28, 36]).

We denote by var’(A) the variety of algebras with derivations generated by A, by
Id"(A) the ideal of F(X|L) of differential identities of A, and also we use the following

notation:
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- P,% is the space of multilinear differential polynomials in the variables x1, ..., z,,
n>1;

- ck(A) is the nth differential codimension of A;

- if char ' = 0, x%(A) is the nth differential cocharacter of A.

Recall that, if F' is a field of characteristic zero, the nth differential cocharacter of A

is the character of the S,-module PX(A) = PL/(PLnIdL(A)) and has the decomposition

Xi(A) = mixa.
AFn
Remark 2.2.1. If L acts on A as inner derivations, then F(X|L) is the free associative

algebra with inner derivations on X.

If A is a finite dimensional associative algebra with an action of its Lie algebra L of
derivations satisfying a non trivial differential identity, then the sequence of differential
codimensions c%(A) is exponentially bounded (see [27, Theorem 3]). We record this in

the following.

Theorem 2.2.1. Let A be a finite dimensional algebra over a field F of characteristic
zero with an action of a Lie algebra L by derivations. Then there exist constants d € N,
C,Cy >0, r1,r9 € R such that

Cin"d™ < cb(A) < Cyn™2d™ for all n € N.
Consequently, in this case the Pl-exponent

expl(A) := lim (cﬁ(A))% €Zy

n—oo

exists.

2.3 Generalized Hopf algebra action

In order to embrace the case when a group acts by anti-automorphisms as well as
automorphisms, we consider the following generalized H-action (see [7, 26]).
Throughout this section H will be an associative algebra with unit over a field F' of

characteristic zero.
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Definition 2.3.1. An associative algebra A is an algebra with a generalized H-action
if A is a left H-module with action h®a — ha for all h € H,a € A, such that for every
h € H there exist b, b, b h!" € H such that

h(ab) = Z((héa)(hé’b) + (hi'b)(hi"a))

for all a,b € A.

As in the first section, given a basis B = {n;|i € I} of H, we let F(X|H) be
the free associative algebra over F' with free formal generators x}”, 1el,jeN If
h = 3 crami, o € I, where only a finite number of a; are nonzero, then we put
zh = Y icr iz, We also write x; = z}, 1 € H, and then we set X = {z1,29,...}. We
refer to the elements of F(X|H) as H-polynomials. Note that here we do not consider

any H-action on F(X|H). We also denote by
PH — Span{xgzl) . .a:Z’(Ln)\a € Sp,hi € H}

the space of multilinear H-polynomials in z1,...,z,, n > 1. As in the previous section
PH has a natural structure of left S,-module.

A polynomial f(z1,...,z,) € F(X|H) is an H-polynomial identity (or H-identity)
of Aif f(ai,...,a,) =0 for any a; € A, and we write f = 0. The set

1d%(A) = {f € F(X|L)|f =0 on A}

is an ideal of F(X|H). Note that this definition of F(X|H) depends on the choice of
the basis in H. However such algebras can be identified in a natural way and Id” (A).

As above, since P N I1d"(A) is invariant under the S,, action, the space P /P n
Id" (A) = PH(A) has a structure of left S,-module and its dimension, ¢ (A), is called
the nth H-codimension of A. By complete reducibility the character x2(A), called the
nth H-cocharacter of A, decomposes as

Xg(A) = mexA.
AFn

Next we introduce a refining of the nth H-cocharacter of an algebra A in case H is
a finite dimensional semisimple algebra and F' is algebraically closed.

Let H be a semisimple associative algebra over an algebraically closed field F' and
let H°P be its opposite algebra. Recall that the wreath product of H°? and S, is the
group defined by

H® S, ={(h1,...,hn;0) | h1,...,h, € H? 0 € S,}
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with multiplication given by
(hl, e ,hn, O')( /1, ey hfn? T) = (hlhgfl(l); ey hnh;_71(n), 0'7').

Next we define an action of H°P (S, on PH preserving the ideals of H-identities.
Following [7], we can identify H°P1S,, and P via the linear isomorphism 1 : H°P1S,, —
P defined by

DBy o)) = 2@ L glo

~ o) o)
for all (hy,...,hy;0) € H°P 1 S,. This defines a left action of H°?1 S, on PH given
by ay(b) = v(ab), for a,b € HP1S,. As a consequence we obtain that the ideal
Idf(A) of H-identities of the algebra A is left invariant under the H°P} S,-action (see
[7, Lemma 16]). This makes P(A) a left H°P{ S,-module and we define x5, (4) to
be its H°P S,,-character.

Definition 2.3.2. A multipartition (\) of n is a finite sequence of partitions (\) =
(M1),..., (1), such that \(1) Fny >0,...,A(t)Fng >0 andn=mny + -+ ny.

Since H°P is a finite dimensional semisimple algebra, there is a one-to-one correspon-
dence between multipartitions (\) of n and non-isomorphic irreducible representations
Ny of H°P1 S, (see [7, Theorem 21]).

For any multipartition () of n, let us denote by X(x the irreducible HP @ S),-
character corresponding to (\). Since char F' = 0, we can write xms, (4) as a sum of

irreducible characters

Xms, (A) = Y m{ixoy,
(A)Fn

where m& > 0 denotes the corresponding multiplicity.

2.4 Algebras with involution

Let A be an associative algebra over a field F' of characteristic zero.

Definition 2.4.1. An involution on A is a linear map * : A — A of order two ((a*)* =

a, for all a € A) such that, for all a,b € A,
(ab)* =b*a™.

Let A be an algebra with involution *. We write A = AT @ A~, where AT =
{a€A|a*=a} and A~ {a € A | a* = —a} denote the sets of symmetric and skew el-

ements of A, respectively.
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Since * is an anti-automorphism of order two, then A is an algebra with a gener-
alized FZs-action. We denote by F(X,*) = F(x1,x],x2,25,...) the free algebra with
involution on the countable set X = {z1,x2,...} over F' and by var*(A) the -variety
generated by A.

Since FZy is a finite dimensional semisimple algebra, then we can regard F(X, )

as generated by the symmetric variables .TU;'_ = x; + ;] and by the skew variables x; =

z; — o}, ie. F(X,*x) = F(af,27,25,25,...). We also define P as the space of
multilinear polynomials of degree n in xf, x],..., o}, x,;; hence for every i = 1,2,...,n
either ;7 or x; appears in every monomial of P} at degree 1 (but not both), for any

i=1,...,n. Thus a polynomial f(z,...,z,},z,...,7,,) € F(X,*) is a xidentity of
Aif f(s1,... 80, k1, km) = 0 for all sq1,...,8, € A", k1,...,kn € A~. We denote
by Id*(A) the ideal F'(X,x) of x-identities of A and by ¢} (A) the nth %-codimension of
A.

Since in this case we are interested in the study of P¥/Pr N Id*(A) = Pi(A) as
FZ2S,-module, we denote by x%(A) = xrzus, (A) its FZg ! Sy-character and without
lead to confusion we can call x (A) the nth x-cocharacter of A.

Following the previous section, x}(A) decomposes as

A = Y mauo (2.1)
IAl+|pl=n
where x ,, is the irreducible F'Zjy ¢ S,-character associated to the multipartition (A, ),
my,, > 0is the corresponding multiplicity and |A\|+|p| = n indicates A - 7 and p - n—r,
forall r =0,1,...,n.

For fixed 0 < r < n, let P, _, denote the space of multilinear *-polynomials in
the variables z7,...,z, ,,,...,%,. It is clear that in order to study P; N Id*(A)
it is enough to study Py, ,. N Id*(A) for all » > 0, and this can be done through

s p oy n-*

the representation theory of S, x S,_,. If we let S, act on the symmetric variables

xf, ...,x; and S,_, on the skew variables T\ q,---,%,, then we obtain an action
of S, X Sy on P, .. Since T™-ideal are invariant under this action, we get that

P, (A) =P, _./(P},—,N1d*(A)) has an induced structure of left S, x S,,_,-module
and we write x;,_,.(A) for its character. By complete reducibility we have
X (A) = D b ® xa), (2.2)
[Al+|pl=n
where x (respectively x,,) is the ordinary S, -character corresponding to A - r (respec-
tively Sy, -character corresponding to 1 = n —1r), xA ® x, is the irreducible S, x .S, _,-

character associated to the pair (X, ) and my , > 0 is the corresponding multiplicity.
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There is a well-understood duality between FZs ! S,-characters and S, X S, -

characters given by Drensky and Giambruno as follows.

Theorem 2.4.1 ([15], Theorem 1.3). Let A be an algebra with involution. If the nth
*-cocharacter has the decomposition given in (2.1) and the S, x Sy, _.-character of P}, _,

has the decomposition given in (2.2), then

Mxu = Mxp
forall \Fr and pbn—r.
Next we recall some basic results concerning the sequence of cocharacters.

Lemma 2.4.1. Let A and B be two algebras with involution such that

E : TN XA

[Al+[p]=n
and
E /
m)\,[LXAnLL'
[Al+[p]=n
Then:

1. If B € var*(A), then m’)\’“ < myy, for all pairs of partitions (X, p) such that
AL+ [u| =n.

2. The direct sum A® B is also an algebra with involution induced by the involutions
defined on A and B. Moreover, if

XWA®B)= ) T
[Al+]pl=n
is the decomposition of the nth x-cocharacter of A® B, then Ty, < my , +m) W

for all pairs of partitions (X, u) such that |\ + |p| = n.

Next we introduce two algebras with involution generating x-varieties with almost

polynomial growth. By analogy with the ordinary case we make the following.

Definition 2.4.2. If a variety V of algebras with involution has sequence of x-codimensions
polynomially bounded, we say that V has polynomial growth. We say that V has almost
polynomial growth if V does not have polynomial growth, but every proper subvariety of

V has polynomial growth.
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Let D = F @& F be the two dimensional algebra with exchange involution ex given
by (a,b)* = (b,a), for all (a,b) € D. Giambruno and Mishchenko proved in [18] that

such an algebra generates a #-variety of almost polynomial growth and

X2 (D) =D X(n-i).0)-
=0

Let now UT4(F') be the algebra of 4 x 4 upper triangular matrices, and let M C UTy(F)
be the algebra
M = F(e11 + e4a) ® F(ea2 + e33) © Feia ® Fesy,

where the e;;’s are the usual matrix units, endowed with the involution p obtained by
reflecting a matrix along its secondary diagonal,

p

a b 0 0 a d 0 0
0 co0o0f Joecoo
00 cd| |00 cod
000 a 000 a

for same a, b, ¢, d € F. In [41] Mishchenko and Valenti proved that M generates a variety
of almost polynomial growth with T*-ideal Id* = (z] 3 ).

Theorem 2.4.2 ([41], Theorem 1). If x5(M) = 3254 ujmn MApXAp @8 the nth -

cocharacter of M, we have:
(1) my, =1, if A\ = (n) and p = 0;
(2) myxu=q+1,if\=(p+q,p) and p= (1), for allp >0, g > 0;
(3) may=q+1,if \=(p+q,p) and p =0, for allp >1, ¢ > 0;
(4) myx,=q+1,if A= (p+q,p,1) and p =10, forallp>1, ¢ > 0;
(5) mx, =0 in all other case.
The above algebras characterize the x-variety of polynomial growth.

Theorem 2.4.3 ([18], Theorem 4.7). Let V be a *-variety. Then V has polynomial
growth if and only if D, M ¢ V.



Chapter 3

2 x 2 Upper triangular matrices

and its differential identities

In this chapter we study the differential identities of the algebra UT5 of 2 X 2 upper
triangular matrices over a field of characteristic zero (see [21]).

We let the Lie algebra L = Der(UT3) of derivations of UT» (and its universal en-
veloping algebra) act on it. We study the space of multilinear differential identities in n
variables as a module for the symmetric group S,, and we determine the decomposition
of the corresponding character into irreducibles.

If V is the variety of differential algebras generated by UT5, we prove that unlike the
other cases (ordinary identities, group graded identities) V does not have almost poly-
nomial growth. Nevertheless we exhibit a subvariety U of V having almost polynomial

growth.

3.1 Preliminaries

Let UT5 be the algebra of 2 x 2 upper triangular matrices over a field F' of charac-
teristic zero. The description of its derivations is as follows.
Let the e;;’s be the usual matrix units and consider the basis {e11+e22,e11 —e22, €12}

of UTy. Let ¢ be the inner derivation induced by 27 !(ej; — e22), i.e.,
e(a) = 27 ey — ean, al,
for all @ € UTy, and let § be the inner derivation induced by 2 e, i.e.,
§(a) =27 [e10,al.

35
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Then, for a = a(e;; + 622) + B(e11 — e22) + yeiz € UTy, we have
e(a) = vero

and
d(a) = —Beia.

We shall study the differential identities of the algebra UT, when two distinct Lie
algebras of derivations act on it. Namely first we shall consider L. = Fe, the one
dimensional Lie algebra with basis {¢}. We shall denote by UT5 the algebra UTp
with the Fe-action. The elements of 1d*(UT5) = Id¥(UTs) will be called differential
e-polynomial identities (or differential e-identities) of UT5. In this case we shall denote
by P: the space of multilinear differential e-polynomials in z1,...,2,. Also we write
& (UTy) = cE(UTS) for the nth differential e-codimension of UT5 and x5 (UTy) =
XL(UTS) for the nth differential e-cocharacter of UT5.

Next we shall consider L = Der(UT%), the Lie algebra of all derivations of UT5. No-
tice that since any derivation of UT5 is inner (see [10]), L is the 2 dimensional metabelian
Lie algebra with basis {¢,d} such that [, 6] = §. We shall denote by UTY the algebra
UT, with the Der(UTj)-action. Also PP will be the space of multilinear differential
polynomials in z1, ..., x, and IdP(UTy) = Id¥(UTP) will be the Ty-ideal of identities
with derivations of UTj. Recall that ¢ (UT3) is the nth differential codimension of UTb,
and x2 (UTy) is the nth differential cocharacter of UTy. Notice that in both cases L is a
Lie algebra of inner derivations of UT5, then F(X|L) is the free associative free algebra
with inner derivations.

Notice that in both cases L is a Lie algebra of inner derivations of UT5, then through-
out this section F(X|L) will be the free associative algebra with inner derivations on
X.

3.2 Generators of the ideal of differential identities of UT5;

and its codimensions

We start by describing the differential identities of UT5.
It is easy to check that [z, y]® — [z,y] = 0 and 2°y® = 0 are differential e-identities of
1d°(UT3). Next we show that these identities generate Id*(UT») as Tr-ideal. The proof

of the following remarks follow from easy computations.

Remark 3.2.1. Since L = Fe ia a Lie algebra of inner derivations of Uls, then

22° — 2 =0 is a consequence of [x,y]F — [z,y] =0 on UT5.



Chapter 3. 2 x 2 Upper triangular matrices and its differential identities 37

Remark 3.2.2. 1. xfy[w, 2], [z, w]yz®, [, y*2][z*3, w*] € ([z,y|° — [z,y],2°Y") 1, ,
with a; € {1,e},i=1,2,3,4.

2. xfyz® € (%Y%) 7, -

Remark 3.2.3. For any 1 < t,p < n, and for any permutations o € Sy, 7 € S, we

have

To(1) -+ Ta@Y 2r(1) - Zr(p) = L1+ Ty 21 ... 2p (mod (z°y[w, 2], [z, w]yz®)T, ).

Proof. Let uq,u2,u3 be monomials. We consider w = uiz;zjusy uz. Since x;x; =
xjz; + [, z4], it follows that w = wizjziu2y®us (mod ([, w]yz®)7, ). In the same way
we can show that w1y uszizjus = wiy usz;ziuz (mod (x°y[w, z])7, ). Hence in every
monomial

Tiy o Ty Y Zjy - 2y

we can reorder the variables to the left and to the right of y° as claimed. O

Next we prove the main result of this section.

Theorem 3.2.1. Let UT5(F) be the algebra of 2 x 2 upper triangular matrices over F'
with L = Fe-action. Then

1. I (UTs) = ([z,y]* — [z, y],z°y") T, -
2. & (UTy) =2""1n+ 1.

Proof. Let Q = ([z,y]® — [z, y], °y®) 7, . It is clear that () C Id*(UT3). By the Poincaré-
Birkhoff-Witt Theorem (see [45]) every differential multilinear polynomial in xy, ..., x,

can be written as a linear combination of products of the type

(65} (697
L el S I 1 (3.1)
where aq,...,ar € U(L), wy ..., w, are left normed commutators in the az?js, aj €

U(L), and i1 < --- < ix. By Remark 3.2.1 2= —af € Q, hence, modulo <x52 — %),
a; € {l,e}. Also, since [z]",x5%][z5%, 27*] € Q, with oy, a0, a3,a4 € {1,¢}, then,
modulo [z, 25%][z5?, z3*], in (3.1) we have m < 1, so, only at most one commutator
can appear in (3.1).

Now observe that zfyz® € @Q, hence, modulo @, only one £ can appear as exponent

of a variable in the monomials of (3.1). Moreover, since z°y[w, 2], [z, w|yz® € @, every
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multilinear monomial in P; can be written, modulo ), as linear combination of the

elements of the type
€ . Y . .
T Tpy, Thy .. Th, L5, Ti ...xzk[le,xh, ces X,

where hy < -+ < hp_1,i1 < - <ig, m+k=n,m>2 ~ve{le}.
Let us now consider the left normed commutators [:U;Yl,a:jz, ..., ;] and suppose

first that v = 1. Since [z1, x2][z3, z4] € @, then by Theorem 1.3.1

[levxjw S 7xjm] = [xkv Lhys - - 7th71] (mOd Q)a

where k > h1 < -+ < hyp—1.-
Suppose now v = €. By Remark 3.2.3 any left normed commutator [z, zj,, ..., %;,,]

satisfies the relation
[le,sz, oy = 25 Thy, - Thy, ] (mod (27y(w, 2], [z, w]yz®)T,)

with hy < -+ < hy—1. If k> hy, since [z,y]|° — [z, y] = [2°,y] — [°, z] — [z, y], we have

[l‘i, Thyy--- 7th_1] = ([xka Lhys--- >$hm_1]
+ [xli?xlm EER) mlmD (mOd <[‘T7y]6 - [x,y],xey[w, Z]a [wi]yZ€>TL)

with by < -+ < hp—1, k> hy and [} <y < --- <ly,. It follows that P, is generated
(mod P: N @) by the polynomials

Tl Tny  Tig oo Tigy [Thy Ty e e oy T 1)
13 £
Thy oo Thy  Tpy  Tiy oo T, [T], Tiyy o T, (3.2)

where i1 < - < iy, k> 51 < 0 < Jneme1, b1 < o < hpo1, I < s < o,
m#n—1,n.
Next we prove that these elements are linearly independent modulo Id*(UT3). Let
I={i,...,im}, J={Jj1,-- -, Jn—m—1} be disjoint subsets of {1,...,n} and set

X[’J = Ty - - .:Uim[xk, le, e 7$jn7mfl]'

Also for I' = {i1, ... im} € {1,...,n}, set

g __ £
Xy =iy o @i [T Ty o o5 X0,

and suppose that
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n
f= ZaLJXLJ + Zai;XileZail‘hl .. .xhnfleq
1,J Ve k=1
+ fr1...xp =0 (mod P; NId°(UTy)).

In order to show that all coefficients ag s, a5/, o, f are zero we will make some

evaluations. If we evaluate 1 = --- =z, = e {l— eg0 we get 5 = 0. Also, for a fixed
r, the evaluations xp, = -+ = xp, , = €11 + e22 and x, = ez gives a; = 0. For fixed
I={iy,...,ipm} and J = {j1,..., jn—m—1}, from the substitutions x;;, = --- = x;,, =
ern + e, T = €12, Tjy = - = Tj, ., = €22 We get I'=1 and, by the structure of

the polynomials in (3.2), it follows that a; ; = 0. Finally, for a fixed I'={i1, .. im},
by evaluating x;, = --- = x;,, = e11 + €22, ¥, = €12, ¥, = -+ = Ty, , = €22 We obtain
a7 = 0.

Thus the elements (3.2) are linearly independent modulo Id*(UT3). Since PN Q C
P2 N1d°(UT3), this proves that Id®(UT») = @ and the elements (3.2) are a basis of P¢
modulo P: N1d°(UT3). Hence, using Theorem 1.3.1 and by counting the elements in
(3.2), we get
Py

(4 T — 3 I
en(UT2) = dimp o e )

=c,(UTy)+2"—1=2""n+1.

As a consequence of Theorem 3.2.1 we have the following result.

P

Corollary 3.2.1. P,(UT,) = WJ(UT)
3 2

P
Pﬁﬁ]de(UTQ)'

is isomorphic to an Sy, -submodule of P5(UTy) =

We shall write exp”(UT5) := exp®(UTz). Thus, as a consequence of Theorems 3.2.1
and 2.2.1, we have the following.

Corollary 3.2.2. exp®(UT) = 2.

3.3 Differential cocharacter of UT5

In this section we determine the differential cocharacter of UT5.
Let x5, (UT) = >\, m5x be the nth differential e-cocharacter of UT5 and x,(UT5) =
Y aen MaX the nth (ordinary) cocharacter of UTs.
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Next we prove some technical lemmas which give us a lower bound for the multi-
plicities m5 in
Xp(UT2) =Y mixa. (3.3)
AFn

Lemma 3.3.1. mfn) >n+1.

Proof. We consider the following tableau:

Toy=[1|2|...|n

We associate to T(,) the monomials

a(x) =", (3.4)
a (@) = o, (3.5)
for all £k = 1,...,n. These monomials are obtained from the essential idempotents

corresponding to the tableau T{, by identifying all the elements in the row. It is easily
checked that a(z), a,(:) (x), k=1,...,n, do not vanish in UT5.

We shall prove that the n + 1 monomials a(x), a](:) (z), k = 1,...,n, are linearly
independent modulo 1d*(UT?).

In fact, suppose that
aa(z) + Y afal (¢) =0 (mod 1d°(UTy)).
k=1

The evaluation x = ej; + eg2 gives @ = 0. Moreover, we consider the substitution

x = fBeiy + e12 + ean, where g € F, § # 0. Then we get

n

> B ag =0 (3.6)
k=1
Since |F| = oo, we can choose fi,...,0, € F, where 3; # 0, 8; # f;, for all 1 <
i # j < n, then from (3.6) we get a homogeneous linear system of n equations in the
n variables af. Since the matrix associated to this system is a Vandermonde matrix
whose determinant is nonzero, it follows that of =0, for all K = 1,...,n. Hence a(x),
agf)(x), k=1,...,n, are linearly independent (mod 1d*(UT3)).

Notice that the complete linearization of a(z) and a,(:) () are the polynomials

€T(n) (1'17 . »-Tn) = eT(n) (131 e :En)
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and
k
eET(n) (15, 2n) = eq,, (T1... 7). .. Tn),

respectively. It follows that the polynomials er,,, and e?f) are linearly independent
modulo Id*(UT3). This implies that mi,y =n+ 1. O

Lemma 3.3.2. Letp > 1 and ¢ > 0. If X\ = (p + ¢q,p) then in (3.3) we have m5 >
2(¢+1).

Proof. For every ¢ =0,...,q we define T/@ to be the tableau

i+1 i+2 .. Jivp—1] i+p [1].Ji]ivopr1]. [n]
i+p+2|i+p+3|...| i+2 |i+p+1 '

(

We associate to T;) the polynomials

(pv(I) i b= o~ a7 ~ q—i
b (z,y) =2"'T...xx,yly... gz, (3.7)
p—1 p—1
(p,g:€) _ i (€ €00 7T ~ .q—1
b, (r,y) =x xlx(xy yr)y...gxt, (3.8)
p— p—1

where the symbols — or ~ means alternation on the corresponding variables. The
(Pa) (P:ae)
»

polynomials b; are obtained from the essential idempotents corresponding to
the tableau T;\i) by identifying all the elements in each row of the tableau. It is clear

that bgp’q), bgp’q’s), 1 =0,...,q, are not differential identities of UT5. We shall prove that
(pu(LE) y
,1=0,.

the polynomials bl(-p ’q), b, .., (q, are linearly independent modulo 1d*(UT5).

Suppose that
q q
ST abP? + 3" afo ) = 0 (mod 1d5(UTy)).
i=0 i=0

If we evaluate x = fBe11 + €12 + €92, where 5 € F, 3 # 0, and y = eq1, then we get

q

Z(*l)p_lﬁiai =0. (3.9)

=0

Since |F| = oo, we choose f1, ..., Bq+1 € F, where 8 # 0, B # By, forall 1 < j # k <
g+ 1. Then from (3.9) we obtain a homogeneous linear system of ¢+ 1 equations in the

q + 1 variables «;, © = 0, ..., q, equivalent to the linear system

q
> Blai=0, j=1,...,q¢+1. (3.10)
1=0
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Since the matrix associated to this system is a Vandermonde matrix whose determinant
is nonzero, it follows that a; =0, for allt=0,...,q.

Next we consider

q
Zafbgp’q’e) =0 (mod Id*(UTy)).
=0

If we substitute x = Bej; + e12 + eg2, where 5 € F, 5 # 0, and y = ego, then we obtain
> Blas =o. (3.11)

Since | F'| = oo, we now consider 31, ..., g1 € F', where 3; # 0, B; # B, forall 1 < j #
k < q+1, then from (3.11) we get an homogeneous linear system of ¢+ 1 equations in the
g+ 1 variables a5, i =0, ..., ¢, equivalent to the system (3.10). Therefore o = 0, for all
Z(»p’q), bgp’q’s), 1=0,...,q, are linearly independent

(mod 1d*(UT3)) and this implies that m§ > 2(q + 1). O

1 =20,...,q. Hence the polynomials b

As an immediate consequence of Corollary 3.2.1 and Theorem 1.3.3 we have the

following.
Lemma 3.3.3. Letp > 1 andq > 0. If A\ = (p+q,p, 1) then in (3.3) we have m5 > q+1.
Now we are ready to prove the following theorem.

Theorem 3.3.1. Let x;,(UTz) = >\, m5Xxx be the nth differential e-cocharacter of
UTs. Then we have:

1. mfn) =n+1;

2. m5 =2(q+1), if \=(p+q,p);
8. m§=q+1,if \=(p+qp1l);
4. m§ = 0 in all other cases.

Proof. By computing the degrees x(1) through the hook formula (Proposition 1.2.2)
and by using the results of Lemmas 3.3.1, 3.3.2 and 3.3.3 we shall be able to compute
the multiplicities mS5.

By Lemmas 3.3.1, 3.3.2 and 3.3.3, we have

(n+1)x(n)(1) + Z 2(q + )X (ptqp) (1) + Z(q + DX (ptap. (1) <, (UTz).  (3.12)

p>0 p>0
q=0 q=0
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We shall prove the other inequality. Since c;,(UT2) = )5, m5xa(1), this will complete
the proof. By Theorem 1.3.3, we have

cn(UTy) = X(n)(l) + Z(q + 1)X(p+q,p)(1) + Z(q + 1)X(p+q,p,1)(1)'

p>0 p>0
q=0 q=0

Then we can rewrite the left hand side of (3.12) as

(n+ Dx(y (1) + D20 + DX prap (D) + D (0 + DX prgpn (1) =

p>0 p>0
q=0 q=0

cn(UTh) + nx(n)(l) + Z(q + 1)X(p+q7p)(1)-

p>0
q=0

On the other hand, by Theorems 1.3.1 and 3.2.1, ¢§,(UT) = ¢,(UT) + 2™ — 1. Hence
in order to get the equality in (3.12) we need to prove that

nXmy (1) + (g + DX prap (1) = 2" — 1.

p>0
q=0

Since X(n)(1) = 1, we need to check that » ;>0(q + 1)X(ptqp)(1) = 2" —n — 1. Now,
q=0

since ¢ = n — 2p and by the hook formula x(,4q,(1) = (”) n—2ptl

1 o) i1 it is easily checked
that
5] " 5] " 5] " P
Z(Q+1)X(p+q,p)(1):(n+1) ( > -3 < >p+z< >
p>8 p=1 p p=1 p p=1 p/n—ptl
qz=
5] o n n
w3 () 3 ()
p=1 p=n—|5]+1
3] n n n 5] n
~ (D)o (C)o-23(0)
p=1 p p=n—|%|+1 p p=1 p

where in the last equality we use that ( k ) = (k) J

k1 it Now recall that k:(];j) =
](’;) and Z?:o (];) = 2F. Hence, if n = 2m,

q=0

" /om —1
Z(q + DX(ptap) (1) = (2m + DE™ 1) —m2™" 4mz ( p—1 )
p>0 p=1

=922 _9m — 1.
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In case n =2m + 1,

Z(q + 1)X(p+q,p)(1) =2m+ 2)(22m+1 1 <2m + 1))

e m—+ 1
q=0
2m +1
—((2m 4 1)2>™ — 1
(@ + 2 = e+ (2 1)
" 2m
—2(2 1
Gm+1)3 <p - 1>
p=1
=22+l _om — 2.
Thus
Z(q T DX @tap (1) =2" —n—1,
p>0
q=0
and this completes the proof of the theorem. O

3.4 Computing the growth of the differential codimensions

of UT:

In this section we shall deal with algebras with derivations and the growth of the
corresponding codimensions.

Recall that if V = var®(A) is a variety of algebras with derivations generated by
an algebra A with derivations (the Lie algebra L acts on A as derivations). We say
that ¢ (V) = cZ(A) has polynomial growth if cZ(V) is polynomially bounded and V
has almost polynomial growth if ¢Z(V) is not polynomially bounded but every proper
subvariety of V has polynomial growth.

We shall prove that var’(UT5) is a variety with almost polynomial growth. To this
end, we follow closely the proof of [41] (or [50]), taking into account the due changes.

Lemma 3.4.1. Let U be a proper subvariety of V = var*(UT5). Then there exist
constants M < N such that

aMymN M = Z pizly"eN Tt (mod IdF(U)),
i<M
where p; € F and 7 € {1,¢}.
Proof. Let a, a,(f), k =0,...,n, and bl(p’Q), bgp’q’a), i = 0,...,q, be the polynomials

introduced in Lemma 3.3.1 and Lemma 3.3.2, respectively. It is easy to check that, if
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A= (p+¢q,p,1), then the g + 1 polynomials

CEP’Q)($,Z/,Z):$Z./T\. Egz/y\'.‘gxqfl7 i:o,...7q7

are linearly independent modulo Id*(UT3). Since U & V, then there exists A F n such
that m5(U) < m5(V). It follows that either

aa + Zaia,(f) () =0 (mod Id*(U)), with «,a; not all zero, (3.13)

or
Z BbPD 4 Z BP9 =0 (mod 1d°(U)), with B, 55 not all zero,  (3.14)

or
Z’yicz(»p’q) =0 (mod Id*(U)), with v; not all zero. (3.15)

7

Suppose that (3.14) holds. Hence
x,y) = Z Bix'T ... Tz, Y|y ... gat™
+ ZB‘E T T(2%y — Yt )g. .. g29 =0 (mod Id°(U)).
Since [z, y]® — [z, y] € Id*(V) C Id°(U), from f(z,y) =0 (mod Id*(U)) we get
Zﬁﬂ Z...3(xy" —ya2)y... gal

+ Zﬁ 2T, T(2fy — y'r)g. .. 27 =0 (mod Id°(U)).

By substituting in f (x,y) the variable y with y1 + 32, we obtain

—_——

Zﬂzx T E (@Y +y5) — (1 +y2)2%) (1 +v2) - (1 y2)at

+> Ba'm . E( (1 +y2) — (U5 +v5)2) (yr +v2) - (y1 + y2)a?

In the last polynomial we consider the homogeneous component g of degree 1 in ys. By

substituting in g the variable y; with 2 and yo with [z,y"], 7 € {1,¢}, we obtain
y) = Zﬁzxzf oz, yT g .. gt
i

+ Zﬁ;xlf L Fr,y )27 grT =0 (mod Id°(U)).
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Let t={i: 3; # 0} and N = 3p + q = deg h(x,y). Since h(z,y) =0 (mod Id*(U)) is

a differential e-identity of U, we can write

Bt o,y N = N Bal e,y ]2 T2 (mod 1d°(U)).
i<t+2p—1
Since gy # 0, we get
xt+2py7$ﬁf2p7t71 = Z Hixinxﬁfifl (IIlOd Ids(u))
i<t+2p

If we set N =N — 1 and M =t + 2p, then it follows that
My NM = Z pirtyTzN Tt (mod 1d(U)), (3.16)
i<M
for same p; € F and 7 € {1,¢}.
Suppose now that (3.13) holds, then

az" +Zo¢€ F=1pee =% =0 (mod 1d*(U)).

We substitute = with 1 + x2, and we consider the homogeneous component of degree
1 in z9. We substitute in this homogeneous component x1 with z and z with [z, y7],
T € {1,e}. As in the previous case, one deduces that for N = n and suitable M < N,
the relation (3.16) holds.

Finally suppose that (3.15) holds in /. By substituting in c(p %)

the variable z with

22, we obtain (3.14), and the proof is complete. O

Let U be a proper subvariety of V. Then for every n > 1 we write
RU) =D ms U)X,
AFn
where m5 (U) is the multiplicity of x) in x;, (U).

Proposition 3.4.1. Let U be a proper subvariety of V = varL(UTQE). Then there exists
a constant N such that for alln > 1 and X\ F n we have that m§(U) < N'.

Proof. By Lemma 3.4.1, there exists N such that
aMyaN=M = Z pirtyz™ =t (mod 1d°(U)), (3.17)
i<M
for some 1; € F' and a suitable M < N. We shall prove that for all A F n, m§(U) < 2N.
By Theorem 3.3.1 it is enough to consider the cases when either A = (n), or A = (p+q, p),
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or A = (p+¢,p,1). Suppose first that A = (p + ¢,p) and ¢ > N. By setting either
y==Z...xlz,yly...yory=7...2(z°y — y°x)y ...y, we can apply the relation (3.17)
to any polynomial bl(p’Q) (z,y) or bgp’q’s) (x,y) such that i > M. Hence we obtain

q) _ Z b?#z)7

j<M

Pq€ E qu5
Jj<M

and mS5(U) < 2M < 2N follows. With a similar argument, we prove the statement in
case A = (p+q,p,1) with ¢ > 2N, and A\ = (n) with n > 2N. O]

Theorem 3.4.1. The variety of algebras with derivations generated by the algebra UT5

has almost polynomial growth.

Proof. Let U be a proper subvariety of V = var’(UT5). We shall prove that U has
polynomial growth. By Lemma 3.4.1 there exists /N such that

My N=M = Z pirty=xN "0 (mod 1d°(U)), (3.18)
<M
for some p; € F' and a suitable M < N. By proceeding as in the proof of [41, Theorem

3] (or [50]) we multilinearize the relation (3.18) and we obtain

Z Lo )y Lo(M+1) - - Lo(N)

oESN

=3 i) - oY To(in) - - To(n) (mod IA°(WU)),

i<M o€SN

where the x;’s are new variables.
We multiply the above expression on the right by zi,...,z3 and we alternate x;
with z; for ¢ = 1,..., M. Since any variable to the right (and to the left) of y* can be

reordered, we get
ZT1.. ..%Myafl ... EM$M+1 .any =0 (mod IdE(Z/{))

Now we multiply this relation on the left by zj/41, ..., 2y and then we alternate x; with
zj for j =M +1,...,N. We obtain

x1 .. .:TvNysfl ...Z2n =0 (mod IdE(Z/{))
If we identify y with 41, it follows that

Z1...TNTN 121 ---2v =0 (mod Id*(U)). (3.19)
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If we multiply this expression on the right by zxy1 and alternate xy4q with zy41, we
get

Z1.. . IN(TN 12N — 2N 1ZN+1)Z1 - -2y =0 (mod 1d°(U)). (3.20)

On the other hand, we substitute in (3.19) zn4+1 with [xn41, 2v+1]. Thus we obtain
ZT1... fN[xNJrl, ZN+1]§1 ...z =0 (mod IdE(U)), (3.21)

since [£N+1,2N+1)° = [EN+1, 2v+1] (mod 1d*(U)).

The relations (3.20) and (3.21) show that the irreducible S(y 1 n1)-character corre-
sponding to the partition A = (N +1, N +1) participates into the 2(N + 1)th differential
e-cocharacter of U with zero multiplicity, i.e., m?N+1,N+1)(u) =0.

Next we multiply the relation (3.21) on the right by yn1 and alternate xy 11, 2y+1

and yn41. We obtain

T1... fNEU\NJrlj/y\NJrl/Z\NJrlEl ...2ny =0 (mod Ids(U)).

As before we get mfNJrLNJrl’l)(M) =0.
Hence if A is a partition of n such that Ay > N + 2 then m§ () = 0. By Theo-
rem 3.3.1, it follows that if x) appears in the differential e-cocharacter with nonzero

multiplicity then A must contain at most N + 1 boxes below the first row. Thus

XUy =D miUxa
AFn
[Al=A1<N+1
Since |A| = A1 < N +1, then A\; > n— (N +1) and by the hook formula we immediately

get

n!
xa(1) < m < nVtL

Recall that, in the ordinary case, my(V) < xa(1) (see [31]). Then by Theorem 1.3.3
and Theorem 3.3.1, m5 (V) < (n+ 1)m(V). Hence m5(U) < m5(V) < (n+ 1)n™V 1 in
X7 (U) and

& U) = msU)xa(1) < (N + 1) (n+ 1)n*VHY,
AFn
From this relation it follows that I/ has polynomial growth. O

3.5 The algebra UTY and its invariants

In this section we shall be concerned with the differential identities of the al-

gebra U TQD , 1.e., the algebra UT, with the action of its Lie algebra of derivations
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L = Derp(UTy). We start by describing a basis of Id” (UT5) and the decomposition of
the differential cocharacter of UTY into irreducibles.

The following remarks are easily verified.

Remark 3.5.1. [z,7][z,w] = 0, [2,9]° — [z,y] = 0 and [z,y]° = 0 are differential
identities of UTL.

Remark 3.5.2. Since L = Derp(UTs) ia a Lie algebra of inner derivations of UTs,
then:

2
8737(5 ’xéa,maé - :Eé € <[$’y}a - [may]a [xvy]6>TL'

1. 25 — o
2. 2%y[z, 0], [z, ylzw®, 2%y2P € ([,y][z,w])r,, where a, B € {&, 5}
Remark 3.5.3. [z, y®?][z93, w™]| = 0, with o; € {€,d}, 1 =1,2,3,4, is a consequence
of [z, y][z,w] = 0.

Remark 3.5.4. For any permutations o € S, we have

[acg(l),a:a@), A acg(t)] = [:U‘f, xo,..., 2] (mod <m5y[z, wl, [z, y]zwé, [z, y]‘S)TL).

Proof. Proceeding as in the proof of Remark 3.2.3, we obtain that

Tp(1) - - .a:p(p)y‘szﬂ.(l) e Zp(g) =L acpy521 ... %g (mod (ac‘sy[z, w], [z, y]zw‘s)TL),

for all 1 < p,q <mn, and for all p € S,,, 7 € S,. Thus, since [z,9]° = [2°,9] — [0, 2], we

can reorder all the variables in any commutator [z{

§s Tigs - -+, Tyy] as claimed. O

Theorem 3.5.1. Let UTQD(F) be the algebra of 2 x 2 upper triangular matrices over F
with L = Der(UTy)-action. Then

1. IdD(UTQ) - <[.%',y][2, ’lU], [xa y]e - [Z’,y], [1’, y]6>TL'

2. P(UTy) =2 (n+2).
Proof. We prove the theorem using the strategy of the proof of Theorem 3.2.1. Let
Q = ([z,y][z,w], [z,9]° — [z,9], [x,y]°)7,. By Remark 3.5.1, Q C 1dP(UTy). Also since
[z, y]° — [z,y],2°y° € Q, we have that Id*(UT») C Q.

Let f € PP be a multilinear polynomial with derivations of degree n. Then, by
Theorem 3.2.1 and Remarks 3.5.3, 3.5.2 and 3.5.4, we may write f, modulo @, as a
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linear combination of the polynomials

Tl Ty, Tip oo Tip [Thy Ty ooy T 1]
(> (>

Thy oo Thy  Tpy Tiy oo T, [T], Tlys o T, (3.22)
1 . ) 1

Thy oo Thy Ty, Tiy oo T, (2] Ty 2,

where i1 < - < i, kK> 51 < 0 < Jpeme1, B1 < s < hpo1, I < o < e,
m#n—1,n.
Next we show that these polynomials are linearly independent modulo Id?(UT5).

For I = {i1,...,im} and J = {j1,...,Jn—m—1} disjoint subsets of {1,...,n}, we set

/ . .
Xrg = @iy oo T [Ty Tjyy ooy x| Also for I = {iy,...,im} € {1,...,n}, we
1" . .
put X? = Ty« T [T] Tlyy - -+, 20, |, and for To= iy, ... im} C {1,...,n}, we
set X}S,, = Tjy ... Ti, [ZL‘?I,ZL'lQ, ...,xy,_, ]. Hence we consider a linear combination of

elements in (3.22) and suppose that
n
ZO‘LJXLJ + Z Oé?X;/ + Z OJ?/X?// + Z aixil .. .1‘in71$7€a
1,J I 7’ r=1
n
+ Zagxil x4 Bxy ..z, =0 (mod PP N1dP(UTy)).
s=1

We will show that all coefficients oy s, oz?, al,, af ag, (B are zero by making suitable

7"
evaluations.
If we evaluate 1 = - -+ = x,, = e11 +e22 we get § = 0. For a fixed s, by setting x;, =
s =4, =e11 + ez and z, = exn we get al = 0. Also, for a fixed I" = {i1,--yim},
by making the evaluations x;, = -+ = x;,, = e11 + e, v, = -+ = 27, , = €22 We

obtain a‘;,, = 0. Moreover, by making the same evaluations as in the proof of Theorem
3.2.1, we get af =0, ozf,, =0 and a7 ; = 0, for any r I, I,J.

We have proved that 1dP(UTy) = @ and the elements in (3.22) are a basis of P
modulo PP N1dP(UTy). By using Theorem 3.2.1 and by counting the elements in (3.22),

we obtain c¢?(UTy) = ¢ (UTy) + 2" — 1 = 2"} (n + 2). O

Corollary 3.5.1. P:(UTy) is isomorphic to an Sy-submodule of PP(UTy) =
Py
PPN Id°(UTy)

Corollary 3.5.2. exp®(UTP) = 2.

Next we compute the nth differential cocharacter x2(UTy) of UTY.
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We write

X2 (UTy) = Zm)\ XA (3.23)
AFn

The following remark is an immediate consequence of Corollary 3.5.1.
Remark 3.5.5. For any partition A+ n, m§ < mAD.
Lemma 3.5.1. m( ) >2n+ 1.

Proof. We consider the tableau T},,) define in Lemma 3.3.1 and let a(z) and a,(:) (z) be

the corresponding monomials in (3.4) and (3.5). Let also

(9) (z) = zh g0 znk

Y

for all k =1,...,n. It is easily checked that a(x), a,(f) (x), a,(j) (x), k=1,...,n, do not
vanish in UTJ.

As in the proof of Lemma 3.3.1, next we shall prove that the 2n + 1 monomials
a(x), a](:) (z), a,(f) (z), k= 1,...,n, are linearly independent modulo 1dP(UT3). In fact,
suppose that

x) + Z aial(f) (x) + Z aial(f) () =0 (mod IdP(UTy)).

By setting x = eq1 + eg9 it follows that a = 0. Moreover, if we substitute = Seq1 + ea
where 3 € F, B # 0, we get > p_;(1 — 8)B*1al = 0. Since |F| = oo, we can choose
Bi,...,Bn € F, where 3; # 0 and 3; # 3;, for all 1 < i # j < n. Then we get the

following homogeneous linear system of n equations in the n variables ai, k=1,...,n,
n
d B lag =0, i=1,...,n (3.24)
k=1

Since the matrix associated to the system (3.24) is a Vandermonde matrix, it follows

that ozi =0, for all k =1,...,n. Hence we may assume that
n

S agay)(z) =0 (mod 1dP(UTy)).
k=1

As in the proof of Lemma 3.3.1, it follows that aj = 0, for all & = 1,...,n. Thus
the monomials a(z), a(s)( ) (6)( ), k = 1,...,n, are linearly independent modulo
1dP(UT). This says that m( y=2n+ 1 O

Lemma 3.5.2. Letp > 1 and ¢ > 0. If A = (p+ q,p) then in (3.23) we have m¥ >
3(g+1).
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Proof. For every ¢ =0,...,q we define T;\i) to be the tableau define in Lemma 3.3.2 and
let bgp ) (z,y) and bl(-p 2€) (z,y) be the corresponding polynomials defined in (3.7) and
(3.8). Let also

(p,a:9) S ) S N> o oq—i

bipq (x,y)=2'T...2(x°y —y°x)y...yz?".

p—1 p—1

It is clear that bgp ’Q), bl(-p ’q’s), bgp 49) are not differential identities of UTP. We shall
prove that the above 3(¢q + 1) polynomials are linearly independent modulo Id? (UT3).

Suppose that

q q
Z aibl(-p’q) + Z oszz(.p’q’g)
i=0

i=0 =0

+
o)
"o
Ny
=
2
s
Il

0 (mod IdP(UTy)).

If we set x = Bei1 + e, with g € F, B # 0, and y = €11, we obtain

q

Z(—l)p_lﬁia? =0.

i=0
Since |F| = oo, we can take f1,..., 8441 € F, where 8; # 0, 5; # B, for all 1 < j #
k < q+ 1. Then we obtain the following homogeneous linear system of ¢ + 1 equations
in the ¢ + 1 variables af, 1=0,...,q,

q

D Bl =0, j=1,....q+1
=0

Since the matrix of this system is a Vandermonde matrix, it follows that ozgS = 0, for all

1=0,...,q. Hence we may assume that the following identity holds
q q
S a1+ 3" s = 0 (mod 1dP(UTy)).
i=0 i=0

As in the proof of Lemma 3.3.2, it follows that o; = 0, o = 0, for all ¢ = 0,...,q.

Therefore the polynomials bgp ’q), bgp ’q’s), bgp ’q’a), 1=0,.

modulo 1d?(UTy) and, so, m¥ > 3(q +1). O

..,q, are linearly independent

As a consequence of Lemma 3.5.1, Lemma 3.5.2, Remark 3.5.5 and by following
verbatim the proof of Theorem 3.3.1 we get the following theorem which gives the

decomposition into irreducible characters of x2(UTy).

Theorem 3.5.2. Let xD(UTy) = >, m¥xx be the nth differential cocharacter of
UTP. Then we have:

1. m(Dn) =2 +1;
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2.m{ =3(g+1), if A= (p+q,p);
3. m=q+1,if A= {P+qp1);
4. mAD =0 in all other cases.

We remark that var?” (UTy) = var®(UTJ) does not have almost polynomial growth.
In fact since ¢ acts trivially on UT5, i.e., 2% = 0 is a differential identity of U 15, it
follows that UT5 € var” (UTy) and we have see that exp” (UT5) = exp”(UTP) = 2. We

state this fact in the following theorem.

Theorem 3.5.3. var®?(UT,) has no almost polynomial growth.



Chapter 4

The Grassmann algebra and its

differential identities

Let G be the infinite dimensional Grassmann algebra over an infinite field F' of
characteristic p # 2. In this chapter we study the differential identities of G with
respect to the action of a finite dimensional Lie algebra L of inner derivations (see [48]).

In the first section we explicitly determine a set of generators of the ideal of differ-
ential identities of G. Moreover we prove that unlike the ordinary case the variety of
differential algebras with L action generated by G has no almost polynomial growth.

In the second section we assume that F' is of characteristic zero and we study the
space of multilinear differential identities in n variables as a module for the symmet-
ric group S, and we compute the decomposition of the corresponding character into

irreducibles.

4.1 The ideal of differential identities of (G and its codi-

mensions
Let us consider the infinite dimensional Grassmann algebra G over an infinite field
F' of characteristic p # 2.
Recall that if ¢ = ¢;,...¢;, € G, the set Supp{g} = {ei,,...,e;,} is called the

support of g. Let now g1,...,¢: € G be such that Supp{g;} N Supp{g;} = 0, for all
i, € {1,...,t}. Since char F' # 2, we set

5122_1adgi, 1=1,...,t.

54
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Then for all g € G we have

0, ifge G
5i(g) = TEEY i

g9ig, tge G
We shall consider L = spanp{d1,...,0;} C ad(G). Since for all g € G, [0;,0;](g) = 0,
i,7 € {1,...,t}, L is a t dimensional abelian Lie algebra of inner derivations of G. We
shall denote by G the algebra G with this L-action. Also throughout this section F/(X|L)
will be the free associative algebra with inner derivations on X.

We start by describing the differential identities of G.

Remark 4.1.1. It can be checked that
[€1, x2][x1,22] =0 (4.1)

is a consequence of [x1,x9,x3] = 0 in G (see for example [24]). Since [x1,x2,23] = 0
is also a differential identity on é, then the linearization of (4.1) leads to the identity
(21, 20][x3, 24] = —[23, T2][x1, 24) on G. Notice that the linearization is harmless because

char F' # 2 and the degree of x1 is equal to 2.

Remark 4.1.2. Since L = spanp{01,...,0:} is a Lie algebra of inner derivations of G,
then [:L'(;i,l'z] =0 and 2%% =0, fori,j € {1,...,t}, are consequences of [x1,x2, 23] =0
inG.

Next we prove the main result of this section. Recall that for a real number x we

denote by |x| its integer part.

Theorem 4.1.1. Let F' be an infinite field of characteristic p # 2 and G be the infinite

dimensional Grassmann algebra over F with L = spanp{01, ..., 0 }-action. Then

1. I1d(G) = ([z1, z2, 23]) 7, -

2. ch(G) = 2t2n1 — ZJLZ%J Z§:2j () (z‘—an)'

Proof. Let Q = ([x1, x9, x3))7, . It is readily checked that Q C Id*(G). Let f € F(X|L)
be a differential polynomial in z1,...,x,. Since 1 € é, f can be written as a linear

combination of products of the type

i xR wy L wy, (4.2)

oy
where o; € U(L), a; # 1, for 1 < i < k, and w; ..., w,, are left normed commutators
in the a:?hs, B € U(L). Notice that [z]", 237, 23*] = 0 and [2]", z2] = 0 with ~; € U(L),
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for 1 < i < 3, are consequence of [x1,x9, 23] = 0. Then, modulo @, in (4.2) we have
w; = [xj,,xj,]), for all j = 1,...,m, and they are central. Also since %% € @, for
all 4,5 € {1,...,t}, it follows that in (4.2) o; € {d1,...,6:} modulo Q). Moreover
4j

it is clear that 2%2% = 0 is a consequence of [x1,x2][x1,23] = 0 and by Remark

4.1.1 [z1, x2][xs, 4] + 23, 2][71, 4] € Q. Then we may assume that f is multilinear.

s s ) .
Now observe that 2%z = —a3ay and 2fi[zg, 23] = —adi[ze, 1] are consequences
of [x1,x9][xs, 4] = —[x3,22|[T1,24]. Then f can be written, modulo @, as a linear

combination of elements of the type

4 é
z," .xkh’“ [Tkt 1, Thyo] - - - [Tht2g—1, Thtag), (4.3)
with
hi<---<hg, k+2g=n, 0<k<t. (4.4)

Next we prove that these elements are linearly independent modulo IdL(é).
For any 0 < k <'t, consider Ay = {dp,,...,0n,} C {01,...,0:}, set

Shy on

Xp, =20t xy [Tht1, Thaa) - - - [Tht2g—15 Thoyog]

and suppose that

f=> arXa, €1d"(G).
Ag

In order to show that all coefficients ap, are zero we consider the following evaluations:
for any Ay = {0n,,...,0n,} we choose z; = gll,...,xk+2q = 9;€+2q where g; e Gy,
1<i<k+2q and for all r € {1,...,t} \ {h1,..., hi}, there exists s € {1,...,k + 2¢}
such that Supp{g,} N Supp{g,} # 0. Then if we make these evaluations for increasing
value of k£ (0 < k < t), by the properties of the polynomial in (4.3), it follows that
apa, = 0 for any Ay. Thus the elements (4.3) are linearly independent modulo Id%(G),
and this proves that Id"(G) = Q.

Notice that if we consider the multilinear differential polynomials, then the elements

) on
Tiy - .:L‘imxji” .. .:Ejkk [IL‘jk+1,l‘jk+2] o [l‘jk+2q71,$jk+2q], (4.5)

with
i< <y J1 <o < Jggogy 1 <o <hp, m+Ek+2g=n, 0< k<, (4.6)

are a basis of PL modulo PFNI1d” (G). Thus we count for any fixed n, the total number

of elements in (4.5) subject to the conditions (4.6), i.e. the nth differential codimension
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ck(G). If 0 < k < t, then this number is equal to
o\ k)2 n
=) % ()

Notice that so = 2"~ and s; = (1)2”*1. Moreover, if kK = 2] with [ > 1,

AN A N W ¢ =
82[2(%) Zo <2r)_§3<2p> :<2l> " —p20<2p>

Finally, in case k = 2[ + 1 with [ > 1,

Thus

k=0 =1 p=0
L(t-1)/2] ; -1 n
DR CHIY] CEbD SR
—1 2l+1 =0 2p+1
[t/2] AL L(t—1)/2] ; -1 .
Y ()56 % (LX)
P 21 o 2p P 20+ 1 =0 2p+1
t /¢ n [t/2] o =2,
ton—1 .
-3 ()( ) - % ()5 ()
1=2 =2 p=0
L(t—1)/2] ¢ -2 N
=9 (21~|—1>p:0 <2p—|—1>
[t/2] t ¢ n
ton—1
=23 3 (0 )
J=1 i=2j

O]

Recall that two functions ¢i(n) and ¢a(n) are asymptotically equal and we write
w1(n) = p2(n) if limy, 0 w1(n)/p2(n) = 1. Then the following corollary is an obvious

consequence of the previous theorem.
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Corollary 4.1.1. ¢£(G) ~ 2t2n~1,

The proof of Theorem 4.1.1 suggests a convenient decomposition of PnL(é) For any

n > 1 and for all v, ...,v; € L distinct, we set

@717.__7% = {’yl, e Yk 1, ey 1}.
n—k
We define
Doy,
phon spanF{{L‘?(l) ) :vif&n) | o€ Sn, € € Py }s

P
a Sp-submodule of PL. Since for all V1, ..., B1s- .., B € L, Pa7v"% and Py

are isomorphic as .S,-modules, we introduce the notation
L _ pPs,., 5k
Py =Py :

In particular, for £ = 0 we have P,ﬁo = P,. Hence for any 0 < k < t, we set

and

As consequence of proof of the Theorem 4.1.1 we have the following.

Corollary 4.1.2. ¢L(G) = S0 (,’;)cﬁk(é), where

2n—1, ifk=0,1
Cﬁk(é) =q2n-t - Z]LZ/OQJ_l (27;), if k> 2 is even -
gt = BTG, if k>3 s odd

Next we shall be concerned with the growth of the differential codimension of G.

Notice that by Corollary 4.1.1 VarL(é) has exponential growth, nevertheless it has
no almost polynomial growth. In fact, the Grassmann algebra G (ordinary case) is an
algebra with L-action where 6;, i = 1,...,t, acts trivially on G, i.e., 2% = 0,7 = 1,...,t,
are differential identities of G. Then it follows that G' € VarL(é), but by Theorem 1.3.1
cn(G) = 271, Thus we have the following result.

Theorem 4.1.2. varL(é) has no almost polynomial growth.
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4.2 Differential cocharacter of (¢

Throughout this section F' will be a field of characteristic zero.

Let Xﬁk(é) be the character of the S,-module Pfk(é) Then we can write

X k(G) =Y mipxa, (4.7)
AFn

where mlgk > 0 is the multiplicity corresponding to the irreducible character x.

Next we shall compute the multiplicities mik in (4.7).

Lemma 4.2.1. Let Xf;k(é) = \n mf,kXA be the character oanL’k(é). Then we have:
1. mf}k =1, ifA=nm—r+1,1""Y) andr >k, r #0;
2. mf\’,k = 0 in all other cases.

Proof. If k = 0, we have Py = P, and Xﬁ,o(é) = xn(G). Then by Theorem 1.3.4 the
theorem is proved in case k = 0.

Suppose that k& > 1. Assume that d1,...,Jdx, act on PnLk(é) IfA=(n—-r+1,1"71)
and r > k, we define T to be the tableau

1r+1]... [n]

Then Ry, = Sp—r41{l,7+1,...,n} and Cp, = S,, where S,,_, 1 {1,7 +1,...,n}
denotes the symmetric group acting on the set {1,7+1,...,n}. We associate to Ty the

polynomial

wfl""s’“ =er, (317‘131 .. .mi’“xkﬂ ce Tp)

= Z o (Z (sgn T)l‘f_l(l) e xi’zk)xT(kH) . .:UT(T)> Tpgl ... Tp.

0€Sn—rt1{l,r+1,...,n} TESy

We claim that wfl'“ék, r > k, is not an identity of G. In fact, we consider the evaluation
¢ : F(X|L) — G such that

p(ri) =e;, 1<i<r
and

90(1'7“+1) = €Er41€p42, ..+, Sp(l'n) = €2pn—r—1€2n—r
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such that for all i € {1,...,2n —r}, e; ¢ Supp{g;}, for all j € {1,...,k}. Then, since
foralli e {1,...,r} and j € {1,... k}, ga(:cfj) = g;p(x;), we obtain

o Z (sgn T)xil(l) . -xilzk)xr(kﬂ) e Tr(r))

TES:
=Y (s8n7)g10(@r(1)) - - Gr (7 (1)) P (T r (1)) - - (7 ()
TES,
= (£g1--.9k) Z (sgnT)er(ry .- er(ry = (g1 ... gre1...e, # 0.
TES:
Thus, since ¢(zy41),- .., p(zy) are central in G,

o) = () (n— 7+ 1)lgy ... grer ... ean_p # 0.

We have proved that wfl'“‘sk is not an identity of G. Hence this implies that mik > 1,
if \=(n—7r+1,1""1) and r > k. Then, since cﬁk(é) =Y e mE X (1), we have

ZX(n—r-ﬁ-l,lT—l)(l) < Cﬁ,k(G)' (4.8)
r=k

By the hook formula (Proposition 1.2.2) x(p—pq1,17-1)(1) = (::11), then, if k£ = 1, we

> Xperira-n (1) = (Z B i) =271,

r=1 r=1
On the other hand, by Corollary 4.1.2, cﬁl(CN}’) = 27"~ Then, if £ = 1 we get the
equality in (4.8), and in this case the theorem is proved. Suppose then k > 2,

n N~ (n-1 — (n—1 e ST
;X(n—rﬂ,lrl)( )—Z (7,_1> _TZ1 <7,_1> - _Z (r—l)

r=1 r=1

have

Hence in order to get the equality in (4.8) we need to prove that

k—1
e Z n—1 ~

r=1
Thus, if £ = 2] with [ > 1, by Corollary 4.1.2 we need to check that

20—1 n—1 -1 n

2n71 o > 2n71 o )
> ()2 -2 (3)
r=1 7=0

But by induction on [ > 1, it is easy to verify that Zil:_ll (:fj) = Zg_:lo (27;) and also

in this case the theorem is proved. Suppose finally that & = 2l + 1 with [ > 1. Since

St (")) = Zé-_:}) (anﬂ), by Corollary 4.1.2 we get the equality in (4.8) and the

theorem is proved. O
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Theorem 4.2.1. Let F be a field of characteristic zero and G be the infinite dimensional
Grassmann algebra over F with L = spanp{61, ..., 8 }-action. If xL(G) = > en MEXA
is the nth differential cocharacter of é, then we have:

T t
> o (F), r<t
§\/: =0 (z) ,if)\:(n*’l“ﬁLl,lr_l);

2t r>t
2. mf =0 in all other cases.

Proof. By Corollary 4.1.2, mf = ZZ;:O (,i) mfk. Then by using Lemma 4.2.1 we get the
proof of the theorem. O



Chapter 5

Algebras with involution and
multiplicities bounded by a

constant

In this chapter we characterize algebras with involution, satisfying a non-trivial
identity, whose multiplicities of the cocharacter are bounded by a constant.

Throughout this chapter F' will be a field of characteristic zero.

5.1 Grassmann envelope and superalgebras with superin-

volution

Recall that the Grassmann algebra G over F' has a natural Zs-grading G = Go @ G
where (i is the subspace of G spanned ba all monomials of even length and Gy is the
subspace of spanned by all monomials of odd length.

Given any Zo-graded algebra A one can form a new superalgebra with the help of

G.

Definition 5.1.1. Let A = Ay ® Ay be a Zo-graded algebra (or superalgebra). The

algebra
G(A) = (Go® Ag) ® (G1 ® A1)

is called the Grassmann envelope of A.

Clearly the Grassmann envelope G(A) has a natural Zs-grading, G(A) = G(A)p &
G(A)1, where G(A)g = Ap ® Go, G(A)1 = A1 ® G1.

62
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Next we introduce the concept of superinvolution in order to define such kind of

map on G.

Definition 5.1.2. Let A= Ay ® A1, B = By &® By be two superalgebras. A linear map
¢ : A— B is said to be graded if (A;) C By, i =0, 1.

Definition 5.1.3. Let A = Ag® Ay be a superalgebra. We say that A is a superbalgebra
with superinvolution § if it is endowed with a graded linear map § : A — A with the

following properties:
1. (aMt =a, for alla € A,

2. (ab)t = (=D)llllpta? | for any homogeneous elements a,b € AgUA, of homogeneous

degree |a| and |b|, respectively.

Let A = Ag & Ay be a superalgebra with superinvolution #. Since char F' = 0, we
can write A = Al ® Ay @ A] ® AT, where for i = 0,1, A7 = {a € A;la* = a} and
A ={a € A;j|la* = —a} denote the sets of homogeneous symmetric and skew elements
of A;, respectively.

We define a superinvolution on G, that we denote , by requiring that

er

4 fry —e,L-’

for i > 1. A basic property of this superinvolution is that GT = Gy and G~ = G.

A fundamental property of the superinvolution of the Grassmann algebra defined
above is that of allowing to bridge between involutions and superinvolutions of a super-
algebra and its Grassmann envelope.

Notice that if A is a superalgebra with superinvolution §, we can write A = Ay ® Ay
where 49 = Al & Ay and A; = A7 @ A]. Hence the Grassmann envelope G(A) can
be regarded as an algebra with the involution * : G(A) — G(A) such that

(a®g)* =d g
In [1] Aljadeff, Giambruno and Karasik proved a very useful theorem.

Theorem 5.1.1 ([1],Theorem 4). If A is an algebra with involution satisfying a non-

trivial x-identity, then there exists a finite dimensional superalgebra with superinvolution
B such that I1d*(A) = Id*(G(B)).
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Next we want to define a map whose properties will be late use (see [1]). In order
to do this we first recall some notation.
Let F(X,s,t) be the free super algebra with superinvolution on a countable set X

over F'. We write X as the disjoint union YT U ZTUY ™ U Z~, where
YP={yfliz1}, 25 ={fli=1}, Y- ={y7li= 1}, 2~ ={~7li =1}

are countable sets such that the variables in Y are even and symmetric, the variables
in Y~ are even skew, those in Z* are odd symmetric and those in Z~ are odd skew.

It is clear that F'(X, ) is embedded into F(X,s,#) by identifying =7~ with y;" + 2
and x; with y;” +2;7, 7> 1.

IfA= Aar DA, @ AT @ A7 is a superalgebra with superinvolution, then a polynomial
f(yf,...,yjn,yl_,...,yg,zf',...,z;r,zf,...,z;) € F(X,s,f) is a Zy-graded polynomial
identity with superinvolution of A (or simply a superidentity with superinvolution), and
we write f =0, if f(s1,...,8m: 71, Tn. k1, ... kp, b1, ..., hg) =0 for all sq,...,sp, €
Al 1yt € Ay k1, ky € AT, ha,... hy € A7. We shall denote by Id*(A) the
ideal of Zs-graded identities with superinvolution of A.

Let m,n,p,q > 0 be integers and P&n,p,q the space of multilinear polynomials of

F(X,s,t) inthevariablesyf,...,yﬁl,yf,...,yg,zf,...,z;,zl,...,zq’.IwaPﬁl’mpﬂ,

we write

€o(1) €a(iy)

_ o(ip+1) o (in)
W= WIZ50) - Zo)

5
wzza(il+1) PN Za(ig) w3z ...Wr41,

where 0 € Sy, €;; € {+,—} and the w;’s are (eventually empty) monomials in even
variables.

Then we consider the linear map

~. pf ﬁ
tPnnpa = Prnap
define by
~ No (1) No(i1) No(i1+1) No(ig)
w = (sgna)wlza(l) i) WaZ(p Ny e 2 () W W
where 7; = —¢; for all i.

In [1], the authors gave the following basic properties of the map -

Lemma 5.1.1 ([1], Lemma 2). The map~: Pﬁ%mp,q — an,mq,p has the following prop-

erties.

1. If f € Phonpa, then f=f.
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2. If A is a superalgebra with superinvolution, then f € Id*(A) if and only if fe
Id*(G(A)).

Another basic result we shall need in what follows is the Wedderburn-Malcev the-
orem for finite dimensional superalgebras with superinvolution. First we recall some

definitions.

Definition 5.1.4. An ideal (subalgebra) I of a superalgebra A with superinvolution § is
a t-superideal (§-superalgebra) if it is a graded ideal(subalgebra) and I* = 1.

Definition 5.1.5. An algebra A is a simple §-superalgebra if A> # 0 and A has non-

trivial §-superideals.

Theorem 5.1.2 ([16], Theorem 4.1). Let A a finite dimensional superalgebra with su-
perinvolution over a field F' of characteristic zero. Then there exists a semisimple §-
superalgebra B C A such that

A=B+J(A)

and J(A) is a §-superideal.

We shall present the classification of the finite dimensional simple f-superalgebras
over an algebracally close field F' (see [5, 25, 46]). In order to describe such a result we
first recall same important facts.

It is well known (see [24],Theorem 3.5.3) that if F' is algebraically closed, a simple

superalgebra A is of one the following types:

(i) Given k+1>1,k>1>0,

My (F) = { <)Z( ;) | X € My(F),Y € Myxi(F),Z € Myxp(F), T € MZ(F)}

= (M (F))o ® (Mg (F))1

where (Mk’l(F))O = { (J(j ;)} and (Mk,l(F))l = {(2 };> };

(ii) Q(n) = Mu(F @ cF) = Q(n)o ® Q(n)1, where Q(n)g = My (F) and Q(n); =
cM,(F) with ¢? = 1.

If A is a superalgebra, we denote by AP the superalgebra which has the same graded
vector space structure as A but the product in A%°P is given on homogeneous elements
a,b by

0ob = (—1)dega)dest)py.
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The direct sum R = A @ AP is a superalgebra Ry = Ao ® Ay", By = A; @ AT and

R is endowed with the exchange superinvolution
(a,0)™ = (b,a).

Recall that A and B are two algebras (superalgebras) endowed with an involution (su-
perinvolution) * and x, respectively, then (A, *) and (B, *) are isomorphic, as algebras
(superalgebras) endowed with involution (superinvolution), if there exist an isomor-

phism of algebras (superalgebras) ¢ : A — B such that ¢(z*) = ¢(z)*, for all x € A.

Theorem 5.1.3. Let A be a finite dimensional #-simple superalgebra over an alge-
braically closed field F' of characteristic different from 2. Then A is isomorphic to one

of the following:

1. My 25(F') with the orthosymplectic superinvolution osp define by

XYOSp_IkO_lX—YtIkO
z 1v) \o Q Z T 0 Q
0

where t denotes the usual matriz transpose, Q) = ( ;
—4s

I
0 and Iy, Is are the

identity matrices of orders k and s, respectively;

2. My, 1 (F) with the transpose superinvolution trp define by

x v\ (1 -yt
Z T zt Xt )’
3. My (F) ® My (F)°P with the exchange superinvolution;

4. Q(n) ® Q(n)*°P with the exchange superinvolution.

Let A be an algebra with involution over a field F. We may assume that F is
algebraically closed. In fact, if F is the algebraic closure of F, then A can be naturally
embedded in the *-algebra A @p F and Id*(A) @p F = Id*(A®Fp F).

By this argument, if B is a finite dimensional superalgebra with superinvolution
such that Id*(A) = Id*(G(B)), then we can assume that B has a Wedderburn-Malcev
decomposition By + -+ + By, + J where B; are f-simple superalgebras specified in
Theorem 5.1.3.

We finish the section with the following results which will be useful later.
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Let now consider M = F(e11+e44) @D F(eg2+e33)® Feio® Fesy C UTy(F) endowed
with the reflection involution p, i.e. the involution obtained by reflecting a matrix along
its secondary diagonal. If MS"P is the algebra M with grading My = F(e11 + eqq) ®
F(ea + es3) and My = Fejo @ Fesy.

Since M# = 0, the reflection involution p is a graded involution, i.e. the homogeneous
components are stable under p: Mé) C My and M{) C Mj. Hence M®"P can be viewed

as algebra with superinvolution.

Lemma 5.1.2. The Grassmann envelope G(M®'P) of M is x-Pl-equivalent to M,
i.e. 1d*(G(M?®"P)) = Id*(M).

Proof. Notice that the Grassmann envelope of M"P is

g? g% 0 O
0
GMP) = 2 | et g8 € Go.gligh € G
0 0 g5 9
0 0 0 ¢
with involution «

@ gl 0 0 g =9 0 0

00 g3 0 0f [0 g8 0 o0

0 0 ¢ gl 0 0 ¢y —g!

0 0 0 g o 0 0 ¢

Clearly, G(M?®"P) satisfies z1z9 = 0. Conversely, let g € Gy, g # 0, and

Cy = spanp{ei1 + eas, €22 + €33, ge12, —gesa} C G(M"P)
SN—— —— N =

a b c c*

with induced involution. Then the application ¢ : M — Cy given by

plenn +ess) =a, ¢lean+ez3) =b, @lern) =c¢, olex) =c",

is an isomorphism such that ¢(X?) = X* for all X € M. It follows that G(M5"P) is PI
x-equivalent to M. O

Remark 5.1.1. The algebras (M1 (F),trp) and (Q(1) & Q(1)*°P,ex) contain a subal-
gebra with induced superinvolution isomorphic to F & F with exchange superinvolution.
In fact, if we consider the subalgebra Cy = Feyq + Fay of My 1(F) and the subalgebra
Cy = (Q(1) & Q(1)*P)p of Q(1) @& Q(1)*P, it is not difficult to see that (Cq,trp) and
(Co, ex) are isomorphic to (F & F,ex).
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5.2 Some lemmas
In this section, we shall study the structure of a generating algebra with involution
of a variety V not containing the algebra (M, p).
Lemma 5.2.1. Let A be an algebra with involution. If (M, p) ¢ var*(A), then
(G(My2(F)),08p) ¢ var*(A),
forany k>2 orl > 2.

Proof. Suppose that (G(Mg2(F')),o0sp) € var*(A). Let us consider first £ > 0 and { > 2.
We can consider the elements a = €g1 x41 + €kttt 1 k1415 0 = k2, k42 + Chpi 42 k1425
c = e and ¢®P = epyropri+1. Let C = spanp{a,b,c,c™P} be a subalgebra of
(G(Mjy2(F)),0sp) with induced involution. Then the application ¢ : M — C' given by

(e +eaa) =a, ¢(eza+es3) =0, ole2) =c¢, @(ess) =™,

is an isomorphism such that ¢(X?) = X°P for all X € M. Hence C is an algebra with
involution isomorphic to (M, p) and C € var*(A), a contradiction.

Let now k£ > 2 and [ € {0,1}. Let C = spanp{ei,ei2,e21,e22} be a subalgebra
of (G(Mjy2/(F)),0sp) with induced involution. Clearly C' is isomorphic to the ma-
trix algebra of order 2 with the transpose involution ¢, (Msy(F'),t). Since (M,p) €
var*(Ma(F),t) (see [51] Remark 3.2), it follows (M, p) € var*(Ma(F),t) = var*(C) C
var*(G(Mjy21(F')),0sp) C var*(A), a contradiction. O

Lemma 5.2.2. Let A be an algebra with involution. If (M, p) ¢ var*(A), then
(G(My2(F)),08p) ¢ var(A).
Proof. First notice that
Id*(G(Mi2(F))) C Id*(G(M*®"P)). (5.1)

In fact, by Lemma 4.3 in [30], if f € Id*(M;2(F)), then f € Id*(M*"P). Hence, by
lemma 5.1.1, if f € Id*(G(M;2(F))), then f € Id*(G(M*®)).

Since M ¢ var*(A), by lemma 5.1.2, follows G(M*"P) ¢ var*(A). Thus, by (5.1),
(G(M;2(F)),osp) ¢ var*(A). O

Lemma 5.2.3. Let A be an algebra with involution. If (M, p) ¢ var*(A), then
(G(Mp(F)), trp) ¢ var*(A),

for any k > 2.
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Proof. Suppose that (G(My,,(F')),trp) € var*(A) with & > 2. We can consider its
subalgebra

C = spanp{e11 + €1 k41, €22 + €ht2 k+2, €12 5 €h+2 k1)
N~ N —
a b c ctrp

with induced involution trp. Then the application ¢ : M — C given by

plerr +eu) =a, ¢lean+esz) =b, dlerz) =c, ¢(eza) =",

is an isomorphism such that ¢(X?) = X"P for all X € M. Hence C is an algebra
with involution isomorphic to (M, p) and C € var*((G(My,(F')),trp)) C var*(A), a

contradiction. O

Lemma 5.2.4. Let A be an algebra with involution. If (M, p) ¢ var*(A), then
(G(My(F) © My (F)*°P), ex) ¢ var”(A),

for any k,l such that k+1>1.

Proof. Suppose that (G(Mj (F) ® My (F)*P),ex) € var*(A) with &+ 1 > 1 and let
us consider the elements a = (e11,€11), b = (€k41 k+1,€k+1,k+1)s ¢ = (g€1k+1,0) and
™ = (0, —geq g+1), where g € G, g # 0. Let C = spanp{a,b,c,c™} be a subalgebra of
(G(My (F)® My, (F)*P), ex) with induced involution. Then the application ¢ : M — C
given by

(e +eqa) =a, ¢(ezz+e33) =0, olez) =c¢, o(ess) =™,

is an isomorphism such that ¢(X?) = X for all X € M. Hence C is an algebra with

involution isomorphic to (M, p) and C € var*(A), a contradiction. O
Lemma 5.2.5. Let A be an algebra with involution. If (M, p) ¢ var*(A), then

(G(Q(n) ® Q(n)*P),ex) ¢ var*(A),
for any n > 2.

Proof. Suppose by contradiction that (G(Q(n) ® Q(n)*P), ex) € var*(A) with n > 2.
Notice that ((Q(n) ® Q(n)*°P)p, ex) is an algebra with involution equal to the direct
sum of the full matrix algebra of order n and its opposite algebra with the exchange
involution, (M, (F) & M, (F)°,ex). Then (M, (F) @ M,(F)°,ex) is isomorphic to a
subalgebra C' = (Q(n) @ Q(n)*P)g of (G(Q(n) ® Q(n)*P), ex) with induced involution.
Hence (M, (F) & M,(F),ex) € var*(C) C var*(G(Q(n) & Q(n)*P),ex) C var*(A),
contradiction to the lemma 4.4 of [51]. O
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Lemma 5.2.6. Let V be a x-variety such that (M, p) ¢ V. Then
VYV =wvar'(G(A1) & - & G(A4,)),

where for every i € {1,...,n}, A; is a finite dimensional superalgebra with superinvolu-

tion isomorphic to one of the following algebras:

1. F + J;, with trivial superinvolution on F,

2. F & F + J;, with exchange superinvolution on FF ® F,

3. Moo(F) + J;, with orthosymplectic superinvolution on My 2(F'),

4. M1 (F)+ J;, with transpose superinvolution on M 1(F'),

5. Q1) ® Q(1)%°P + J;, with exchange superinvolution on Q(1) & Q(1)%°P,
and J; is the Jacobson radical of A;.

Proof. By theorem 5.1.1, we can write V = var*(G(A)) where G(A) is the Grassmann
envelope of a finite dimensional superalgebra with superinvolution A.

Let A = B + J be the Wedderburn-Malcev decomposition of A, where J = J(A) is
the Jacobson radical and B is a maximal semisimple subalgebra of A. It is well known

that B is a f-superalgebra and J is a f-superideal of A. Moreover, we can write
B=B1 % - ® B,

where By, ..., B,, are simple f-superalgebras. Now, by previous lemmas, for each i =

Il

1,...,m, either B; = F with trivial superinvolution or B; = (F & F,ex) or B;
(Mo2(F),0sp) or B; = (M 1(F),trp) or B; = (Q(1) & Q(1)%P, ex).

Suppose now that B;JB; # 0 for some i # j. Since by [51, Remark 3.3] and Remark
5.1.1 the algebras (Mg 2(F'),0sp), (M11(F),trp) and (Q(1) @ Q(1)°°P,ex) contain a
subalgebra C = F & F with exchange superinvolution, then we can apply the same
technique of [51, Lemmad4.6] for the superinvolution case to reach a contradiction.

Thus we have

B;JBj = B;Bj =0

for all ¢ # j. Clearly, these relations imply that
G(B;)G(J)G(Bj) = G(B;)G(Bj) =0, foralli#j (5.2)

Set A;=Bi+J,i=1,...,m. Then A=B1®---®&Bp,+J = (Bi1+J)+---+(Bn+J) =
A1+ -+ A,,. Moreover for each 1 = 1,...,m, J C A; is the Jacobson radical of A;,
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and A;/J = B;. So, each A; is isomorphic to one of the algebras (i),(i4), (iii), (iv) or
(v).

Now we claim that Id*(G(A1) +---+ G(Ap,)) = Id*(G(A1)) N---NId* (G(Ap)).

In fact, if f = f(y1,. . Yr 215+, 2n—r) € Id*(G(A1)) NN Id*(G(A,)) is multi-
linear, we shall prove that f =0 on Id*(G(A1)+ -+ G(Ay)). In order to do so, let us
consider an evaluation in G(A;)U- - -UG(A;,) such that y; — 7; € G(A1)TU---UG(A,,) "
and z; = Z; € G(A1)" U---UG(Ap)". Now if §y,...,7,,%1,...,Zn—r € G(Ay), for
some k, then f(gy,...,Yy Z1,--+,2n—r) = 0, since f € Id*(G(Ax)). Otherwise, by
observing that G(A;) = G(B; + J) for all i, there exist k,l with k # [ such that
one of the following occurs: either 7, € G(Ag)™ and y; € G(A4)™", or y, € G(Ax)™
and zZ; € G(A;)~, or zx € G(Ax)” and z; € G(4;)". In all these cases, by 5.2 we
obtain Wy(1)...Ws(,) = 0, for the corresponding evaluation of any monomial. Thus
feld*(G(A1)® - - ®G(Ap)). Since the other inclusion is obvious we get the equality.
Since A = A1+ - -+ Ay, and Id*(G(A1))N---NId* (G(Ap,)) = Id* (G(A1)&---BG(A,)),
it follows that var*(G(A)) = var*(G(A1) @ --- ® G(Ay)). O

5.3 The main result

In this section we study the nth cocharacter of a variety V not containing the algebra

(M, p).
We start by recalling some notation. For integers k,1 > 0, we define a hook shaped

part of the plane of arm d and leg [,
H(d,l)={\= (A1, A\,...) Fn> A1 <}

Also given an algebra A with involution * satisfying a non-trivial *-polynomial identities
we say that its nth x-cocharacter x (A) lies in two hooks H(k1,l;) and H (ka,l2) if in the
decomposition (2.1) of x7(A), my, # 0 implies that X € H(k1,l1) and p € H(ka,l2).
We write

Xn(A) C (H(k1,11), H(ka,12)).

There is a close relation between algebras with involution satisfying a non-trivial -

polynomial identity and infinite hooks in the following sense.

Theorem 5.3.1 ([20],Theorem 5.9). Let A be an algebra with involution satisfying a

non-trivial x-polynomaal identity. Then there exist integer ki, 11, ko,lo > 0 such that

X;(A) - (H(klv ll)? H(k27 12>)7



Chapter 5. Algebras with involution and multiplicities bounded by a constant 72

for allm > 1.

For any partition A = 7 let T be a Young tableau of shape A and er, the corre-
sponding minimal essential idempotent of the group algebra F'S,. Recall that er, =

> oe Rr, (sgnT)oT where Ry, and Cp, are the subgroups of row and column permuta-
TECTA
tions of T), respectively.

Let T and T}, be tableaux of shape A = r and p = n—r, respectively. In what follows

. Jr - — . *
whenever we write er, e, g(z7, . .. xr xy, ..., x,_,), for same polynomial g € P
we understand that ey, acts on the symmetric variables mf, ..,z and er, acts on the
skew variables z1",...,z,_,.

Next we recall the following useful result.

Lemma 5.3.1 ([1],Lemma 7). Let A = r, p = n —r be such that X € H(ki,l1) and
p € H(ka,lo). Suppose that for some tableaux Ty and T, and some polynomial g €
Pr,_,, we have that er,er, g # 0. Then there exist a polynomial f € Py, _, such that

F(Sr x Sp—r)f = F(S; x Sp—r)er,er,g and two decompositions into disjoint sets

{af,. ot} =X{U - UX UT{FU---UT,
1

)
ll

{oy, o m =X U UX, UT U---UT,,
2 2

where Kk, < k;, Il <l; (i = 1,2), such that f is symmetric in the variables of each of

the sets X;r,Xj_, 1<i<k],1<j <k, and alternating on each of the sets TZ-’L,T]-_,

1<i<l,1<j<l.

Lemma 5.3.2. Let A = C+J be a finite dimensional superalgebra with superinvolution,
where J = J(A) is its Jacobson radical and C is a §-simple subalgebra of A which is
isomorphic to either F' with trivial superinvolution or (F' & F,ex) or (M 1(F),trp) or
(Q(1) & Q(1)*°Pex). If X7(A) = X231 1ul=n MAuXAu, then there exists a constant K
such that my , < K, for alln > 1 and |\ + |u] = n.

Proof. Since G(A) C A® G, G(A) satisfies a non-trivial #-polynomial identity. Then
by Theorem 5.3.1, the x-cocharacter of G(A) lies in two hooks H(dy,d;) and H(da,d2)

for some integers di, do, i.e.,
Xn(G(A)) C (H(dy,dv), H(dz, d2)).

Suppose that C' is isomorphic to (Mj1(F),trp), then one can choose {ag,...,al |},
{bg, .00 {ag s vay 1} {by, ..., b, 1} basisof Af, A, Ay and AT, respectively,
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such that ag e Ct, bg € Cf, a, € Cy, by € C; and af,...,a‘*‘ bi",...,b?‘_l,

s—1

ajy ... 0, 1,b7,...,b,_1 €J.

Let g be the least positive integer such that J¢ = 0 and set Ny = ((2¢)9)*%1% where
d = s+t+u+ v is the dimension of A. We shall prove that any multiplicity m, , in
X5 (G(A)) is bounded by dNj.

To this end let A+ r and u F n —r be two partitions such that A C H(dy,d;) and
p C H(dg,ds), and consider the corresponding pair of Young tableaux (T, T),). Let er,
and e, be the essential idempotents corresponding to T and T}, respectively. Hence
the element e = er, er, is an essential idempotent in the group algebra F(S; x Sp—p).
Clearly, there exists a multilinear polynomial g € F(X, ), such that eg = e, e, g # 0
in F(X,x).

By Lemma 5.3.1, there exists f € Py, ., f # 0, such that F(S, x S,—)f =
F (S, xSy—r)er,er, g and the variables of the polynomial f are partitioned into 2(d; +dz)

disjoint subsets
X{fu---UuX Ul U UTf UX U UX, UTT U---UT,,

such that f is symmetric in the variables of each sets X;r, X, 1<i< di, 1 <j<do,
and alternating on each of the sets Tf,Tj_, 1 <i<d,1<j<ds. Notice that if
A= (A1, A2,...) and p = (u1, po,...), then X;r is empty if \; < dy and X, is empty
if pu; < do. On the other hand, if \; > d; and p; > da, then |Xl+| = \; — d; and
| X; | = pj — d2. Moreover, ;7 = X, and T, | = u;- where X\ = (A}, \,,...) and
p o= (,u’l, u;, ...) are the conjugate partitions of A and pu, respectively.

Notice that for any o1 € S, and any o9 € S,,—, we have oier, # 0 and oger, #£0
and so for p = (01,02) € S x S, we have pe # 0. It follows that if f € P, is a
s-polynomial such that ef # 0, then the polynomials ef and g = pef generate the same
irreducible S, x S,_,-module. Now we choose o1 and o9, in such a way that oier, f is
symmetric on the first A\ — d; variables, on the next \o — dy variables and so on. A
similar condition holds for the alternating sets of variables Tf, 1 <7 <d;. In the same
way we choose oger, f is symmetric on the first uy — do variables, on the next ps — ds
variables and so on. A similar condition holds for the alternating sets Tj_, 1 <7 <ds.

Let f1,..., fk be multilinear *-polynomials generating in P, _, different but iso-
morphic S, X S,,—,-modules corresponding to the same pair of partitions (A, u). By the
above remark, we can choose permutations pi,...,px € Sy X S,—, and a decomposi-
tion X = XTUX-UTHUT", where Xt = X U--.UX], X~ =X U---UX_,
T =T/U-- ~UT(Z and T =T, U---UT and p1f1,.. ., pk [k are simultaneously sym-
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metric on Xf and Xj_ and alternating on T;r and Tj_ foralli=1,...,d,j=1,...,ds.
Thus without loss of generality, we may assume that fi,..., fx satisfy this condition.

4d1d2

Let us now assume by contradiction that my , = K > d((29)%) . We shall prove

that G(A) satisfies a *-identity of the type

f=mfi+ - +7xfk, (5.3)

where v1,...,v7kx € F are not all zero. Then we shall reach a contradiction because this
will say that fi,..., far are linearly dependent modulo Id*(A).

It is sufficient to verify that f has only zero values on elements of the form af ® g1,
by ® gl27 a; ® g2 and bZ ® gll, where ¢1,g92 € G and gll,g/2 € (1. First we define a
substitution of special kind.

+ + + + - - — - -
Let 0 < oy -+ Qg 1ys Bjos - - ,Bj(til), Qs+ Q1) Bros -« s 6,{(1}71) be integers

such that
Z%+Z —|XF, 1<j<d,
Zaﬂ%—z =Tl di+1 <5 <24y,
u—1 -1
Yo+ Bu=I1X ] 1<k <d,
1=0 =0

dan+ Y Bu=IT gl da+1<k<2ds.
We say that an evaluation ¢ has type

(oz;ro, ... ,oz;r(s_l), ;{), ... "B;Et—l)’ Qg - - - s oz];(u_l), Bros - -+ B,;(v_l)),
1 <5 <2dy, 1<k <2ds, if we replace the variables in the following way: for fixed j,
1 < j < di, we replace the first aj+0 variables from X;r by elements aa' ® g (with distinct
elements ¢ for distinct x € X *) the next oﬁl variables by elements aJr ® g, and so on
up to the last ozj( 1) symmetric variables by elements a _1 ®g, where all elements g lie
in Gy. Now we evaluate the next le variables from XJT*' in elements bar ® g , the next
5;_1 variables in elements bf ® g/, and so on up to the last ﬂ;.? t—1) symmetric variables
in elements bttl ® g, where all elements ¢ lie in Gy. For j = dj,...,2d; we apply the
same procedure in order to replace variables in T]t 4, Dy elements of type a; ® g and

b;®g'.
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For fixed k an analogous evaluation will be made in order to replace the skew vari-
ables from X" and T,_ ; by elements of type a; ® g, 1 < h; <u—1, and b, ® q,
1 < hs <wv —1, where all elements g lie in Gy and all elements g/ lie in G5.

In order to give a non-zero value in (5.3) any substitution should satisfy the following

restrictions. If 1 < 7 <d; and 1 < k < d3, then:

1. 6;.g§1,0gigt—l,andﬁk_hgl,oghgv—l;
2. 50 Jr<q 1 and > 10zkl§q 1;

3. 04]0 \X+|—(a —l—'--—l—a;r(s_l)—i—ﬁ;{)—l— +f6(t l)anda,;0:|X];\—(a,;1+
o Qe T Bt By

The first property follows since f is symmetric on X ;r and X, ; for example, f becomes
zero when we evaluate two variables of Xj+ in bl ®@g, by ®g", for some ¢, g” € Gy. The
second property follows since J¢ = 0. Similarly, if dj+1 < j < 2dy and do+1 < k < 2ds,
it follows that:

Laf;<1,0<i<s—1land oy, <1,0<h<u-—1;
2. Zf;iﬁ;Sq—landzEﬁ;igq—l;

3. Bjo = ITja | = (Bji+- -+ By yy e+ +a, ) and B = T g | = (B +
“+/Bk(v—1 +al;0+'”+al;(u—1))'

Let 1 < j < di. Then the number of distinct t-tuples (B} "B;Et—l)) is less then

FOIRE

2! and the number of distinct s-tuples (ol '70‘]‘(5—1)) is at most ¢°. Thus the total

o
jo, ) B;Et 1)) is bounded by (2¢)**t. Similarly, for

di +1 < j < 2dy, the number of distinct s-tuples (

number of distinct ¢ + s-tuples («

Sy ) is less then 2% and
i(s=1)
s+t

jO"'

the number of distinct ¢-tuples (57 0o - - ,,6’ (- 1)) is at most ¢'. Hence (2¢)*™ is an upper

bound of the total number of distinct ¢+ s-tuples (o s - ;'Et—l))’ for each 1 < j < 2d;.
In the same way from the conditions (1)-(3) above we get that the total number of
distinct u + v-tuples (o, ... ,ﬁ,;(v_l)) is bounded by (2¢)“*?, for each 1 < k < 2dj.

Thus, for given 1 < j < 2d;, 1 < k < 2dsy the total number of different special
substitutions is less than (2¢)****u+? = (2¢)¢. Since the number of pairs (j, k) is
4dqdo, it follows that the total number N of distinct types of substitutions is less than
((2)7)*%%) = Np.

Notice that if o, ¢ are two substitutions of the same type and ¢(z) = r ® p for some
ze X, re A pe G, then ¢(2) = r ® p with the same grading of the elements p, p'.

Hence if X = {z1,...,2n}, p(2i) =1 @ pi, ¢'(zi) =1 @ pl, then
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So(f):f(’rl ®p1,,7‘n®pn):w®p1pn,

O(f)=frmep,...,mep,)=wap|...p,

with the same w. In this case we say that ¢ and ¢’ are similar.

Now let ¢1, ..., N be substitutions chosen one from each similarity class of distinct
types. If ¢ is one of these substitutions, and hi, he are two multilinear polynomials
of degree n, then by multilinearity and supercommutativity ¢(hi) = ¢ ® p1 ...p, and
o(h2) = q2 ® p1...pp, where p1,...,p, € G and q1, ¢ € A.

Now consider all these N substitutions of distinct type ¢1,...,9on. Then, for each
j=1,....,Nandi=1,...,L we get

©i(fi) = aij @ pj1 - - - Pjns (5.4)

where a;; € A and pj1,...,pj, depend on ¢; only.

The matrix (a;;), 1 <i < K, 1< j < N, has K rows and N columns of elements
from A. Since K > d((2¢)%)*%%, where dimA = d, the rows of (a;;) are linearly
dependent. Hence there exist v1,...,vx € F not all zero, such that

K
> viaij =0, 1<j<N.
i=1
This, together with (5.4), implies that @j(Zz‘Iil vifi) =0,1<j<N.
We claim that this implies that f = Zfi 1 Vifi is an identity of G(A). In fact, by

multilinearity of f, it is enough to check only substitutions ¢* where the variables are
+

evaluated into elements of the type r ® p, where r = a;" or bj or a; or b, , for some 1,
and p € Gy U G1.

Now, given such ¢*, there exists a permutation o € S,, of the variables (preserving
the involution) such that ¢*o = ¢’ is similar to some ¢;, 1 < j < N. Thus ¢'(f;) =
aij @ Py - - - P, and, so, ¢'(f;) = 0. We remark that the above o satisfies o(X;h) =X,

J
o(T;) =T, o(X;) = X7, 0(T;) =T;, 1 <i<dy, 1<j<dy. Since f is symmetric

on X", X, and a]lternatijng on T;F, T, therefore ¢'(f) = ¢*o(f) = ¢*(0f) = £o(f).
Thus ¢*(f) = 0.

This show that modulo the identities of G(A), any K polynomials corresponding
to the same pair of tableau are linearly dependent and this is equivalent to say that
my, < K for any pair (A, pu)and the proof of the lemma is complete in case C' is

isomorphic to (M 1 (F'), trp).
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A similar proof holds also in case C is isomorphic to either F with F* = F or
(F @ F,ex) or (Q(1) @ Q(1)*P, ex), so it will be omitted. O

Recall that (Ma(F)), s) is the 2 x 2 matrix algebra with the symplectic involution.

Then we have the following.

Theorem 5.3.2. Let A be an algebra with involution * satisfying a nontrivial identity,

and

= Y muo
Al+Hul=n

its nth cocharacter. If there exist a constant K such that for alln > 1 and |\ + |pu| =n
the inequality my , < K holds, then (M, p) ¢ var*(A).

Conversely, if (M, p), (Ma(F)), s) & var*(A), then there exist a constant K such that
for alln > 1 and |\ + |p| = n the inequality my , < K holds.

Proof. Suppose by contradiction that (M, p) € var*(A). By Theorem 2.4.2 the mul-
tiplicities in x*(M) are not bounded by a constant. Thus by Lemma 2.4.1 we get an
absurd and the first statement is proved.

Conversely, if (M, p), (M2(F)),s) ¢ var*(A), then the proof follows from Lemmas
2.4.1, 5.2.6 and 5.3.2. O

Lemma 5.3.3. Let A = C+J be a finite dimensional superalgebra with superinvolution,
where J = J(A) is its Jacobson radical and C is a f-simple subalgebra of A which
is isomorphic to either F with trivial involution or (F @ F,ex) or (Mp2(F),osp) or
(My1(F), trp) or (Q(1) ® Q(1)*P,ex). If x7,(G(A)) = 22\ 14 uj=n MAuXAps then there

exists a constant N such that
A =M =X <N and |p|—p1 —p2 — pg —py < N.

Proof. Let (A, p) be a pair of partitions with |A\| + || = n and let ¢ be the index of
nilpotence of the Jacobson radical J of A. We claim that if my , # 0, then Ay < ¢ +1
and py < g+ 3.

In fact, suppose by contradiction that py > ¢ +4 and my , # 0 (the proof is similar
if A2 > ¢+ 2). Then there exists a pair of Young tableau (7),T)), a corresponding
essential idempotent er, er, and a polynomial f € P, such that er,er, f ¢ Id*(G(A)).
Hence there exists 7 € Ry, such that g = 7Cp eq,er, f ¢ Id*(G(A)), where Cr, =
ZaeCTu (sgno)o. Let T), contain the integers i1, ..., 7442 in the first ¢ + 4 boxes of the

first row, ji,...,jq+2 in the first ¢ + 4 boxes of the second row, ki, ..., kg2 in the first
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q + 4 boxes of the third row and hy, ..., hqto in the first ¢ + 4 boxes of the fourth row.

Then the polynomial g = TCEN er, [ is alternating on each of the following sets

127600 T () Trtha) Trh) b+ 182 ) Tria ) Trhgra) Tr(hgra)

Notice that the variables are evaluated in
G(A)” = (Cy ®Go) @ (J; @ Go) @ (Cf ® G1) @ (J ® Gy)

and since C' is isomorphic to either F' with F* = F or (F @ F,ex) or (Mp2(F),o0sp)
or (My1(F),trp) or (Q(1) & Q(1)*P,ex), then C, is at most 3-dimensional and C; is
at most 1-dimensional. If at least g sets {x;(is),x;(js),x;(ks),x;(hs)} are evaluated in
Jy ® GoU J;" ® Gy, then we get g = 0 on G(A) since J9 = 0. Hence we have at least
five sets {{L‘;(Z.S),ZL';(].S),:L';(kS),l‘;(hS)} that are evaluated in Cj ® Go U C @ Gy. If one
of these sets, say {x;(il), T iy Trhr ) x;(hl)}, is evaluated in the algebra C; ® Gy, then
we will get that ¢g vanishes in G(A), since g is alternating on T iy oty Trtkn) Trhn)
and dim C;; < 3. Then we deduce that there are at least two variables corresponding to
indices in the same row of 7}, say JJT_(Z.l) and xT_(iQ), that are evaluated in ClJr ® G1. But

the polynomial eg,er, f is symmetric on z; ;... VT

e Since T € Rr,, er,er, f is also

symmetricon z_,. \,..., % . Since the variables x_ . |, and z_,. | are evaluated on
7(i1) ) 7(i1) 7(i2)

(i
C ® Gy, which is anticomrili:t;tive, we get that er,er, f € Id*(G(A)), a contradiction.
Hence the claim is proved.

Next we claim that if my , # 0, then A < 2¢ and py < 2q + 4.

In fact, suppose to the contrary that pf > 2¢ +5 and m , # 0 (the proof is similar
if Ay > 2¢g+1). As before, there exists a pair of Young tableau (T, 7),), a corresponding
essential idempotent e, er, and a polynomial f € Py such that er,er, f ¢ Id*(G(A)).
Hence there exists 7 € Ry, such that g = 70 e, er, f ¢ 1d*(G(A)). Let i1,..., 0245
denote the integers in the first 2¢ + 5 boxes of the first column of the 7). Similarly,
let ji,...,j2g+5 be the integers in the first 2¢ + 5 positions of the second column of 7),.

Then g is alternating on {x )} and on {x_(

(i)’ ’xT_(i2q+5 () ’x;(j2q+5)}'

In order to get a non zero value of g, we have to evaluate at most ¢ — 1 variables of
each set into J; ® Go U Jl+ ® G'1. Moreover, since Cjj is at most 3-dimensional and G
is commutative, we evaluate at most three variables of each set on Cj” ® Gy. It follows
that two variables corresponding to the same row, say ZL‘j(il) and a:j(jl), are evaluate on
C ®Gy. Since g is symmetric on these two variables and C]” ® G is anticommutative,
we get that g vanishes in G(A) and the claim is proved.

Thus Ao < g+ 1, Xy <2¢q, pg < g+ 3 and phy < 2¢+4, if my, # 0. It follows that

the diagram of A out of the first row and the first column contains at most ¢(2¢ — 1)
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boxes and the diagram of y out of the first three row and the first column contains at
most (g + 2)(2¢+ 1) boxes. Hence, my , may be non zero only if |A\| — A\ — A} < K and
|| — 1 — po — ps — py < K’ where K = q(2¢ — 1) and K’ = (¢ +2)(2¢ + 1). Therefore
N = K' is the desired constant, and the proof is complete. ]

Theorem 5.3.3. Let A be an algebra with involution * satisfying a nontrivial identity,

and

A= mauoos
[Al+|pl=n

its nth cocharacter. Then the following conditions are equivalent.

1. (M, p) ¢ var*(A).

2. There exists a constant N such that for alln > 1 and |A|+|p| = n the inequalities
A =M =MSN, pl = —p2—pg —py <N
hold whenever my , # 0.

Proof. By Lemmas 5.2.6 and 5.3.3 it follows that (1) implies (2).
Conversely, suppose by contradiction that (M, p) € var*(A). If

X:(M> = Z ml)\,uX/\,/lv
AR+ l=n

then by Theorem 2.4.2 for A = (A1, A2, 1) and p = () we have m')w =X —X—1>0.
Thus m’)\# # 0 for any pair of partitions (A, u) with g = 0 and |\| — Ay arbitrary large.
Hence A does not satisfy condition (2) and the proof is complete. O
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