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Introduction

This thesis is devoted to the study of some interesting and challenging aspects of

PI-theory, i.e., the theory of algebras that satisfy a non-trivial polynomial identity (PI-

algebras).

Let A be an associative algebra over an infinite field F . A polynomial identity of A

is a polynomial in non-commuting variables vanishing under all evaluations in A. We

denote by Id(A) the T -ideal of all polynomial identities of A.

The description of the identities of an algebra is in general a hard problem. In

fact, even if every T -ideal is finitely generated (see [34]), the polynomial identities are

far from being understood. Also it is quite impossible in general to deduce from the

generators of Id(A) information on the polynomials of A of a given degree. To overcome

some of these difficulties it is natural to introduce some numerical invariants allowing

to give a quantitative description of the growth of the polynomial identities of A.

Alongside the ordinary polynomial identities, it is often convenient to study the

polynomial identities of algebras with an additional structure such as group-graded

algebras, algebras with an action of a group by automorphism and anti-automorphism,

algebras with an action of a Lie algebra by derivations, or more in general algebras with

a generalized Hopf algebra action (see, for instance, [4, 6, 7, 19, 21, 36]). In fact, such

identities theoretically determine the ordinary ones and also they allow to construct

finer invariants that can be related to the ordinary ones.

The purpose of this thesis is the study of some invariants of polynomial identities of

algebras with derivation (algebras with an action of a Lie algebra by derivations) and

of algebras with involution (algebras with an action of an anti-automorphism of order

two).

A very useful numerical invariant measuring the growth of the polynomial identities

of A is the codimensions sequence, {cn(A)}n≥1. In general cn(A) is bounded from

above by n!, but in case A is a PI-algebra a celebrated theorem of Regev asserts that

{cn(A)}n≥1 is exponentially bounded (see [47]). Later Kemer (see [35]) showed that,

5



Introduzione 6

given any PI-algebra A, {cn(A)}n≥1 cannot have intermediate growth, i.e., either is

polynomially bounded or grows exponentially. Moreover, Giambruno and Zaicev in [22]

and [23] computed the exponential rate of growth of a PI-algebra and proved that it is

a non-negative integer.

In this context it is often convenient to use the language of varieties of algebras.

Given a variety of algebras V, the growth of V is defined as the growth of the sequence

of codimensions of any algebra A generating V, i.e., V = var(A). The algebra of 2 × 2

upper triangular matrices UT2(F ) and the infinite dimensional Grassmann algebra G

are crucial in the investigation of the growth of the polynomial identities of algebras. In

fact, a well known theorem of Kemer (see [33]) states that var(UT2(F )) and var(G) are

the only varieties of almost polynomial growth, i.e., they grow exponentially but any

proper subvariety grows polynomially.

In light of the above, it seems interesting to study the structure of the polynomial

identities of the algebras UT2(F ) andG with an additional structure. In this perspective,

one of the aims of this thesis is to study the growth of the differential identities of these

two algebras.

In case the base field is of characteristic zero, there is another useful invariant that

can be attached to the identities of an algebra A, the so-called cocharacter sequence.

Since the base field is of characteristic zero, every T -ideal is completely determined

by its multilinear elements. Hence, one considers, for every n ≥ 1, the space Pn of

all multilinear polynomials in a given fixed set of n variables and acts on it with the

symmetric group Sn. The space Pn modulo Id(A) becomes an Sn-module, its character,

χn(A), is called the nth-cocharacter of A and {χn(A)}n≥1 is the cocharacter sequence

of A. By complete reducibility we can write the nth-cocharacter of A as a sum of

irreducible characters with corresponding multiplicities.

We already know that, in case A is a PI-algebra, the multiplicities of its cocharacter

are polynomially bounded. Thus it seems interesting to characterize the cocharacter

sequence when stronger conditions hold for the multiplicities. Consequently in this

thesis we characterize the cocharacter sequence of algebras with involution when the

corresponding multiplicities are bounded by a constant.

The first chapter of this thesis is preliminary and contains the basic definitions and

results needed for the further exposition. We introduce the algebras with polynomial

identity by giving their basic definitions and properties. Then we give a brief intro-

duction to the classical representation theory of the symmetric group via the theory
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of Young diagrams. In the last part of the chapter we deal with the basic numerical

invariants of the polynomial identities of a given algebras: the codimensions sequence

and cocharacter sequence of the T -ideal an the algebra. Moreover we present some

important results about the asymptotic behaviour of the sequence of codimensions.

In the second chapter we extend our approach to algebras with derivations and to

algebras with involution. We first give a complete view of algebras with a Hopf algebra

action and their identities. Then, as a particular case, we introduce the differential

identities. Finally, in order to include the algebras with involution, we extend the

Hopf algebra action to a more general action and then we present some relevant results

concerning algebras with involution.

In the third chapter we study in detail the differential polynomial identities of the

algebra of 2 × 2 upper triangular matrices over a field of characteristic zero when two

distinct Lie algebras of derivations act on it. We explicitly determine a basis of the

corresponding differential identities, the sequence of codimensions and the sequence of

cocharacters in both cases. Furthermore, we study the growth of differential identities

in both cases. In particular we prove that when the Lie algebra L of all derivations

acts on UT2(F ), then the variety of differential algebras with L action generated by

UT2(F ) has no almost polynomial growth (unlike the ordinary case and the graded

case); nevertheless we exhibit a subvariety of almost polynomial growth.

The fourth chapter is devote to the study of the differential identities of the infinite

dimensional Grassmann algebra over a field F of characteristic different from two with

respect to the action of a finite dimensional Lie algebra L of inner derivations. We

explicitly construct a set of generators for the ideal of differential identities of G and also

we compute its differential codimensions. As a consequence it turns out that the growth

of the differential identities of G is exponential, as in the ordinary case. However, we

prove that unlike the ordinary case G with the action of a finite dimensional Lie algebra

of inner derivations does not generate a variety of almost polynomial growth; in fact

we exhibit a subvariety of exponential growth. Furthermore, when the base field is of

characteristic zero, we determine the decomposition of the differential cocharacter of G

in its irreducible components by computing all the corresponding multiplicities.

Finally, in the fifth chapter we introduce the Grassmann envelope of a superalgebra

with superinvolution and we describe a useful connection between varieties of algebras

with involution and vareities of superalgebras with superinvolution. Then we study and

characterize the algebras with involution over a field F of characteristic zero satisfying a

polynomial identity such that the multiplicities in the corresponding ∗-cocharacter are
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bounded by a constant.



Chapter 1

A general setting

In this first chapter we introduce the main object of study, i.e., PI-algebras and we

give their basic properties.

In the first section we present the notions of T -ideal of the free algebra and of

variety of algebras. We also discuss the so-called multilinear polynomials and some of

their properties.

In the second section, we introduce ordinary representation theory of the symmetric

group Sn through the theory of Young tableaux. We also define a natural action of the

symmetric group Sn on the space of multilinear polynomials in n variables which has

the basic property of leaving T -ideals invariant. Our main objective in this setting is to

understand the decomposition of the corresponding module into irreducibles.

As a consequence in the last section we introduce two numerical invariants of a

T -ideal: the sequence of codimensions and the sequence of cocharacters. We give two

typical examples of PI-algebras: the Grassmann algebra and UT2(F ), the upper trian-

gular matrices of order 2 over a field F , that we shall use later.

Finally, we present some celebrated theorems about the growth of the codimension

sequence of a PI-algebra.

1.1 Basic definitions

We start with the definition of free algebra. Let F be a field and X = {x1, x2, . . . }

a countable set. The free associative algebra on X over F is the algebra F 〈X〉 of

polynomials in the non-commuting indeterminates x ∈ X. A basis of F 〈X〉 is given by

all words in the alphabet X, adding the empty word 1. Such words are called monomials

and the product of two monomials is defined by juxtaposition. The elements of F 〈X〉

9



Chapter 1. A general setting 10

are called polynomials and if f ∈ F 〈X〉, then we write f = f(x1, . . . , xn) to indicate

that x1, . . . , xn ∈ X are the only indeterminates occurring in f .

We define deg u, the degree of a monomial u, as the length of the word u. Also

degxi
u, the degree of u in the indeterminate xi, is the number of the occurrences of xi

in u. Similarly, the degree deg f of a polynomial f = f(x1, . . . , xn) is the maximum

degree of a monomial in f and degxi
f , the degree of f in xi, is the maximum degree of

degxi
u, for u monomial in f .

The algebra F 〈X〉 is defined, up to isomorphism, by the following universal property:

given an associative F -algebra A, any map X → A can be uniquely extended to a

homomorphism of algebras F 〈X〉 → A. The cardinality of X is called the rank of

F 〈X〉.

Definition 1.1.1. Let A be an associative F -algebra and f = f(x1, . . . , xn) ∈ F 〈X〉.

We say that f is a polynomial identity for A, and we write f ≡ 0, if f(a1, . . . , an) = 0,

for all a1, . . . , an ∈ A.

We shall usually say also that A satisfies f ≡ 0 or, sometimes, that f itself is an

identity of A. Since the trivial polynomial f = 0 is an identity for any algebra A, we

say that A is a PI-algebra if it satisfies a non-trivial polynomial identity.

For a, b ∈ A, let [a, b] = ab− ba denote the Lie commutator of a and b. Now we are

able to give some examples of PI-algebras.

Example 1.1.1. If A is a commutative algebra, then A is a PI-algebra since it satisfies

the identity [x1, x2] ≡ 0.

Example 1.1.2. If A is a nilpotent algebra, with An = 0, then A is a PI-algebra since

it satisfies the identity x1 · · ·xn ≡ 0.

Example 1.1.3. Let UTn(F ) be the algebra of n×n upper triangular matrices over F .

Then UTn(F ) satisfies the identity:

[x1, x2] . . . [x2n−1, x2n] ≡ 0.

Example 1.1.4. Let G be the Grassmann algebra on a countable dimension vector

space over a field F of characteristic different from 2. Then G satisfies the identity

[[x, y], z] ≡ 0.

A central role in the theory of PI-algebras is played by the T -ideal of polynomial

identities of an algebra A over a field F .
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Definition 1.1.2. Given an algebra A, the two-sided ideal of polynomial identities of

A is defined as

Id(A) = {f ∈ F 〈X〉|f ≡ 0 on A} .

Recalling that an ideal I of F 〈X〉 is a T -ideal if ϕ(I) ⊆ I, for all endomorphism ϕ

of F 〈X〉, it is easy to check that Id(A) is a T -ideal of F 〈X〉. Moreover, given a T -ideal

I, we have that Id(F 〈X〉/I) = I. Hence every T -ideal of F 〈X〉 is actually the ideal of

polynomial identities of a suitable algebra A.

Since many algebras may correspond to the same set of polynomial identities (or

T -ideal) we need to introduce the notion of variety of algebras.

Definition 1.1.3. Given a non-empty set S ⊆ F 〈X〉, the class of all algebras A such

that f ≡ 0 on A, for all f ∈ S, is called the variety V = V(S) determined by S.

A variety V is called non-trivial if S 6= 0 and V is proper if it is non-trivial and

contains a non-zero algebra.

Example 1.1.5. The class of all commutative algebras is a proper variety with S =

{[x1, x2]}.

Example 1.1.6. The class of all nil algebras of exponent bounded by n is a variety with

S = {xn}.

Observe that a variety V is closed under taking homomorphic images, subalgebras

and direct products. As a matter of fact, a theorem of Birkhoff (see, for instance, [14,

Theorem 2.3.2]) shows that these properties characterize the varieties of algebras.

There is a close correspondence between T -ideals and varieties of algebras. In fact,

if V is the variety determined by the set S and 〈S〉T is the T -ideal of F 〈X〉 generated

by S, then V(S) = V(〈S〉T ) and 〈S〉T =
⋂

A∈V Id(A). We write 〈S〉T = Id(V). Thus

to each variety corresponds a T -ideal of F 〈X〉. Actually, the converse is also true. In

order to show the converse, we introduce the concept of relatively free algebra.

Definition 1.1.4. Let V be a variety, A ∈ V an algebra and Y ⊆ A a subset of A. We

say that A is relatively free on Y (with respect to V), if for any algebra B ∈ V and for

every function α : Y → B, there exists a unique homomorphism β : A → B extending

α.

When V is the variety of all algebras, this is just the definition of a free algebra on

Y . The cardinality of Y is called the rank of A.

Relatively free algebras are easily described in terms of free algebras (see, for in-

stance, [24, Theorem 1.2.4]).
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Theorem 1.1.1. Let X be a non-empty set, F 〈X〉 a free algebra on X and V a variety

with corresponding ideal Id(V) ⊆ F 〈X〉. Then F 〈X〉/ Id(V) is a relatively free algebra

on the set X̄ = {x+ Id(V) | x ∈ X}. Moreover, any two relatively free algebras with

respect to V of the same rank are isomorphic.

Thus the correspondence between T -ideals and varieties is well understood (see, for

instance, [14, Theorem 2.2.7] ).

Theorem 1.1.2. There is a one-to-one correspondence between T -ideals of F 〈X〉 and

varieties of algebras. More precisely, a variety V corresponds to the T -ideal of identities

Id(V) and a T -ideal I corresponds to the variety of algebras satisfying all the identities

of I.

If V is a variety and A is an algebra such that Id(A) = Id(V), then we say that V is

the variety generated by A and we write V = var(A). Also, we shall refer to F 〈X〉/ Id(V)

as the relatively free algebra of the variety V of rank |X|.

The study of polynomial identities of an algebra A over a field F can be reduced

to the study of the homogeneous or multilinear polynomials, if the ground field F is

infinite. This reduction is very useful because this kind of polynomials is easier to deal

with.

Let Fn = F 〈x1, . . . , xn〉 be the free algebra of rank n ≥ 1 over F . This algebra can

be naturally decomposed as

Fn = F (1)
n ⊕ F (2)

n ⊕ · · ·

where, for every k ≥ 1, F
(k)
n is the subspace spanned by all monomials of total degree

k. The F
(i)
n s are called the homogeneous components of Fn. This decomposition can be

further refined as follows: for every k ≥ 1, write

F (k)
n =

⊕

i1+···+in=k

F (i1,...,in)
n

where F
(i1,...,in)
n is the subspace spanned by all monomials of degree i1 in x1, . . ., in in

xn.

Definition 1.1.5. A polynomial f ∈ F
(k)
n , for some k ≥ 1, is called homogeneous of

degree k. Any f ∈ F
(i1,...,in)
n will be called multihomogeneous of multidegree (i1, . . . , in).

We also say that a polynomial f is homogeneous in the variable xi if xi appears with

the same degree in every monomial of f .
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If f(x1, . . . , xn) ∈ F 〈X〉 is a polynomial, then f can be decomposed into a sum of

multihomogeneous polynomials. In fact, it can be written as:

f =
∑

k1≥0,...,kn≥0

f (k1,...,kn)

where f (k1,...,kn) ∈ F
(i1,...,in)
n . The polynomial f (k1,...,kn) which are non-zero are called

the multihomogeneous components of f .

The importance of the multihomogeneous polynomials turns out from the following

theorem (see, for instance, [14, Proposition 4.2.3]).

Theorem 1.1.3. Let F be an infinite field. If f ≡ 0 is a polynomial identity of the

algebra A, then every multihomogeneous component of f is still a polynomial identity

of A.

One of the most important consequences of the previous theorem is that over an

infinite field every T-ideal is generated by its multihomogeneous polynomials.

Among multihomogeneous polynomials a special role is played by the multilinear

ones.

Definition 1.1.6. A polynomial f ∈ F 〈X〉 is called linear in the variable xi if xi occurs

with degree 1 in every monomial of f . Moreover f is called multilinear if f is linear in

each of its variables (multihomogeneous of multidegree (1, . . . , 1)).

One of the most interesting features of the multilinear polynomials is given by the

following remark.

Remark 1.1.1. Let A be an algebra over F . If a multilinear polynomial f vanishes on

a basis of A, then f is a polynomial identity of A.

It is always possible to reduce an arbitrary polynomial to a multilinear one. This

process, called process of multilinearization, can be found, for instance, in [24, Theorem

1.3.7].

Definition 1.1.7. Let S be a set of polynomials in F 〈X〉 and f ∈ F 〈X〉. We say that

f is a consequence of the polynomials in S (or follows from the polynomials in S) if

f ∈ 〈S〉T , the T -ideal generated by the set S.

Definition 1.1.8. Two sets of polynomials are equivalent if they generate the same

T -ideal.
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One of the main consequences of the process of multilinearization is the following.

Theorem 1.1.4. If charF = 0, every non-zero polynomial f ∈ F 〈x〉 is equivalent to a

finite set of multilinear polynomials.

In the language of T-ideals the previous result takes the following form.

Theorem 1.1.5. If charF = 0, every T -ideal is generated, as a T -ideal, by the multi-

linear polynomials it contains.

1.2 Representations of finite groups and Sn-representations

As a necessary background, we shall briefly describe the representation theory of

finite groups and in particular that of the symmetric group (see, for instance, [24,

Chapter 2]).

Let V be a vector space over a field F and let GL(V ) be the group of invertible

endomorphisms of V . We recall the following.

Definition 1.2.1. A representation of a group G on V is a homomorphism of groups

ρ : G→ GL(V ).

Let us denote by End(V ) the algebra of F -endomorphisms of V . If FG is the group

algebra of G over F and ρ is a representation of G on V , it is clear that ρ induces a

homomorphism of F -algebras ρ′ : FG→ End(V ) such that ρ′(1FG) = 1.

Throughout we shall be dealing only with the case of finite dimensional representa-

tions. In this case, n = dimF V is called the dimension or the degree of the representa-

tion ρ.

There is a one-to-one correspondence between the representations of a group G on a

finite dimensional vector space and the finite dimensional FG-modules (or G-modules).

In fact, if ρ : G → GL(V ) is a representation of G, V becomes a (left) G-module by

defining gv = ρ(g)(v), for all g ∈ G and v ∈ V . It is also clear that if M is a G-module

which is finite dimensional as a vector space over F , then ρ : G → GL(M), such that

ρ(g)(l) = gl, for g ∈ G and l ∈M , defines a representation of G on M .

Definition 1.2.2. If ρ : G → GL(V ) and ρ′ : G → GL(W ) are two representations of

a group G, we say that ρ and ρ′ are equivalent, and we write ρ ∼ ρ′, if V and W are

isomorphic as G-modules.
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Definition 1.2.3. A representation ρ : G → GL(V ) is irreducible if V is an irre-

ducible G-module and ρ is completely reducible if V is the direct sum of its irreducible

submodules.

Recall that an algebra A is simple if A2 6= 0 and it does not contain non-trivial

two-side ideals, A is semisimple if J(A) = 0, where J(A) is the Jacobson radical of A.

We now state the two important structure theorems of Wedderburn andWedderburn-

Artin concerning simple and semisimple artinian rings. Recall that a ring R is left ar-

tinian if it satisfies the descending chain condition on left ideals (i.e., if every strictly

descending sequence of left ideals eventually terminates) (see, for instance, [29, Chapter

1]).

Theorem 1.2.1 (Wedderburn, Wedderburn-Artin). Let R be a ring. Then

1. R is simple left artinian if and only if R ∼=Mk(D), the ring of k×k matrices over

a division ring D, k ≥ 1.

2. R is semisimple left artinian if and only if R = I1 ⊕ · · · ⊕ In, where I1, . . ., In are

simple left artinian rings and they are all the minimal two-sided ideals of R.

The basic tool for studying the representations of a finite group in case charF = 0,

is Maschke’s theorem.

Theorem 1.2.2 (Maschke). Let G be a finite group and let charF = 0 or charF = p > 0

and p ∤ |G|. Then the group algebra FG is semisimple.

As a consequence of the theorems of Wedderburn and Wedderburn-Artin, it follows

that, under the hypothesis of Maschke’s theorem,

FG ∼=Mn1(D
(1))⊕ · · · ⊕Mnk

(D(k)),

where D(1), . . ., D(k) are finite dimensional division algebras over F .

It can also be deduced that every G-module V is completely reducible. Hence if

dimF V < ∞, V is the direct sum of a finite number of irreducible G-modules. We

record this fact in the following.

Corollary 1.2.1. Let G be a finite group and let charF = 0 or charF = p > 0 and

p ∤ |G|. Then every representation of G is completely reducible and the number of non-

equivalent irreducible representations of G equals the number of simple components in

the Wedderburn decomposition of the group algebra FG.
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In representation theory, the theory of characters represents a fundamental tool.

Throughout we shall assume that charF = 0 and let tr : End(V ) → F be the trace

function on End(V ).

Definition 1.2.4. Let ρ : G → GL(V ) be a representation of G. Then the map χρ :

G → F such that χρ(g) = tr(ρ(g)) is called the character of the representation ρ.

Moreover, dimF V = degχρ is called the degree of the character χρ. We say that the

character χρ is irreducible if ρ is irreducible.

Notice that χρ is constant on the conjugacy classes of G, i.e., χρ is a class function

of G, and also that χρ(1) = deg χρ.

The following theorem shows that the knowledge of the character gives a lot of

information for the representation and the number of the non-isomorphic irreducible

representations (G-modules) is determined by a purely group property of the group.

Theorem 1.2.3. Let G be a finite group and let the field F be algebraically closed.

1. Every finite dimensional representation of G is determined, up to isomorphism,

by its character.

2. The number of non isomorphic irreducible representations (G-modules) is equal to

the number of conjugacy classes of G.

Next we introduce the necessary background on the representation theory of the

symmetric group Sn, n ≥ 1.

Definition 1.2.5. Let n ≥ 1 be an integer. A partition λ of n is a finite sequence of

integers λ = (λ1, . . . , λr) such that λ1 ≥ · · · ≥ λr ≥ 0 and
∑r

i=1 λi = n. In this case we

write λ ⊢ n or |λ| = n.

It is well known that there is a one-to-one correspondence between partitions of n

and conjugacy classes of Sn. Hence, by Theorem 1.2.3, all the irreducible non-isomorphic

Sn-modules are indexed by partitions of n. Thus let us denote by χλ the irreducible

Sn-character corresponding to λ ⊢ n. Therefore we state the following result.

Proposition 1.2.1. Let F be a field of characteristic zero and n ≥ 1. There is a

one-to-one correspondence between irreducible Sn-characters and partitions of n. Let

{χλ | λ ⊢ n} be a complete set of irreducible characters of Sn and let dλ = χλ(1) be the

degree of χλ, λ ⊢ n. Then

FSn =
⊕

λ⊢n

Iλ ∼=
⊕

λ⊢n

Mdλ(F ),
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where Iλ = eλFSn and eλ =
∑

σ∈Sn

χλ(σ)σ is, up to a scalar, the unit element of Iλ.

It is always possible to associate to λ ⊢ n a diagram.

Definition 1.2.6. Let λ = (λ1, . . . , λr) ⊢ n. The Young diagram associated to λ is the

finite subset of Z× Z defined as Dλ = {(i, j) ∈ Z× Z | i = 1, . . . , r, j = 1, . . . , λi}.

A Young diagram is denoted as an array of boxes with the convention that the first

coordinate i (the row index) increases from top to bottom and the second coordinate j

(the column index) increases left to right.

For a partition λ = (λ1, . . . , λr) ⊢ n we shall denote by λ′ = (λ′1, . . . , λ
′
s) the conju-

gate partition of λ in which λ′1, . . ., λ
′
s are the lengths of the columns of Dλ. Hence Dλ′

is obtained from Dλ by flipping Dλ along its main diagonal.

Definition 1.2.7. Let λ ⊢ n. A Young tableau Tλ of the diagram Dλ is a filling of the

boxes of Dλ with the integers 1, 2, . . . , n. We shall say that Tλ is a tableau of shape λ.

Of course there are n! distinct tableaux. Among these a prominent role is played by

the so-called standard tableaux.

Definition 1.2.8. A tableau Tλ of shape λ is standard if the integers in each row and

in each column of Tλ increase from left to right and from top to bottom, respectively.

Given a diagram Dλ, λ ⊢ n, we identify a box of Dλ with the corresponding point

(i, j).

Definition 1.2.9. For any box (i, j) ∈ Dλ, we define the hook number of (i, j) as

hij = λi + λ′j − i− j + 1,

where λ′ is the conjugate partition of λ.

Note that hij counts the number of boxes in the ”hook” with edge in (i, j), i.e., the

boxes to the right and below (i, j).

Next we give a formula to compute de degree dλ of the irreducible character χλ (see,

for instance, [31]).

Proposition 1.2.2 (The hook formula). The number of standard tableaux of shape

λ ⊢ n is

dλ =
n!∏
i,j hij

,

where the product runs over all boxes of Dλ.
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It is possible calculate the number of standard tableau of shape λ. In fact, there

is a strict connection between standard tableaux and degrees of the irreducible Sn-

characters.

Theorem 1.2.4. Given a partition λ ⊢ n, the number of standard tableaux of shape λ

equals dλ, the degree of χλ, the irreducible character corresponding to λ.

Given a partition λ = (λ1, . . . , λr) ⊢ n, we denote by Tλ = Dλ(aij) the tableau Tλ

of shape λ in which aij is the integer in the box (i, j). Then we can give the following

definitions.

Definition 1.2.10. The row-stabilizer of Tλ is

RTλ
= Sλ1(a11, a12, . . . , a1λ1)× · · · × Sλr(ar1, ar2, . . . , arλr)

where Sλi
(ai1, ai2, . . . , aiλi

) denotes the symmetric group acting on the integers ai1, ai2,

. . . , aiλi
.

Definition 1.2.11. The column-stabilizer of Tλ is

CTλ
= Sλ′

1
(a11, a21, . . . , aλ′

11
)× · · · × Sλ′

r
(a1λ1 , a2λ1 , . . . , aλ′

sλ1)

where λ′ = (λ′1, . . . , λ
′
s) is the conjugate partition of λ.

Hence RTλ
(CTλ

resp.) are the subgroups of Sn consisting of all permutations sta-

bilizing the rows (columns resp.) of Tλ.

Definition 1.2.12. For a given tableau Tλ we define

eTλ
=

∑

σ∈RTλ
τ∈CTλ

(sgn τ)στ,

where sgn τ , the sign of the permutation τ , is equal to 1 or −1 according as τ is an even

or an odd permutation, respectively.

It can be shown that e2Tλ
= aeTλ

, where a = n!
dλ

is a non-zero integer, i.e., eTλ
is an

essential idempotent of FSn.

We conclude this section with the following result that record the most important

fact about eTλ
.

Proposition 1.2.3. For every Young tableau Tλ of shape λ ⊢ n, the element eTλ
is a

minimal essential idempotent of FSn and FSneTλ
is a minimal left ideal of FSn, with

character χλ. Moreover, if Tλ and T ′
λ are Young tableaux of the same shape, then eTλ

and eT ′

λ
are conjugated in FSn through some σ ∈ Sn.
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Remark 1.2.1. For any two tableaux Tλ and T ′
λ of the same shape λ ⊢ n, FSneTλ

∼=

FSneT ′

λ
, as Sn-modules.

1.3 Invariants of T -ideals and Codimensions growth

In this section we shall describe some numerical invariants of a T -ideal of F 〈X〉. In

order to define these invariants, we shall introduce an action of the symmetric group Sn

on the space of multilinear polynomials of degree n.

We state the following lemmas concerning arbitrary irreducible Sn-modules (see [24,

Lemma 2.4.1, Lemma 2.4.2]).

Lemma 1.3.1. Let M be a left Sn-module.

1. If M is irreducible with character χ(M) = χλ, λ ⊢ n., then M can be generated, as

an Sn-module, by an element of the form eTλ
f , for some f ∈M and some Young

tableau Tλ. And also for any Young tableau T ′
λ of shape λ, there exists f ′ ∈ M

such that M = FSneT ′

λ
f ′.

2. If M = M1 ⊕ · · · ⊕ Mk, where M1, . . . ,Mk are irreducible Sn-submodules with

character χλ, then k is equal to the number of linearly independent elements g ∈M

such that σg = g, for all σ ∈ RTλ
.

Let now A be a PI-algebra over an infinite field F and Id(A) its T -ideal. We introduce

Pn = span
{
xσ(1) · · ·xσ(n) | σ ∈ Sn

}

the vector space of multilinear polynomials in the variables x1, . . . , xn in the free algebra

F 〈X〉.

Definition 1.3.1. The non-negative integer

cn(A) = dimF
Pn

Pn ∩ Id(A)

is called the nth codimension of the algebra A. The sequence {cn(A)}n≥1 is the codi-

mension sequence of A.

If charF = 0, then Id(A) is determined by its multilinear polynomials (Theorem

1.1.5). Hence, in this case, it suffices to study the multilinear identities of A, that is

{Pn ∩ Id(A)}n≥1. It is clear that the codimension sequence of an algebra A gives us, in

some sense, the growth of the identities of A. Notice that dim(Pn∩ Id(A)) = n!−cn(A).

Also A is a PI-algebra if and only if cn(A) < n! for some n ≥ 1.

If V is a variety of algebras and V = var(A) then we define cn(V) = cn(A).
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Example 1.3.1. If A is a nilpotent algebra, i.e., Ak = 0, then cn(A) = 0 for all n ≥ k.

Example 1.3.2. If A is commutative then cn(A) ≤ 1, for all n ≥ 1.

We next present two more examples in which we can compute explicitly the sequence

of codimensions.

Let UT2 be the algebra of 2 × 2 upper triangular matrices over F and let G be

the infinite dimensional Grassmann algebra over F , i.e., the algebra generated by a

countable set of elements {e1, e2, . . .} satisfying the condition eiej = −ejei.

In the following theorems we collect the results of [17], [37] and [39] concerning the

T -ideals and the codimension sequences of these two algebras. Recall that 〈f1, . . . , fn〉T

denotes the T -ideal generated by the polynomials f1, . . . , fn ∈ F 〈X〉.

Theorem 1.3.1. Let UT2(F ) be the algebra of 2 × 2 upper triangular matrices over a

field F of characteristic zero. Then

1. Id(UT2) = 〈[x1, x2][x3, x4]〉T .

2. {xi1 . . . xim [xk, xj1 , . . . , xjn−m−1 ] : i1 < · · · < im, k > j1 < · · · < jn−m−1,m 6=

n− 1} is a basis of Pn mod. Pn ∩ Id(UT2).

3. cn(UT2) = 2n−1(n− 2) + 2.

Theorem 1.3.2. Let G be the infinite dimensional Grassmann algebra over a field F

of characteristic p 6= 2. Then

1. Id(G) = 〈[x1, x2, x3]〉T .

2. {xi1 . . . xim [xj1 , xj2 ] . . . [xj2q−1 , x2q] : i1 < · · · < im, j1 < · · · < j2q, 2q +m = n} is

a basis of Pn mod. Pn ∩ Id(G).

3. cn(G) = 2n−1.

It is possible to define an action of the symmetric group Sn on Pn. If σ ∈ Sn and

f(x1, . . . , xn) ∈ Pn, then σ acts on f(x1, . . . , xn) by permuting the variables in the

following way:

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Since T -ideals are invariant under permutation of the variables, we obtain that the

subspace Pn ∩ Id(A) is invariant under this action, that is Pn ∩ Id(A) is a left Sn-

submodule of Pn. Hence

Pn(A) =
Pn

Pn ∩ Id(A)
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has an induced structure of left Sn-module.

If F is a field of characteristic zero, then we can consider the character of PH
n (A)

and we give the following definition.

Definition 1.3.2. For n ≥ 1, the Sn-character of Pn(A) = Pn/(Pn ∩ Id(A)), denoted

by χn(A), is called the nth cocharacter of A.

If A is an algebra over a field of characteristic zero, we can decompose the nth

cocharacter into irreducibles as follows:

χn(A) =
∑

λ⊢n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ ⊢ n and mλ ≥ 0

is the corresponding multiplicity.

By the proof of Lemma 3.5 in [8] we have the following.

Theorem 1.3.3. Let UT2(F ) be the algebra of 2 × 2 upper triangular matrices over a

field F of characteristic zero. If χn(UT2) =
∑

λ⊢nmλχλ is the nth cocharacter of UT2,

then we have:

1. m(n) = 1;

2. mλ = q + 1 if λ = (p+ q, p) or λ = (p+ q, p, 1);

3. mλ = 0 in all other cases.

Given integers d, l ≥ 0, we define a hook shaped part of the plane of arm d and leg

l as

H(d, l) = {λ = (λ1, λ2, . . . ) ⊢ n ≥ 1 | λd+1 ≤ l}.

In particular, if λ is a partition of n ≥ 1, then λ ⊂ H(1, 1) if

λ = (p, 1, . . . , 1) = (p, 1n−p), p ≥ 1.

Let χn(G) =
∑

λ⊢nmλχλ be the nth cocharacter of G. Then we have the following

theorem (see [43]).

Theorem 1.3.4. If G is the infinite dimensional Grassmann algebra over a field F of

characteristic zero, then χn(G) =
∑

λ⊢n
λ⊂H(1,1)

χλ.
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One of the most interesting and challenging problem in PI-theory is to compute the

growth of the codimension sequence of an algebra.

Let A be a PI-algebra over a field F of characteristic zero and let {cn(A)}n≥1 be its

codimension sequence. The starting point for understanding the asymptotic behaviour

of the sequence of codimensions is the following result due to Regev (see [47]).

Theorem 1.3.5 (Regev). If A is a PI-algebra then {cn(A)}n≥1 is exponentially bounded.

Kemer in [35] proved another fundamental result about the growth of the sequence

of codimensions.

Theorem 1.3.6 (Kemer). Let A be a PI-algebra. Then {cn(A)}n≥1 is polynomially

bounded or grows exponentially.

In the 80’s, Amitsur conjectured that the exponential rate of growth of an PI-algebra

is a non-negative integer. This conjecture was proved in 1999 by Giambruno and Zaicev

(see [22] and [23]). We record this in the following.

Theorem 1.3.7 (Giambruno and Zaicev). For any PI-algebra A, limn→∞
n
√
cn(A) ex-

ists and is a non-negative integer.

At the light of the previous theorem we can define the exponent of A.

Definition 1.3.3. Let A be a PI-algebra. The integer

exp(A) = lim
n→∞

n
√
cn(A)

is called the exponent (or PI-exponent) of A.

Example 1.3.3. exp(A) = 0 if and only if A is nilpotent

Example 1.3.4. exp(UT2(F )) = 2

Example 1.3.5. exp(G) = 2

If V is a variety of algebras, then the growth of V is defined as the growth of the

sequence of codimensions of any algebra A generating V, i.e., V = var(A). One of the

main advantages of the exponent is that now we have an integer scale allowing us to

measure the growth of any non-trivial variety.

As a consequence of what we said before we give the following.
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Definition 1.3.4. A variety V has polynomial growth if its sequence of codimensions

{cn(V)}n≥1 is polynomially bounded, i.e., cn(V) ≤ anb, for some constants a and b. We

say that V has almost polynomial growth if {cn(V)}n≥1 is not polynomially bounded but

any proper subvariety of V has polynomial growth.

Next we state a celebrated result of Kemer (see [32] and [33]) that give a character-

ization of varieties of polynomial growth.

Theorem 1.3.8 (Kemer). A variety of algebras V has polynomial growth if and only if

G, UT2 6∈ V.

Corollary 1.3.1. The varieties var(G) and var(UT2) are the only varieties of almost

polynomial growth.



Chapter 2

Algebras with a generalized Hopf

algebra action

In this chapter we extend the concepts developed in the previous chapter to algebras

with a generalized Hopf algebra action.

The first section is devoted to the study of algebras with an action of a Hopf algebra

and their identities. Since the universal enveloping algebra of a Lie algebra is a Hopf

algebra, we are able to define algebras with derivations, i.e., algebras on which a Lie

algebra acts as derivations.

In the last two sections we generalize the concepts of the first section in order to

include the case of algebras with involution ∗, and then we present some relevant results

concerning ∗-varieties of almost polynomial growth.

2.1 Action of Hopf algebras on algebras and H-identities

Let H be a Hopf algebra over a field F with comultiplication ∆ : H → H ⊗ H,

counit ǫ : F → H, and antipode S : H → H.

Definition 2.1.1. An associative algebra A is a (left) H-module algebra or an algebra

with a H-action, if A is a left H-module with action h⊗ a → ha for all h ∈ H, a ∈ A,

such that

h(ab) = (h(1)a)(h(2)b) ∀h ∈ H, a, b ∈ A,

where ∆h = h(1) ⊗ h(2) (Sweedler’s notation).

We refer the reader to [12, 42, 49] for an account of Hopf algebras and algebras with

Hopf algebra actions.

24
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Next we give some relevant examples of algebras with a Hopf action.

Example 2.1.1. Every algebra A is an H-module algebra for H = F .

Definition 2.1.2. Let A be an associative algebra over F . A derivation of A is a linear

map ∂ : A→ A such that

∂(ab) = ∂(a)b+ a∂(b), ∀a, b ∈ A.

In particular an inner derivation induced by x ∈ A is the derivation adx : A→ A of A

define by

(adx)(y) = [x, y], ∀y ∈ A.

The set of all derivations of A is a Lie algebra denoted by Der(A), and the set ad(A) of

all inner derivations of A is a Lie subalgebra of Der(A).

Example 2.1.2 (Algebras with derivations). Let L be a Lie algebra and A an

associative algebra such that L acts on A as derivations. Then the universal enveloping

algebra U(L) of L is a Hopf algebra with comultiplication ∆ defined by ∆(m) = 1⊗m+

m ⊗ 1, counit ǫ defined by ǫ(m) = 0, and antipode S defined by S(m) = −m, for all

m ∈ L. Since the L-action on A can be naturally extended to the U(L)-action, A is a

U(L)-module algebra.

Example 2.1.3 (Algebras with group-action). Let G be a finite group acting as

automorphisms on an F -algebra A. Then the group algebra FG is a Hopf algebra with

∆(g) = g ⊗ g, ǫ(g) = 1, S(g) = g−1, for all g ∈ G. It is easy to see that A is a

FG-module algebra.

Let A be an F -algebra and G any group. Recall the following.

Definition 2.1.3. The algebra A is a G-graded algebra if A can be written as the direct

sum of subspaces A =
⊕

g∈GAg such that for all g, h ∈ G, AgAh ⊆ Agh.

It is clear that any a ∈ A can be uniquely written as a finite sum a =
∑

g∈G ag with

ag ∈ Ag. The subspaces Ag are called the homogeneous components of A.

Example 2.1.4 (Group-graded algebras). Let A be an algebra graded by a finite

group G and let (FG)∗ be the dual algebra of FG. If B = {hg | g ∈ G} is a basis

of (FG)∗ dual to the basis {g | g ∈ G} of FG, i.e., hg1(g2) = δg1,g2 where δg1,g2 is

the Kronecker symbol, then (FG)∗ is a Hopf algebra with ∆(hg) =
∑

g∈G hg1g−1
2

⊗ hg2,

ǫ(hg) = δg,1, S(hg) = hg−1, for all hg ∈ B.

Therefore A is an (FG)∗-module algebra where hga = ag, for all hg ∈ B and a ∈ A.
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Let H be a Hopf algebra over an infinite field F and A an H-modulo algebra. Next

we shall study the H-identities of A. To this end we introduce a universal object called

the free H-module algebra.

Let V be a vector space with countable basis X = {x1, x2, . . . }. The tensor algebra

T (V ⊗H) = F 〈X|H〉 is the free associative algebra over F with free formal generators

γi ⊗ xj = xγij , j ≥ 1, i ∈ I, where {γi|i ∈ I} is a basis of H. We write xi = x1i , 1 ∈ H.

Notice that F 〈X|H〉 has a structure of left H-module via the following:

h(x
γi1
j1
x
γi2
j2
. . . x

γin
jn

) := x
h(1)γi1
j1

x
h(2)γi2
j2

. . . x
h(n)γin
jn

for h ∈ H,i1, i2, . . . , in ∈ I, where h(1) ⊗ h(2) ⊗ · · · ⊗ h(n) is the image of h under the

comultiplication ∆ applied (n− 1) times.

Definition 2.1.4. F 〈X|H〉 is called the free associative H-module algebra on the count-

able set X and its elements are called H-polynomials.

F 〈X|H〉 satisfies the following universal property: any map ϕ : X → A extends

uniquely to an algebra homomorphism ϕ : F 〈X|H〉 → A such that ϕ(fh) = hϕ(f), for

any f ∈ F 〈X|H〉 and h ∈ H.

Definition 2.1.5. An H-polynomial f = f(x1, . . . , xn) ∈ F 〈X|H〉 is an H-polynomial

identity for A (or H-identity) if ϕ(f) = 0 for any map ϕ : X → A. In other words, f is

an H-identity of A if and only if f(a1, . . . , an) = 0 for any ai ∈ A, and we write f ≡ 0.

The set

IdH(A) = {f ∈ F 〈X|H〉|f ≡ 0 on A}

is a TH -ideal of F 〈X|H〉, i.e., an ideal of F 〈X|H〉 invariant under the H-action.

The H-identities satisfy many of the same general properties as ordinary polynomial

identities. Next we indicate some of them.

By naturally extending the ordinary case (H = F ), the degree of a monomial M

in a variable x ∈ X, is defined as the number of times the variables xh appear in M

(regardless of the exponent h ∈ H). Thus it is possible to define in a natural way the

homogeneous H-polynomials and the multilinear H-polynomials.

Since F is an infinite field, we can state the following results (see [7]).

Lemma 2.1.1. Let f ∈ F 〈X|H〉 be an H-identity for A. Then each homogeneous

components of f is also an H-identity for A.
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Lemma 2.1.2. Let A and B be algebras with H-action such that, for all n ≥ 1, every

multilinear H-identity of degree n for A is also an identity for B. Then every H-identity

for A is an identity for B.

In light of the above, it is reasonable to pay particular attention to the multilinear

H-identities. We denote by

PH
n = span{xh1

σ(1) . . . x
hn

σ(n)|σ ∈ Sn, hi ∈ H}

the space of multilinear H-polynomials in x1, . . . , xn, n ≥ 1.

Definition 2.1.6. The non-negative integer

cHn (A) = dimF
PH
n

PH
n ∩ IdH(A)

is called the nth H-codimension of the algebra A.

Notice that PH
n has a natural structure of left Sn-module induced by defining for

σ ∈ Sn,

σ(xhi ) = xhσ(i).

Since PH
n ∩ IdH(A) is invariant under the Sn action, the space

PH
n (A) =

PH
n

PH
n ∩ IdH(A)

has a structure of left Sn-module.

If F is a field of characteristic zero, then IdH(A) is generated by is multilinear

differential polynomials. In this case, i.e., charF = 0, we can consider the character of

PH
n (A) and we give the following definition.

Definition 2.1.7. For n ≥ 1, the Sn-character of PH
n (A), denoted by χH

n (A), is called

nth H-cocharacter of A.

Thus, if we assume that F is a field of characteristic zero, we decompose the nth

differential cocharacter into irreducibles as follows:

χH
n (A) =

∑

λ⊢n

mH
λ χλ,

where mH
λ ≥ 0 is the multiplicity of χλ in χH

n (A).
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We now want to compare the sequence of H-codimensions and the sequence of

ordinary codimensions of an algebra. Since F = F1H is a Hopf subalgebras of H, we

can identify in a natural way Pn with a subspace of PH
n . Thus we have Pn ⊆ PH

n and

Pn ∩ Id(A) = Pn ∩ IdH(A).

Next lemma holds for any algebra A.

Lemma 2.1.3. For all n ≥ 1, cn(A) ≤ cHn (A).

In the case of PI-algebras the H-codimensions can be bounded from above (see [26,

Lemma 5]).

Lemma 2.1.4. Let A be an associative algebra with a H-action over any field F , and

let H be a Hopf algebra. Then

cn(A) ≤ cHn (A) ≤ (dimH)ncn(A)

for all n ≥ 1.

In this context (as in the ordinary case) it is often convenient to use the language

of varieties of algebras.

Let V be a variety of H-modulo algebras. We write V = varH(A) in case V is

generated by an algebra A with H-action. As in the ordinary case, we write cHn (V) =

cHn (A) and the growth of V is the growth of the sequence cHn (V), n ≥ 1. Recall that we

say that V has polynomial growth if cHn (V) is polynomially bounded and V has almost

polynomial growth if cHn (V) is not polynomially bounded but every proper subvariety

of V has polynomial growth.

2.2 Differential identities

In this section we let H = U(L) be the universal enveloping algebra of a Lie algebra

L and A an associative algebra such that L acts on A as derivations. Since A is a

U(L)-module algebra (see the Example 2.1.2), then we define the polynomial identities

with derivation of A as a particular case of H-identities (see [28, 36]).

We denote by varL(A) the variety of algebras with derivations generated by A, by

IdL(A) the ideal of F 〈X|L〉 of differential identities of A, and also we use the following

notation:
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- PL
n is the space of multilinear differential polynomials in the variables x1, . . . , xn,

n ≥ 1;

- cLn(A) is the nth differential codimension of A;

- if charF = 0, χL
n(A) is the nth differential cocharacter of A.

Recall that, if F is a field of characteristic zero, the nth differential cocharacter of A

is the character of the Sn-module PL
n (A) = PL

n /(P
L
n ∩IdL(A)) and has the decomposition

χL
n(A) =

∑

λ⊢n

mL
λχλ.

Remark 2.2.1. If L acts on A as inner derivations, then F 〈X|L〉 is the free associative

algebra with inner derivations on X.

If A is a finite dimensional associative algebra with an action of its Lie algebra L of

derivations satisfying a non trivial differential identity, then the sequence of differential

codimensions cLn(A) is exponentially bounded (see [27, Theorem 3]). We record this in

the following.

Theorem 2.2.1. Let A be a finite dimensional algebra over a field F of characteristic

zero with an action of a Lie algebra L by derivations. Then there exist constants d ∈ N,

C1, C2 > 0, r1, r2 ∈ R such that

C1n
r1dn ≤ cLn(A) ≤ C2n

r2dn for all n ∈ N.

Consequently, in this case the PI-exponent

expL(A) := lim
n→∞

(cLn(A))
1
n ∈ Z+

exists.

2.3 Generalized Hopf algebra action

In order to embrace the case when a group acts by anti-automorphisms as well as

automorphisms, we consider the following generalized H-action (see [7, 26]).

Throughout this section H will be an associative algebra with unit over a field F of

characteristic zero.
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Definition 2.3.1. An associative algebra A is an algebra with a generalized H-action

if A is a left H-module with action h⊗ a→ ha for all h ∈ H, a ∈ A, such that for every

h ∈ H there exist h′i, h
′′
i , h

′′′
i , h

′′′′
i ∈ H such that

h(ab) =
∑

i

((h′ia)(h
′′
i b) + (h′′′i b)(h

′′′′
i a))

for all a, b ∈ A.

As in the first section, given a basis B = {ηi|i ∈ I} of H, we let F 〈X|H〉 be

the free associative algebra over F with free formal generators xηij , i ∈ I, j ∈ N. If

h =
∑

i∈I αiηi, αi ∈ F , where only a finite number of αi are nonzero, then we put

xh :=
∑

i∈I αix
ηi . We also write xi = x1i , 1 ∈ H, and then we set X = {x1, x2, . . . }. We

refer to the elements of F 〈X|H〉 as H-polynomials. Note that here we do not consider

any H-action on F 〈X|H〉. We also denote by

PH
n = span{xh1

σ(1) . . . x
hn

σ(n)|σ ∈ Sn, hi ∈ H}

the space of multilinear H-polynomials in x1, . . . , xn, n ≥ 1. As in the previous section

PH
n has a natural structure of left Sn-module.

A polynomial f(x1, . . . , xn) ∈ F 〈X|H〉 is an H-polynomial identity (or H-identity)

of A if f(a1, . . . , an) = 0 for any ai ∈ A, and we write f ≡ 0. The set

IdH(A) = {f ∈ F 〈X|L〉|f ≡ 0 on A}

is an ideal of F 〈X|H〉. Note that this definition of F 〈X|H〉 depends on the choice of

the basis in H. However such algebras can be identified in a natural way and IdH(A).

As above, since PH
n ∩ IdH(A) is invariant under the Sn action, the space PH

n /P
H
n ∩

IdH(A) = PH
n (A) has a structure of left Sn-module and its dimension, cHn (A), is called

the nth H-codimension of A. By complete reducibility the character χH
n (A), called the

nth H-cocharacter of A, decomposes as

χH
n (A) =

∑

λ⊢n

mH
λ χλ.

Next we introduce a refining of the nth H-cocharacter of an algebra A in case H is

a finite dimensional semisimple algebra and F is algebraically closed.

Let H be a semisimple associative algebra over an algebraically closed field F and

let Hop be its opposite algebra. Recall that the wreath product of Hop and Sn is the

group defined by

Hop ≀ Sn = {(h1, . . . , hn;σ) | h1, . . . , hn ∈ Hop, σ ∈ Sn}
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with multiplication given by

(h1, . . . , hn;σ)(h
′
1, . . . , h

′
n; τ) = (h1h

′
σ−1(1), . . . , hnh

′
σ−1(n);στ).

Next we define an action of Hop ≀ Sn on PH
n preserving the ideals of H-identities.

Following [7], we can identify Hop ≀Sn and PH
n via the linear isomorphism ψ : Hop ≀Sn →

PH
n defined by

ψ((h1, . . . , hn;σ)) = x
hσ(1)

σ(1) . . . x
hσ(n)

σ(n) ,

for all (h1, . . . , hn;σ) ∈ Hop ≀ Sn. This defines a left action of Hop ≀ Sn on PH
n given

by aψ(b) = ψ(ab), for a, b ∈ Hop ≀ Sn. As a consequence we obtain that the ideal

IdH(A) of H-identities of the algebra A is left invariant under the Hop ≀ Sn-action (see

[7, Lemma 16]). This makes PH
n (A) a left Hop ≀ Sn-module and we define χH≀Sn(A) to

be its Hop ≀ Sn-character.

Definition 2.3.2. A multipartition 〈λ〉 of n is a finite sequence of partitions 〈λ〉 =

(λ(1), . . . , λ(t)), such that λ(1) ⊢ n1 ≥ 0, . . . , λ(t) ⊢ nt ≥ 0 and n = n1 + · · ·+ nt.

Since Hop is a finite dimensional semisimple algebra, there is a one-to-one correspon-

dence between multipartitions 〈λ〉 of n and non-isomorphic irreducible representations

N〈λ〉 of H
op ≀ Sn (see [7, Theorem 21]).

For any multipartition 〈λ〉 of n, let us denote by χ〈λ〉 the irreducible Hop ≀ Sn-

character corresponding to 〈λ〉. Since charF = 0, we can write χH≀Sn(A) as a sum of

irreducible characters

χH≀Sn(A) =
∑

〈λ〉⊢n

mH
〈λ〉χ〈λ〉,

where mH
〈λ〉 ≥ 0 denotes the corresponding multiplicity.

2.4 Algebras with involution

Let A be an associative algebra over a field F of characteristic zero.

Definition 2.4.1. An involution on A is a linear map ∗ : A→ A of order two ((a∗)∗ =

a, for all a ∈ A) such that, for all a, b ∈ A,

(ab)∗ = b∗a∗.

Let A be an algebra with involution ∗. We write A = A+ ⊕ A−, where A+ =

{a ∈ A | a∗ = a} and A− {a ∈ A | a∗ = −a} denote the sets of symmetric and skew el-

ements of A, respectively.
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Since ∗ is an anti-automorphism of order two, then A is an algebra with a gener-

alized FZ2-action. We denote by F 〈X, ∗〉 = F 〈x1, x
∗
1, x2, x

∗
2, . . . 〉 the free algebra with

involution on the countable set X = {x1, x2, . . . } over F and by var∗(A) the ∗-variety

generated by A.

Since FZ2 is a finite dimensional semisimple algebra, then we can regard F 〈X, ∗〉

as generated by the symmetric variables x+i = xi + x∗i and by the skew variables x−i =

xi − x∗i , i.e. F 〈X, ∗〉 = F 〈x+1 , x
−
1 , x

+
2 , x

−
2 , . . . 〉. We also define P ∗

n as the space of

multilinear polynomials of degree n in x+1 , x
−
1 , . . . , x

+
n , x

−
n ; hence for every i = 1, 2, . . . , n

either x+i or x−i appears in every monomial of P ∗
n at degree 1 (but not both), for any

i = 1, . . . , n. Thus a polynomial f(x+1 , . . . , x
+
n , x

−
1 , . . . , x

−
m) ∈ F 〈X, ∗〉 is a ∗-identity of

A if f(s1, . . . , sn, k1, . . . , km) = 0 for all s1, . . . , sn ∈ A+, k1, . . . , km ∈ A−. We denote

by Id∗(A) the ideal F 〈X, ∗〉 of ∗-identities of A and by c∗n(A) the nth ∗-codimension of

A.

Since in this case we are interested in the study of P ∗
n/P

∗
n ∩ Id∗(A) = P ∗

n(A) as

FZ2 ≀Sn-module, we denote by χ∗
n(A) = χFZ2≀Sn(A) its FZ2 ≀Sn-character and without

lead to confusion we can call χ∗
n(A) the nth ∗-cocharacter of A.

Following the previous section, χ∗
n(A) decomposes as

χ∗
n(A) =

∑

|λ|+|µ|=n

mλ,µχλ,µ, (2.1)

where χλ,µ is the irreducible FZ2 ≀ Sn-character associated to the multipartition (λ, µ),

mλ,µ ≥ 0 is the corresponding multiplicity and |λ|+|µ| = n indicates λ ⊢ r and µ ⊢ n−r,

for all r = 0, 1, . . . , n.

For fixed 0 ≤ r ≤ n, let P ∗
r,n−r denote the space of multilinear ∗-polynomials in

the variables x+1 , . . . , x
+
r , x

−
r+1, . . . , x

−
n . It is clear that in order to study P ∗

n ∩ Id∗(A)

it is enough to study P ∗
r,n−r ∩ Id∗(A) for all r ≥ 0, and this can be done through

the representation theory of Sr × Sn−r. If we let Sr act on the symmetric variables

x+1 , . . . , x
+
r and Sn−r on the skew variables x−r+1, . . . , x

−
n , then we obtain an action

of Sr × Sn−r on P ∗
r,n−r. Since T ∗-ideal are invariant under this action, we get that

P ∗
r,n−r(A) = P ∗

r,n−r/(P
∗
r,n−r ∩ Id

∗(A)) has an induced structure of left Sr×Sn−r-module

and we write χ∗
r,n−r(A) for its character. By complete reducibility we have

χ∗
r,n−r(A) =

∑

|λ|+|µ|=n

mλ,µ(χλ ⊗ χµ), (2.2)

where χλ (respectively χµ) is the ordinary Sr -character corresponding to λ ⊢ r (respec-

tively Sn−r-character corresponding to µ ⊢ n− r), χλ ⊗χµ is the irreducible Sr ×Sn−r-

character associated to the pair (λ, µ) and mλ,µ ≥ 0 is the corresponding multiplicity.
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There is a well-understood duality between FZ2 ≀ Sn-characters and Sr × Sn−r-

characters given by Drensky and Giambruno as follows.

Theorem 2.4.1 ([15], Theorem 1.3). Let A be an algebra with involution. If the nth

∗-cocharacter has the decomposition given in (2.1) and the Sr×Sn−r-character of P
∗
r,n−r

has the decomposition given in (2.2), then

mλ,µ = mλ,µ

for all λ ⊢ r and µ ⊢ n− r.

Next we recall some basic results concerning the sequence of cocharacters.

Lemma 2.4.1. Let A and B be two algebras with involution such that

χ∗
n(A) =

∑

|λ|+|µ|=n

mλ,µχλ,µ

and

χ∗
n(B) =

∑

|λ|+|µ|=n

m′
λ,µχλ,µ.

Then:

1. If B ∈ var∗(A), then m′
λ,µ ≤ mλ,µ, for all pairs of partitions (λ, µ) such that

|λ|+ |µ| = n.

2. The direct sum A⊕B is also an algebra with involution induced by the involutions

defined on A and B. Moreover, if

χ∗
n(A⊕B) =

∑

|λ|+|µ|=n

mλ,µχλ,µ

is the decomposition of the nth ∗-cocharacter of A⊕B, then mλ,µ ≤ mλ,µ+m′
λ,µ,

for all pairs of partitions (λ, µ) such that |λ|+ |µ| = n.

Next we introduce two algebras with involution generating ∗-varieties with almost

polynomial growth. By analogy with the ordinary case we make the following.

Definition 2.4.2. If a variety V of algebras with involution has sequence of ∗-codimensions

polynomially bounded, we say that V has polynomial growth. We say that V has almost

polynomial growth if V does not have polynomial growth, but every proper subvariety of

V has polynomial growth.
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Let D = F ⊕ F be the two dimensional algebra with exchange involution ex given

by (a, b)ex = (b, a), for all (a, b) ∈ D. Giambruno and Mishchenko proved in [18] that

such an algebra generates a ∗-variety of almost polynomial growth and

χ∗
n(D) =

n∑

j=0

χ(n−j),(j).

Let now UT4(F ) be the algebra of 4×4 upper triangular matrices, and letM ⊂ UT4(F )

be the algebra

M = F (e11 + e44)⊕ F (e22 + e33)⊕ Fe12 ⊕ Fe34,

where the eij ’s are the usual matrix units, endowed with the involution ρ obtained by

reflecting a matrix along its secondary diagonal,




a b 0 0

0 c 0 0

0 0 c d

0 0 0 a




ρ

=




a d 0 0

0 c 0 0

0 0 c b

0 0 0 a




for same a, b, c, d ∈ F . In [41] Mishchenko and Valenti proved thatM generates a variety

of almost polynomial growth with T ∗-ideal Id∗ = 〈x−1 x
−
2 〉.

Theorem 2.4.2 ([41], Theorem 1). If χ∗
n(M) =

∑
|λ|+|µ|=nmλ,µχλ,µ is the nth ∗-

cocharacter of M , we have:

(1) mλ,µ = 1, if λ = (n) and µ = ∅;

(2) mλ,µ = q + 1, if λ = (p+ q, p) and µ = (1), for all p ≥ 0, q ≥ 0;

(3) mλ,µ = q + 1, if λ = (p+ q, p) and µ = ∅, for all p ≥ 1, q ≥ 0;

(4) mλ,µ = q + 1, if λ = (p+ q, p, 1) and µ = ∅, for all p ≥ 1, q ≥ 0;

(5) mλ,µ = 0 in all other case.

The above algebras characterize the ∗-variety of polynomial growth.

Theorem 2.4.3 ([18], Theorem 4.7). Let V be a ∗-variety. Then V has polynomial

growth if and only if D,M /∈ V.
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2× 2 Upper triangular matrices

and its differential identities

In this chapter we study the differential identities of the algebra UT2 of 2× 2 upper

triangular matrices over a field of characteristic zero (see [21]).

We let the Lie algebra L = Der(UT2) of derivations of UT2 (and its universal en-

veloping algebra) act on it. We study the space of multilinear differential identities in n

variables as a module for the symmetric group Sn and we determine the decomposition

of the corresponding character into irreducibles.

If V is the variety of differential algebras generated by UT2, we prove that unlike the

other cases (ordinary identities, group graded identities) V does not have almost poly-

nomial growth. Nevertheless we exhibit a subvariety U of V having almost polynomial

growth.

3.1 Preliminaries

Let UT2 be the algebra of 2× 2 upper triangular matrices over a field F of charac-

teristic zero. The description of its derivations is as follows.

Let the eij ’s be the usual matrix units and consider the basis {e11+e22, e11−e22, e12}

of UT2. Let ε be the inner derivation induced by 2−1(e11 − e22), i.e.,

ε(a) = 2−1[e11 − e22, a],

for all a ∈ UT2, and let δ be the inner derivation induced by 2−1e12, i.e.,

δ(a) = 2−1[e12, a].

35
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Then, for a = α(e11 + e22) + β(e11 − e22) + γe12 ∈ UT2, we have

ε(a) = γe12

and

δ(a) = −βe12.

We shall study the differential identities of the algebra UT2 when two distinct Lie

algebras of derivations act on it. Namely first we shall consider L = Fε, the one

dimensional Lie algebra with basis {ε}. We shall denote by UT ε
2 the algebra UT2

with the Fε-action. The elements of Idε(UT2) = IdL(UT ε
2 ) will be called differential

ε-polynomial identities (or differential ε-identities) of UT ε
2 . In this case we shall denote

by P ε
n the space of multilinear differential ε-polynomials in x1, . . . , xn. Also we write

cεn(UT2) = cLn(UT
ε
2 ) for the nth differential ε-codimension of UT ε

2 and χε
n(UT2) =

χL
n(UT

ε
2 ) for the nth differential ε-cocharacter of UT ε

2 .

Next we shall consider L = Der(UT2), the Lie algebra of all derivations of UT2. No-

tice that since any derivation of UT2 is inner (see [10]), L is the 2 dimensional metabelian

Lie algebra with basis {ε, δ} such that [ε, δ] = δ. We shall denote by UTD
2 the algebra

UT2 with the Der(UT2)-action. Also PD
n will be the space of multilinear differential

polynomials in x1, . . . , xn and IdD(UT2) = IdL(UTD
2 ) will be the TL-ideal of identities

with derivations of UT2. Recall that c
D
n (UT2) is the nth differential codimension of UT2,

and χD
n (UT2) is the nth differential cocharacter of UT2. Notice that in both cases L is a

Lie algebra of inner derivations of UT2, then F 〈X|L〉 is the free associative free algebra

with inner derivations.

Notice that in both cases L is a Lie algebra of inner derivations of UT2, then through-

out this section F 〈X|L〉 will be the free associative algebra with inner derivations on

X.

3.2 Generators of the ideal of differential identities of UT
ε
2

and its codimensions

We start by describing the differential identities of UT ε
2 .

It is easy to check that [x, y]ε− [x, y] ≡ 0 and xεyε ≡ 0 are differential ε-identities of

Idε(UT2). Next we show that these identities generate Idε(UT2) as TL-ideal. The proof

of the following remarks follow from easy computations.

Remark 3.2.1. Since L = Fε ia a Lie algebra of inner derivations of UT2, then

xε
2
− xε ≡ 0 is a consequence of [x, y]ε − [x, y] ≡ 0 on UT ε

2 .
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Remark 3.2.2. 1. xεy[w, z], [x,w]yzε, [xα1 , yα2 ][zα3 , wα4 ] ∈ 〈[x, y]ε − [x, y], xεyε〉TL
,

with αi ∈ {1, ε}, i = 1, 2, 3, 4.

2. xεyzε ∈ 〈xεyε〉TL
.

Remark 3.2.3. For any 1 ≤ t, p ≤ n, and for any permutations σ ∈ St, τ ∈ Sp, we

have

xσ(1) . . . xσ(t)y
εzτ(1) . . . zτ(p) ≡ x1 . . . xty

εz1 . . . zp (mod 〈xεy[w, z], [x,w]yzε〉TL
).

Proof. Let u1, u2, u3 be monomials. We consider w = u1xixju2y
εu3. Since xixj =

xjxi + [xi, xj ], it follows that w ≡ u1xjxiu2y
εu3 (mod 〈[x,w]yzε〉TL

). In the same way

we can show that u1y
εu2zizju3 ≡ u1y

εu2zjziu3 (mod 〈xεy[w, z]〉TL
). Hence in every

monomial

xi1 . . . xity
εzj1 . . . zjp

we can reorder the variables to the left and to the right of yε as claimed.

Next we prove the main result of this section.

Theorem 3.2.1. Let UT ε
2 (F ) be the algebra of 2× 2 upper triangular matrices over F

with L = Fε-action. Then

1. Idε(UT2) = 〈[x, y]ε − [x, y], xεyε〉TL
.

2. cεn(UT2) = 2n−1n+ 1.

Proof. Let Q = 〈[x, y]ε− [x, y], xεyε〉TL
. It is clear that Q ⊆ Idε(UT2). By the Poincaré-

Birkhoff-Witt Theorem (see [45]) every differential multilinear polynomial in x1, . . . , xn

can be written as a linear combination of products of the type

xα1
i1
. . . xαk

ik
w1 . . . wm (3.1)

where α1, . . . , αk ∈ U(L), w1 . . . , wm are left normed commutators in the x
αj

i s, αj ∈

U(L), and i1 < · · · < ik. By Remark 3.2.1 xε
2
− xε ∈ Q, hence, modulo 〈xε

2
− xε〉TL

,

αj ∈ {1, ε}. Also, since [xα1
1 , xα2

2 ][xα3
3 , xα4

4 ] ∈ Q, with α1, α2, α3, α4 ∈ {1, ε}, then,

modulo [xα1
1 , xα2

2 ][xα3
3 , xα4

4 ], in (3.1) we have m ≤ 1, so, only at most one commutator

can appear in (3.1).

Now observe that xεyzε ∈ Q, hence, modulo Q, only one ε can appear as exponent

of a variable in the monomials of (3.1). Moreover, since xεy[w, z], [x,w]yzε ∈ Q, every



Chapter 3. 2× 2 Upper triangular matrices and its differential identities 38

multilinear monomial in P ε
n can be written, modulo Q, as linear combination of the

elements of the type

x1 . . . xn, xh1 . . . xhn−1x
ε
j , xi1 . . . xik [x

γ
j1
, xj2 , . . . , xjm ],

where h1 < · · · < hn−1, i1 < · · · < ik, m+ k = n, m ≥ 2, γ ∈ {1, ε}.

Let us now consider the left normed commutators [xγj1 , xj2 , . . . , xjm ] and suppose

first that γ = 1. Since [x1, x2][x3, x4] ∈ Q, then by Theorem 1.3.1

[xj1 , xj2 , . . . , xjm ] ≡ [xk, xh1 , . . . , xhm−1 ] (mod Q),

where k > h1 < · · · < hm−1.

Suppose now γ = ε. By Remark 3.2.3 any left normed commutator [xεj1 , xj2 , . . . , xjm ]

satisfies the relation

[xεj1 , xj2 , . . . , xjm ] ≡ [xεk, xh1 , . . . , xhm−1 ] (mod 〈xεy[w, z], [x,w]yzε〉TL
)

with h1 < · · · < hm−1. If k > h1, since [x, y]ε − [x, y] = [xε, y]− [yε, x]− [x, y], we have

[xεk, xh1 , . . . ,xhm−1 ] ≡ ([xk, xh1 , . . . , xhm−1 ]

+ [xεl1 , xl2 , . . . , xlm ]) (mod 〈[x, y]ε − [x, y], xεy[w, z], [x,w]yzε〉TL
)

with h1 < · · · < hm−1, k > h1 and l1 < l2 < · · · < lm. It follows that P ε
n is generated

(mod P ε
n ∩Q) by the polynomials

x1 . . . xn, xi1 . . . xim [xk, xj1 , . . . , xjn−m−1 ],

xh1 . . . xhn−1x
ε
r, xi1 . . . xim [x

ε
l1 , xl2 , . . . , xln−m

], (3.2)

where i1 < · · · < im, k > j1 < · · · < jn−m−1, h1 < · · · < hn−1, l1 < · · · < ln−m,

m 6= n− 1, n.

Next we prove that these elements are linearly independent modulo Idε(UT2). Let

I = {i1, . . . , im}, J = {j1, . . . , jn−m−1} be disjoint subsets of {1, . . . , n} and set

XI,J = xi1 . . . xim [xk, xj1 , . . . , xjn−m−1 ].

Also for I
′

= {i1, . . . , im} ⊆ {1, . . . , n}, set

Xε
I
′ = xi1 . . . xim [x

ε
l1 , xl2 , . . . , xln−m

]

and suppose that
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f =
∑

I,J

αI,JXI,J +
∑

I
′

αε
I
′Xε

I
′+

n∑

k=1

αε
rxh1 . . . xhn−1x

ε
r

+ βx1 . . . xn ≡ 0 (mod P ε
n ∩ Idε(UT2)).

In order to show that all coefficients αI,J , α
ε
I
′ , αε

r, β are zero we will make some

evaluations. If we evaluate x1 = · · · = xn = e11 + e22 we get β = 0. Also, for a fixed

r, the evaluations xh1 = · · · = xhn−1 = e11 + e22 and xr = e12 gives αε
r = 0. For fixed

I = {i1, . . . , im} and J = {j1, . . . , jn−m−1}, from the substitutions xi1 = · · · = xim =

e11 + e22, xk = e12, xj1 = · · · = xjn−m−1 = e22 we get I
′

= I and, by the structure of

the polynomials in (3.2), it follows that αI,J = 0. Finally, for a fixed I
′

= {i1, . . . , im},

by evaluating xi1 = · · · = xim = e11 + e22, xl1 = e12, xl2 = · · · = xln−m
= e22 we obtain

αε
I = 0.

Thus the elements (3.2) are linearly independent modulo Idε(UT2). Since P
ε
n ∩Q ⊆

P ε
n ∩ Idε(UT2), this proves that Id

ε(UT2) = Q and the elements (3.2) are a basis of P ε
n

modulo P ε
n ∩ Idε(UT2). Hence, using Theorem 1.3.1 and by counting the elements in

(3.2), we get

cεn(UT2) = dimF
P ε
n

P ε
n ∩ Idε(UT2)

= cn(UT2) + 2n − 1 = 2n−1n+ 1.

As a consequence of Theorem 3.2.1 we have the following result.

Corollary 3.2.1. Pn(UT2) =
Pn

Pn ∩ Id(UT2)
is isomorphic to an Sn-submodule of P ε

n(UT2) =

P ε
n

P ε
n ∩ Idε(UT2)

.

We shall write expL(UT ε
2 ) := expε(UT2). Thus, as a consequence of Theorems 3.2.1

and 2.2.1, we have the following.

Corollary 3.2.2. expε(UT2) = 2.

3.3 Differential cocharacter of UT
ε
2

In this section we determine the differential cocharacter of UT ε
2 .

Let χε
n(UT2) =

∑
λ⊢nm

ε
λχλ be the nth differential ε-cocharacter of UT ε

2 and χn(UT2) =∑
λ⊢nmλχλ the nth (ordinary) cocharacter of UT2.
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Next we prove some technical lemmas which give us a lower bound for the multi-

plicities mε
λ in

χε
n(UT2) =

∑

λ⊢n

mε
λχλ. (3.3)

Lemma 3.3.1. mε
(n) ≥ n+ 1.

Proof. We consider the following tableau:

T(n) = 1 2 . . . n .

We associate to T(n) the monomials

a(x) = xn, (3.4)

a
(ε)
k (x) = xk−1xεxn−k, (3.5)

for all k = 1, . . . , n. These monomials are obtained from the essential idempotents

corresponding to the tableau T(n) by identifying all the elements in the row. It is easily

checked that a(x), a
(ε)
k (x), k = 1, . . . , n, do not vanish in UT ε

2 .

We shall prove that the n + 1 monomials a(x), a
(ε)
k (x), k = 1, . . . , n, are linearly

independent modulo Idε(UT2).

In fact, suppose that

αa(x) +
n∑

k=1

αε
ka

(ε)
k (x) ≡ 0 (mod Idε(UT2)).

The evaluation x = e11 + e22 gives α = 0. Moreover, we consider the substitution

x = βe11 + e12 + e22, where β ∈ F , β 6= 0. Then we get

n∑

k=1

βk−1αε
k = 0 (3.6)

Since |F | = ∞, we can choose β1, . . . , βn ∈ F , where βi 6= 0, βi 6= βj , for all 1 ≤

i 6= j ≤ n, then from (3.6) we get a homogeneous linear system of n equations in the

n variables αε
k. Since the matrix associated to this system is a Vandermonde matrix

whose determinant is nonzero, it follows that αε
k = 0, for all k = 1, . . . , n. Hence a(x),

a
(ε)
k (x), k = 1, . . . , n, are linearly independent (mod Idε(UT2)).

Notice that the complete linearization of a(x) and a
(ε)
k (x) are the polynomials

eT(n)
(x1, . . . , xn) = eT(n)

(x1 . . . xn)
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and

eε,kT(n)
(x1, . . . , xn) = eT(n)

(x1 . . . x
ε
k . . . xn),

respectively. It follows that the polynomials eT(n)
and eε,kT(n)

are linearly independent

modulo Idε(UT2). This implies that mε
(n) ≥ n+ 1.

Lemma 3.3.2. Let p ≥ 1 and q ≥ 0. If λ = (p + q, p) then in (3.3) we have mε
λ ≥

2(q + 1).

Proof. For every i = 0, . . . , q we define T
(i)
λ to be the tableau

i+ 1 i+ 2 . . . i+ p− 1 i+ p 1 . . . i i+ 2p+ 1 . . . n

i+ p+ 2 i+ p+ 3 . . . i+ 2p i+ p+ 1
.

We associate to T
(i)
λ the polynomials

b
(p,q)
i (x, y) = xi x . . . x̃︸ ︷︷ ︸

p−1

[x, y] y . . . ỹ︸ ︷︷ ︸
p−1

xq−i, (3.7)

b
(p,q,ε)
i (x, y) = xi x . . . x̃︸ ︷︷ ︸

p−1

(xεy − yεx) y . . . ỹ︸ ︷︷ ︸
p−1

xq−i, (3.8)

where the symbols − or ∼ means alternation on the corresponding variables. The

polynomials b
(p,q)
i , b

(p,q,ε)
i are obtained from the essential idempotents corresponding to

the tableau T
(i)
λ by identifying all the elements in each row of the tableau. It is clear

that b
(p,q)
i , b

(p,q,ε)
i , i = 0, . . . , q, are not differential identities of UT ε

2 . We shall prove that

the polynomials b
(p,q)
i , b

(p,q,ε)
i , i = 0, . . . , q, are linearly independent modulo Idε(UT2).

Suppose that
q∑

i=0

αib
(p,q)
i +

q∑

i=0

αε
i b

(p,q,ε)
i ≡ 0 (mod Idε(UT2)).

If we evaluate x = βe11 + e12 + e22, where β ∈ F , β 6= 0, and y = e11, then we get

q∑

i=0

(−1)p−1βiαi = 0. (3.9)

Since |F | = ∞, we choose β1, . . . , βq+1 ∈ F , where βj 6= 0, βj 6= βk, for all 1 ≤ j 6= k ≤

q+1. Then from (3.9) we obtain a homogeneous linear system of q+1 equations in the

q + 1 variables αi, i = 0, . . . , q, equivalent to the linear system

q∑

i=0

βijαi = 0, j = 1, . . . , q + 1. (3.10)
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Since the matrix associated to this system is a Vandermonde matrix whose determinant

is nonzero, it follows that αi = 0, for all i = 0, . . . , q.

Next we consider
q∑

i=0

αε
i b

(p,q,ε)
i ≡ 0 (mod Idε(UT2)).

If we substitute x = βe11 + e12 + e22, where β ∈ F , β 6= 0, and y = e22, then we obtain

q∑

i=0

βiαε
i = 0. (3.11)

Since |F | = ∞, we now consider β1, . . . , βq+1 ∈ F , where βj 6= 0, βj 6= βk, for all 1 ≤ j 6=

k ≤ q+1, then from (3.11) we get an homogeneous linear system of q+1 equations in the

q+1 variables αε
i , i = 0, . . . , q, equivalent to the system (3.10). Therefore αε

i = 0, for all

i = 0, . . . , q. Hence the polynomials b
(p,q)
i , b

(p,q,ε)
i , i = 0, . . . , q, are linearly independent

(mod Idε(UT2)) and this implies that mε
λ ≥ 2(q + 1).

As an immediate consequence of Corollary 3.2.1 and Theorem 1.3.3 we have the

following.

Lemma 3.3.3. Let p ≥ 1 and q ≥ 0. If λ = (p+q, p, 1) then in (3.3) we have mε
λ ≥ q+1.

Now we are ready to prove the following theorem.

Theorem 3.3.1. Let χε
n(UT2) =

∑
λ⊢nm

ε
λχλ be the nth differential ε-cocharacter of

UT ε
2 . Then we have:

1. mε
(n) = n+ 1;

2. mε
λ = 2(q + 1), if λ = (p+ q, p);

3. mε
λ = q + 1, if λ = (p+ q, p, 1);

4. mε
λ = 0 in all other cases.

Proof. By computing the degrees χλ(1) through the hook formula (Proposition 1.2.2)

and by using the results of Lemmas 3.3.1, 3.3.2 and 3.3.3 we shall be able to compute

the multiplicities mε
λ.

By Lemmas 3.3.1, 3.3.2 and 3.3.3, we have

(n+ 1)χ(n)(1) +
∑

p>0
q>0

2(q + 1)χ(p+q,p)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p,1)(1) ≤ cεn(UT2). (3.12)
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We shall prove the other inequality. Since cεn(UT2) =
∑

λ⊢nm
ε
λχλ(1), this will complete

the proof. By Theorem 1.3.3, we have

cn(UT2) = χ(n)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p,1)(1).

Then we can rewrite the left hand side of (3.12) as

(n+ 1)χ(n)(1) +
∑

p>0
q>0

2(q + 1)χ(p+q,p)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p,1)(1) =

cn(UT2) + nχ(n)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p)(1).

On the other hand, by Theorems 1.3.1 and 3.2.1, cεn(UT2) = cn(UT2) + 2n − 1. Hence

in order to get the equality in (3.12) we need to prove that

nχ(n)(1) +
∑

p>0
q>0

(q + 1)χ(p+q,p)(1) ≥ 2n − 1.

Since χ(n)(1) = 1, we need to check that
∑

p>0
q>0

(q + 1)χ(p+q,p)(1) ≥ 2n − n − 1. Now,

since q = n − 2p and by the hook formula χ(p+q,p)(1) =
(
n
p

)n−2p+1
n−p+1 , it is easily checked

that

∑

p>0
q>0

(q + 1)χ(p+q,p)(1) = (n+ 1)

⌊n
2
⌋∑

p=1

(
n

p

)
− 3

⌊n
2
⌋∑

p=1

(
n

p

)
p+

⌊n
2
⌋∑

p=1

(
n

p

)
p2

n− p+ 1

= (n+ 1)(

⌊n
2
⌋∑

p=1

(
n

p

)
+

n∑

p=n−⌊n
2
⌋+1

(
n

p

)
)

− (

⌊n
2
⌋∑

p=1

(
n

p

)
p+

n∑

p=n−⌊n
2
⌋+1

(
n

p

)
p)− 2

⌊n
2
⌋∑

p=1

(
n

p

)
p,

where in the last equality we use that
(

k
k−j+1

)
=

(
k
j

) j
k−j+1 . Now recall that k

(
k−1
j−1

)
=

j
(
k
j

)
and

∑k
j=0

(
k
j

)
= 2k. Hence, if n = 2m,

∑

p>0
q>0

(q + 1)χ(p+q,p)(1) = (2m+ 1)(22m − 1)−m22m − 4m
m∑

p=1

(
2m− 1

p− 1

)

= 22m − 2m− 1.
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In case n = 2m+ 1,

∑

p>0
q>0

(q + 1)χ(p+q,p)(1) =(2m+ 2)(22m+1 − 1−

(
2m+ 1

m+ 1

)
)

− ((2m+ 1)22m − (m+ 1)

(
2m+ 1

m+ 1

)
)

− 2(2m+ 1)
m∑

p=1

(
2m

p− 1

)

=22m+1 − 2m− 2.

Thus ∑

p>0
q>0

(q + 1)χ(p+q,p)(1) = 2n − n− 1,

and this completes the proof of the theorem.

3.4 Computing the growth of the differential codimensions

of UT
ε
2

In this section we shall deal with algebras with derivations and the growth of the

corresponding codimensions.

Recall that if V = varL(A) is a variety of algebras with derivations generated by

an algebra A with derivations (the Lie algebra L acts on A as derivations). We say

that cLn(V) = cLn(A) has polynomial growth if cLn(V) is polynomially bounded and V

has almost polynomial growth if cLn(V) is not polynomially bounded but every proper

subvariety of V has polynomial growth.

We shall prove that varL(UT ε
2 ) is a variety with almost polynomial growth. To this

end, we follow closely the proof of [41] (or [50]), taking into account the due changes.

Lemma 3.4.1. Let U be a proper subvariety of V = varL(UT ε
2 ). Then there exist

constants M < N such that

xMyτxN−M ≡
∑

i<M

µix
iyτxN−i (mod Idε(U)),

where µi ∈ F and τ ∈ {1, ε}.

Proof. Let a, a
(ε)
k , k = 0, . . . , n, and b

(p,q)
i , b

(p,q,ε)
i , i = 0, . . . , q, be the polynomials

introduced in Lemma 3.3.1 and Lemma 3.3.2, respectively. It is easy to check that, if
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λ = (p+ q, p, 1), then the q + 1 polynomials

c
(p,q)
i (x, y, z) = xi x̂ . . . x̃ x y z ŷ . . . ỹ xq−i, i = 0, . . . , q,

are linearly independent modulo Idε(UT2). Since U & V, then there exists λ ⊢ n such

that mε
λ(U) < mε

λ(V). It follows that either

αa+
∑

k

αε
ka

(ε)
k (x) ≡ 0 (mod Idε(U)), with α, αε

j not all zero, (3.13)

or

∑

i

βib
(p,q)
i +

∑

i

βεi b
(p,q,ε)
i ≡ 0 (mod Idε(U)), with βj , β

ε
j not all zero, (3.14)

or ∑

i

γic
(p,q)
i ≡ 0 (mod Idε(U)), with γj not all zero. (3.15)

Suppose that (3.14) holds. Hence

f(x, y) =
∑

i

βix
ix . . . x̃[x, y]y . . . ỹxq−i

+
∑

i

βεi x
ix . . . x̃(xεy − yεx)y . . . ỹxq−i ≡ 0 (mod Idε(U)).

Since [x, y]ε − [x, y] ∈ Idε(V) ⊆ Idε(U), from f(x, y) ≡ 0 (mod Idε(U)) we get

f
′

(x, y) =
∑

i

βix
ix . . . x̃(xyε − yxε)y . . . ỹxq−i

+
∑

i

β
′

ix
ix . . . x̃(xεy − yεx)y . . . ỹxq−i ≡ 0 (mod Idε(U)).

By substituting in f
′

(x, y) the variable y with y1 + y2, we obtain

∑

i

βix
ix . . . x̃(x(yε1 + yε2)− (y1 + y2)x

ε)(y1 + y2) . . . ˜(y1 + y2)x
q−i

+
∑

i

β
′

ix
ix . . . x̃(xε(y1 + y2)− (yε1 + yε2)x)(y1 + y2) . . . ˜(y1 + y2)x

q−i

≡ 0 (mod Idε(U)).

In the last polynomial we consider the homogeneous component g of degree 1 in y2. By

substituting in g the variable y1 with x2 and y2 with [x, yτ ], τ ∈ {1, ε}, we obtain

h(x, y) =
∑

i

βix
ix . . . x̃x[x, yτ ]y . . . ỹxq−i

+
∑

i

β
′

ix
ix . . . x̃[x, yτ ]x y . . . ỹxq−i ≡ 0 (mod Idε(U)).
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Let t = {i : βi 6= 0} and N = 3p + q = deg h(x, y). Since h(x, y) ≡ 0 (mod Idε(U)) is

a differential ε-identity of U , we can write

βtx
t+2p−1[x, yτ ]xN−2p−t−1 ≡

∑

i<t+2p−1

β
′′

i x
i[x, yτ ]xN−i−2 (mod Idε(U)).

Since βt 6= 0, we get

xt+2pyτxN−2p−t−1 ≡
∑

i<t+2p

µix
iyτxN−i−1 (mod Idε(U)).

If we set N = N − 1 and M = t+ 2p, then it follows that

xMyτxN−M ≡
∑

i<M

µix
iyτxN−i (mod Idε(U)), (3.16)

for same µi ∈ F and τ ∈ {1, ε}.

Suppose now that (3.13) holds, then

αxn +
∑

k

αε
kx

k−1xεxn−k ≡ 0 (mod Idε(U)).

We substitute x with x1 + x2, and we consider the homogeneous component of degree

1 in x2. We substitute in this homogeneous component x1 with x and x2 with [x, yτ ],

τ ∈ {1, ε}. As in the previous case, one deduces that for N = n and suitable M < N ,

the relation (3.16) holds.

Finally suppose that (3.15) holds in U . By substituting in c
(p,q)
i the variable z with

x2, we obtain (3.14), and the proof is complete.

Let U be a proper subvariety of V. Then for every n ≥ 1 we write

χε
n(U) =

∑

λ⊢n

mε
λ(U)χλ,

where mε
λ(U) is the multiplicity of χλ in χε

n(U).

Proposition 3.4.1. Let U be a proper subvariety of V = varL(UT ε
2 ). Then there exists

a constant N
′

such that for all n ≥ 1 and λ ⊢ n we have that mε
λ(U) ≤ N

′

.

Proof. By Lemma 3.4.1, there exists N such that

xMyxN−M ≡
∑

i<M

µix
iyxN−i (mod Idε(U)), (3.17)

for some µi ∈ F and a suitableM < N . We shall prove that for all λ ⊢ n, mε
λ(U) ≤ 2N .

By Theorem 3.3.1 it is enough to consider the cases when either λ = (n), or λ = (p+q, p),
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or λ = (p + q, p, 1). Suppose first that λ = (p + q, p) and q ≥ N . By setting either

y = x . . . x̃[x, y]y . . . ỹ or y = x . . . x̃(xεy − yεx)y . . . ỹ, we can apply the relation (3.17)

to any polynomial b
(p,q)
i (x, y) or b

(p,q,ε)
i (x, y) such that i ≥M . Hence we obtain

b
(p,q)
i =

∑

j<M

b
(p,q)
j ,

b
(p,q,ε)
i =

∑

j<M

b
(p,q,ε)
j ,

and mε
λ(U) ≤ 2M ≤ 2N follows. With a similar argument, we prove the statement in

case λ = (p+ q, p, 1) with q ≥ 2N , and λ = (n) with n ≥ 2N .

Theorem 3.4.1. The variety of algebras with derivations generated by the algebra UT ε
2

has almost polynomial growth.

Proof. Let U be a proper subvariety of V = varL(UT ε
2 ). We shall prove that U has

polynomial growth. By Lemma 3.4.1 there exists N such that

xMyεxN−M ≡
∑

i<M

µix
iyεxN−i (mod Idε(U)), (3.18)

for some µi ∈ F and a suitable M < N . By proceeding as in the proof of [41, Theorem

3] (or [50]) we multilinearize the relation (3.18) and we obtain

∑

σ∈SN

xσ(1) . . . xσ(M)y
εxσ(M+1) . . . xσ(N)

≡
∑

i<M

∑

σ∈SN

µixσ(1) . . . xσ(i)y
εxσ(i+1) . . . xσ(N) (mod Idε(U)),

where the xi’s are new variables.

We multiply the above expression on the right by z1, . . . , zM and we alternate xi

with zi for i = 1, . . . ,M . Since any variable to the right (and to the left) of yε can be

reordered, we get

x1 . . . x̃My
εz1 . . . z̃MxM+1 . . . xN ≡ 0 (mod Idε(U)).

Now we multiply this relation on the left by zM+1, . . . , zN and then we alternate xj with

zj for j =M + 1, . . . , N . We obtain

x1 . . . x̃Ny
εz1 . . . z̃N ≡ 0 (mod Idε(U)).

If we identify y with xN+1, it follows that

x1 . . . x̃Nx
ε
N+1z1 . . . z̃N ≡ 0 (mod Idε(U)). (3.19)
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If we multiply this expression on the right by zN+1 and alternate xN+1 with zN+1, we

get

x1 . . . x̃N (xεN+1zN+1 − zεN+1xN+1)z1 . . . z̃N ≡ 0 (mod Idε(U)). (3.20)

On the other hand, we substitute in (3.19) xN+1 with [xN+1, zN+1]. Thus we obtain

x1 . . . x̃N [xN+1, zN+1]z1 . . . z̃N ≡ 0 (mod Idε(U)), (3.21)

since [xN+1, zN+1]
ε ≡ [xN+1, zN+1] (mod Idε(U)).

The relations (3.20) and (3.21) show that the irreducible S(N+1,N+1)-character corre-

sponding to the partition λ = (N+1, N+1) participates into the 2(N+1)th differential

ε-cocharacter of U with zero multiplicity, i.e., mε
(N+1,N+1)(U) = 0.

Next we multiply the relation (3.21) on the right by yN+1 and alternate xN+1, zN+1

and yN+1. We obtain

x1 . . . x̃N x̂N+1ŷN+1ẑN+1z1 . . . z̃N ≡ 0 (mod Idε(U)).

As before we get mε
(N+1,N+1,1)(U) = 0.

Hence if λ is a partition of n such that λ2 ≥ N + 2 then mε
λ(U) = 0. By Theo-

rem 3.3.1, it follows that if χλ appears in the differential ε-cocharacter with nonzero

multiplicity then λ must contain at most N + 1 boxes below the first row. Thus

χε(U) =
∑

λ⊢n
|λ|−λ1≤N+1

mε
λ(U)χλ.

Since |λ| −λ1 ≤ N +1, then λ1 ≥ n− (N +1) and by the hook formula we immediately

get

χλ(1) ≤
n!

(n− (N + 1))!
≤ nN+1.

Recall that, in the ordinary case, mλ(V) ≤ χλ(1) (see [31]). Then by Theorem 1.3.3

and Theorem 3.3.1, mε
λ(V) ≤ (n+ 1)mλ(V). Hence mε

λ(U) ≤ mε
λ(V) ≤ (n+ 1)nN+1 in

χε
n(U) and

cεn(U) =
∑

λ⊢n

mε
λ(U)χλ(1) ≤ (N + 1)2(n+ 1)n2(N+1).

From this relation it follows that U has polynomial growth.

3.5 The algebra UT
D
2 and its invariants

In this section we shall be concerned with the differential identities of the al-

gebra UTD
2 , i.e., the algebra UT2 with the action of its Lie algebra of derivations



Chapter 3. 2× 2 Upper triangular matrices and its differential identities 49

L = DerF (UT2). We start by describing a basis of IdD(UT2) and the decomposition of

the differential cocharacter of UTD
2 into irreducibles.

The following remarks are easily verified.

Remark 3.5.1. [x, y][z, w] ≡ 0, [x, y]ε − [x, y] ≡ 0 and [x, y]δ ≡ 0 are differential

identities of UTD
2 .

Remark 3.5.2. Since L = DerF (UT2) ia a Lie algebra of inner derivations of UT2,

then:

1. xε
2
− xε, xδ

2
, xδε, xεδ − xδ ∈ 〈[x, y]ε − [x, y], [x, y]δ〉TL

.

2. xαy[z, w], [x, y]zwα, xαyzβ ∈ 〈[x, y][z, w]〉TL
, where α, β ∈ {ε, δ}.

Remark 3.5.3. [xα1 , yα2 ][zα3 , wα4 ] ≡ 0, with αi ∈ {ε, δ}, i = 1, 2, 3, 4, is a consequence

of [x, y][z, w] ≡ 0.

Remark 3.5.4. For any permutations σ ∈ St, we have

[xδσ(1), xσ(2), . . . , xσ(t)] ≡ [xδ1, x2, . . . , xt] (mod 〈xδy[z, w], [x, y]zwδ, [x, y]δ〉TL
).

Proof. Proceeding as in the proof of Remark 3.2.3, we obtain that

xρ(1) . . . xρ(p)y
δzτ(1) . . . zτ(q) ≡ x1 . . . xpy

δz1 . . . zq (mod 〈xδy[z, w], [x, y]zwδ〉TL
),

for all 1 ≤ p, q ≤ n, and for all ρ ∈ Sp, τ ∈ Sq. Thus, since [x, y]δ = [xδ, y]− [yδ, x], we

can reorder all the variables in any commutator [xδi1 , xi2 , . . . , xit ] as claimed.

Theorem 3.5.1. Let UTD
2 (F ) be the algebra of 2× 2 upper triangular matrices over F

with L = Der(UT2)-action. Then

1. IdD(UT2) = 〈[x, y][z, w], [x, y]ε − [x, y], [x, y]δ〉TL
.

2. cDn (UT2) = 2n−1(n+ 2).

Proof. We prove the theorem using the strategy of the proof of Theorem 3.2.1. Let

Q = 〈[x, y][z, w], [x, y]ε − [x, y], [x, y]δ〉TL
. By Remark 3.5.1, Q ⊆ IdD(UT2). Also since

[x, y]ε − [x, y], xεyε ∈ Q, we have that Idε(UT2) ⊆ Q.

Let f ∈ PD
n be a multilinear polynomial with derivations of degree n. Then, by

Theorem 3.2.1 and Remarks 3.5.3, 3.5.2 and 3.5.4, we may write f , modulo Q, as a
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linear combination of the polynomials

x1 . . . xn, xi1 . . . xim [xk, xj1 , . . . , xjn−m−1 ],

xh1 . . . xhn−1x
ε
r, xi1 . . . xim [x

ε
l1 , xl2 , . . . , xln−m

], (3.22)

xh1 . . . xhn−1x
δ
s, xi1 . . . xim [x

δ
l1 , xl2 , . . . , xln−m

],

where i1 < · · · < im, k > j1 < · · · < jn−m−1, h1 < · · · < hn−1, l1 < · · · < ln−m,

m 6= n− 1, n.

Next we show that these polynomials are linearly independent modulo IdD(UT2).

For I = {i1, . . . , im} and J = {j1, . . . , jn−m−1} disjoint subsets of {1, . . . , n}, we set

XI,J = xi1 . . . xim [xk, xj1 , . . . , xjn−m−1 ]. Also for I
′

= {i1, . . . , im} ⊆ {1, . . . , n}, we

put Xε
I
′ = xi1 . . . xim [x

ε
l1
, xl2 , . . . , xln−m

], and for I
′′

= {i1, . . . , im} ⊆ {1, . . . , n}, we

set Xδ
I′′

= xi1 . . . xim [x
δ
l1
, xl2 , . . . , xln−m

]. Hence we consider a linear combination of

elements in (3.22) and suppose that

∑

I,J

αI,JXI,J +
∑

I
′

αε
I
′Xε

I
′ +

∑

I
′′

αδ
I
′′Xδ

I
′′ +

n∑

r=1

αε
rxi1 . . . xin−1x

ε
r

+
n∑

s=1

αδ
sxi1 . . . xin−1x

δ
s + βx1 . . . xn ≡ 0 (mod PD

n ∩ IdD(UT2)).

We will show that all coefficients αI,J , α
ε
I
′ , αδ

I
′′ , αε

r, α
δ
s, β are zero by making suitable

evaluations.

If we evaluate x1 = · · · = xn = e11+e22 we get β = 0. For a fixed s, by setting xi1 =

· · · = xin−1 = e11 + e22 and xs = e22 we get αδ
s = 0. Also, for a fixed I

′′

= {i1, . . . , im},

by making the evaluations xi1 = · · · = xim = e11 + e22, xl1 = · · · = xln−m
= e22 we

obtain αδ
I′′

= 0. Moreover, by making the same evaluations as in the proof of Theorem

3.2.1, we get αε
r = 0, αε

I
′ = 0 and αI,J = 0, for any r, I

′

, I, J .

We have proved that IdD(UT2) = Q and the elements in (3.22) are a basis of PD
n

modulo PD
n ∩IdD(UT2). By using Theorem 3.2.1 and by counting the elements in (3.22),

we obtain cDn (UT2) = cεn(UT2) + 2n − 1 = 2n−1(n+ 2).

Corollary 3.5.1. P ε
n(UT2) is isomorphic to an Sn-submodule of PD

n (UT2) =
PD
n

PD
n ∩ IdD(UT2)

.

Corollary 3.5.2. expL(UTD
2 ) = 2.

Next we compute the nth differential cocharacter χD
n (UT2) of UT

D
2 .
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We write

χD
n (UT2) =

∑

λ⊢n

mD
λ χλ. (3.23)

The following remark is an immediate consequence of Corollary 3.5.1.

Remark 3.5.5. For any partition λ ⊢ n, mε
λ ≤ mD

λ .

Lemma 3.5.1. mD
(n) ≥ 2n+ 1.

Proof. We consider the tableau T(n) define in Lemma 3.3.1 and let a(x) and a
(ε)
k (x) be

the corresponding monomials in (3.4) and (3.5). Let also

a
(δ)
k (x) = xk−1xδxn−k,

for all k = 1, . . . , n. It is easily checked that a(x), a
(ε)
k (x), a

(δ)
k (x), k = 1, . . . , n, do not

vanish in UTD
2 .

As in the proof of Lemma 3.3.1, next we shall prove that the 2n + 1 monomials

a(x), a
(ε)
k (x), a

(δ)
k (x), k = 1, . . . , n, are linearly independent modulo IdD(UT2). In fact,

suppose that

αa(x) +
n∑

k=1

αε
ka

(ε)
k (x) +

n∑

k=1

αδ
ka

(δ)
k (x) ≡ 0 (mod IdD(UT2)).

By setting x = e11+ e22 it follows that α = 0. Moreover, if we substitute x = βe11+ e22

where β ∈ F , β 6= 0, we get
∑n

k=1(1 − β)βk−1αδ
k = 0. Since |F | = ∞, we can choose

β1, . . . , βn ∈ F , where βi 6= 0 and βi 6= βj , for all 1 ≤ i 6= j ≤ n. Then we get the

following homogeneous linear system of n equations in the n variables αδ
k, k = 1, . . . , n,

n∑

k=1

βk−1
i αδ

k = 0, i = 1, . . . , n. (3.24)

Since the matrix associated to the system (3.24) is a Vandermonde matrix, it follows

that αδ
k = 0, for all k = 1, . . . , n. Hence we may assume that

n∑

k=1

αε
ka

(ε)
k (x) ≡ 0 (mod IdD(UT2)).

As in the proof of Lemma 3.3.1, it follows that αε
k = 0, for all k = 1, . . . , n. Thus

the monomials a(x), a
(ε)
k (x), a

(δ)
k (x), k = 1, . . . , n, are linearly independent modulo

IdD(UT2). This says that m
D
(n) ≥ 2n+ 1.

Lemma 3.5.2. Let p ≥ 1 and q ≥ 0. If λ = (p + q, p) then in (3.23) we have mD
λ ≥

3(q + 1).
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Proof. For every i = 0, . . . , q we define T
(i)
λ to be the tableau define in Lemma 3.3.2 and

let b
(p,q)
i (x, y) and b

(p,q,ε)
i (x, y) be the corresponding polynomials defined in (3.7) and

(3.8). Let also

b
(p,q,δ)
i (x, y) = xi x . . . x̃︸ ︷︷ ︸

p−1

(xδy − yδx) y . . . ỹ︸ ︷︷ ︸
p−1

xq−i.

It is clear that b
(p,q)
i , b

(p,q,ε)
i , b

(p,q,δ)
i are not differential identities of UTD

2 . We shall

prove that the above 3(q + 1) polynomials are linearly independent modulo IdD(UT2).

Suppose that

q∑

i=0

αib
(p,q)
i +

q∑

i=0

αε
i b

(p,q,ε)
i +

q∑

i=0

αδ
i b

(p,q,δ)
i ≡ 0 (mod IdD(UT2)).

If we set x = βe11 + e22, with β ∈ F , β 6= 0, and y = e11, we obtain

q∑

i=0

(−1)p−1βiαδ
i = 0.

Since |F | = ∞, we can take β1, . . . , βq+1 ∈ F , where βj 6= 0, βj 6= βk, for all 1 ≤ j 6=

k ≤ q + 1. Then we obtain the following homogeneous linear system of q + 1 equations

in the q + 1 variables αδ
i , i = 0, . . . , q,

q∑

i=0

βijα
δ
i = 0, j = 1, . . . , q + 1.

Since the matrix of this system is a Vandermonde matrix, it follows that αδ
i = 0, for all

i = 0, . . . , q. Hence we may assume that the following identity holds

q∑

i=0

αib
(p,q)
i +

q∑

i=0

αε
i b

(p,q,ε)
i ≡ 0 (mod IdD(UT2)).

As in the proof of Lemma 3.3.2, it follows that αi = 0, αε
i = 0, for all i = 0, . . . , q.

Therefore the polynomials b
(p,q)
i , b

(p,q,ε)
i , b

(p,q,δ)
i , i = 0, . . . , q, are linearly independent

modulo IdD(UT2) and, so, m
D
λ ≥ 3(q + 1).

As a consequence of Lemma 3.5.1, Lemma 3.5.2, Remark 3.5.5 and by following

verbatim the proof of Theorem 3.3.1 we get the following theorem which gives the

decomposition into irreducible characters of χD
n (UT2).

Theorem 3.5.2. Let χD
n (UT2) =

∑
λ⊢nm

D
λ χλ be the nth differential cocharacter of

UTD
2 . Then we have:

1. mD
(n) = 2n+ 1;
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2. mD
λ = 3(q + 1), if λ = (p+ q, p);

3. mD
λ = q + 1, if λ = (p+ q, p, 1);

4. mD
λ = 0 in all other cases.

We remark that varD(UT2) = varL(UTD
2 ) does not have almost polynomial growth.

In fact since δ acts trivially on UT ε
2 , i.e., x

δ ≡ 0 is a differential identity of UT ε
2 , it

follows that UT ε
2 ∈ varD(UT2) and we have see that expL(UT ε

2 ) = expL(UTD
2 ) = 2. We

state this fact in the following theorem.

Theorem 3.5.3. varD(UT2) has no almost polynomial growth.



Chapter 4

The Grassmann algebra and its

differential identities

Let G be the infinite dimensional Grassmann algebra over an infinite field F of

characteristic p 6= 2. In this chapter we study the differential identities of G with

respect to the action of a finite dimensional Lie algebra L of inner derivations (see [48]).

In the first section we explicitly determine a set of generators of the ideal of differ-

ential identities of G. Moreover we prove that unlike the ordinary case the variety of

differential algebras with L action generated by G has no almost polynomial growth.

In the second section we assume that F is of characteristic zero and we study the

space of multilinear differential identities in n variables as a module for the symmet-

ric group Sn and we compute the decomposition of the corresponding character into

irreducibles.

4.1 The ideal of differential identities of G and its codi-

mensions

Let us consider the infinite dimensional Grassmann algebra G over an infinite field

F of characteristic p 6= 2.

Recall that if g = ei1 . . . ein ∈ G, the set Supp{g} = {ei1 , . . . , ein} is called the

support of g. Let now g1, . . . , gt ∈ G1 be such that Supp{gi} ∩ Supp{gj} = ∅, for all

i, j ∈ {1, . . . , t}. Since charF 6= 2, we set

δi = 2−1 ad gi, i = 1, . . . , t.

54
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Then for all g ∈ G we have

δi(g) =




0, if g ∈ G0

gig, if g ∈ G1

, i = 1, . . . , t.

We shall consider L = spanF {δ1, . . . , δt} ⊂ ad(G). Since for all g ∈ G, [δi, δj ](g) = 0,

i, j ∈ {1, . . . , t}, L is a t dimensional abelian Lie algebra of inner derivations of G. We

shall denote by G̃ the algebraG with this L-action. Also throughout this section F 〈X|L〉

will be the free associative algebra with inner derivations on X.

We start by describing the differential identities of G̃.

Remark 4.1.1. It can be checked that

[x1, x2][x1, x2] ≡ 0 (4.1)

is a consequence of [x1, x2, x3] ≡ 0 in G (see for example [24]). Since [x1, x2, x3] ≡ 0

is also a differential identity on G̃, then the linearization of (4.1) leads to the identity

[x1, x2][x3, x4] ≡ −[x3, x2][x1, x4] on G̃. Notice that the linearization is harmless because

charF 6= 2 and the degree of x1 is equal to 2.

Remark 4.1.2. Since L = spanF {δ1, . . . , δt} is a Lie algebra of inner derivations of G,

then [xδi1 , x2] ≡ 0 and xδiδj ≡ 0, for i, j ∈ {1, . . . , t}, are consequences of [x1, x2, x3] ≡ 0

in G̃.

Next we prove the main result of this section. Recall that for a real number x we

denote by ⌊x⌋ its integer part.

Theorem 4.1.1. Let F be an infinite field of characteristic p 6= 2 and G̃ be the infinite

dimensional Grassmann algebra over F with L = spanF {δ1, . . . , δt}-action. Then

1. IdL(G̃) = 〈[x1, x2, x3]〉TL
.

2. cLn(G̃) = 2t2n−1 −
∑⌊t/2⌋

j=1

∑t
i=2j

(
t
i

)(
n

i−2j

)
.

Proof. Let Q = 〈[x1, x2, x3]〉TL
. It is readily checked that Q ⊆ IdL(G̃). Let f ∈ F 〈X|L〉

be a differential polynomial in x1, . . . , xn. Since 1 ∈ G̃, f can be written as a linear

combination of products of the type

xα1
i1
. . . xαk

ik
w1 . . . wm (4.2)

where αi ∈ U(L), αi 6= 1, for 1 ≤ i ≤ k, and w1 . . . , wm are left normed commutators

in the xβh

j s, βh ∈ U(L). Notice that [xγ11 , x
γ2
2 , x

γ3
3 ] ≡ 0 and [xγ11 , x2] ≡ 0 with γi ∈ U(L),
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for 1 ≤ i ≤ 3, are consequence of [x1, x2, x3] ≡ 0. Then, modulo Q, in (4.2) we have

wj = [xjh , xjk ], for all j = 1, . . . ,m, and they are central. Also since xδiδj ∈ Q, for

all i, j ∈ {1, . . . , t}, it follows that in (4.2) αi ∈ {δ1, . . . , δt} modulo Q. Moreover

it is clear that xδixδj ≡ 0 is a consequence of [x1, x2][x1, x3] ≡ 0 and by Remark

4.1.1 [x1, x2][x3, x4] + [x3, x2][x1, x4] ∈ Q. Then we may assume that f is multilinear.

Now observe that xδi1 x
δj
2 ≡ −xδi2 x

δj
1 and xδi1 [x2, x3] ≡ −xδi3 [x2, x1] are consequences

of [x1, x2][x3, x4] ≡ −[x3, x2][x1, x4]. Then f can be written, modulo Q, as a linear

combination of elements of the type

x
δh1
1 . . . x

δhk
k [xk+1, xk+2] . . . [xk+2q−1, xk+2q], (4.3)

with

h1 < · · · < hk, k + 2q = n, 0 ≤ k ≤ t. (4.4)

Next we prove that these elements are linearly independent modulo IdL(G̃).

For any 0 ≤ k ≤ t, consider ∆k = {δh1 , . . . , δhk
} ⊆ {δ1, . . . , δt}, set

X∆k
= x

δh1
1 . . . x

δhk
k [xk+1, xk+2] . . . [xk+2q−1, xk+2q]

and suppose that

f =
∑

∆k

α∆k
X∆k

∈ IdL(G̃).

In order to show that all coefficients α∆k
are zero we consider the following evaluations:

for any ∆k = {δh1 , . . . , δhk
} we choose x1 = g

′

1, . . . , xk+2q = g
′

k+2q where g
′

i ∈ G1,

1 ≤ i ≤ k + 2q, and for all r ∈ {1, . . . , t} \ {h1, . . . , hk}, there exists s ∈ {1, . . . , k + 2q}

such that Supp{g
′

s} ∩ Supp{gr} 6= ∅. Then if we make these evaluations for increasing

value of k (0 ≤ k ≤ t), by the properties of the polynomial in (4.3), it follows that

α∆k
= 0 for any ∆k. Thus the elements (4.3) are linearly independent modulo IdL(G̃),

and this proves that IdL(G̃) = Q.

Notice that if we consider the multilinear differential polynomials, then the elements

xi1 . . . ximx
δh1
j1

. . . x
δhk
jk

[xjk+1
, xjk+2

] . . . [xjk+2q−1
, xjk+2q

], (4.5)

with

i1 < · · · < im, j1 < · · · < jk+2q, h1 < · · · < hk, m+ k + 2q = n, 0 ≤ k ≤ t, (4.6)

are a basis of PL
n modulo PL

n ∩ IdL(G̃). Thus we count for any fixed n, the total number

of elements in (4.5) subject to the conditions (4.6), i.e. the nth differential codimension
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cLn(G). If 0 ≤ k ≤ t, then this number is equal to

sk =

(
t

k

) ⌊(n−k)/2⌋∑

q=0

(
n

k + 2q

)
.

Notice that s0 = 2n−1 and s1 =
(
t
1

)
2n−1. Moreover, if k = 2l with l ≥ 1,

s2l =

(
t

2l

)


⌊n/2⌋∑

r=0

(
n

2r

)
−

l−1∑

p=0

(
n

2p

)
 =

(
t

2l

)
2n−1 −

l−1∑

p=0

(
n

2p

)
 .

Finally, in case k = 2l + 1 with l ≥ 1,

s2l+1 =

(
t

2l + 1

)


⌊(n−1)/2⌋∑

r=0

(
n

2r + 1

)
−

l−1∑

p=0

(
n

2p+ 1

)


=

(
t

2l + 1

)
2n−1 −

l−1∑

p=0

(
n

2p+ 1

)
 .

Thus

cLn(G̃) =

t∑

k=0

sk = 2n−1 +

(
t

1

)
2n−1 +

⌊t/2⌋∑

l=1

(
t

2l

)
2n−1 −

l−1∑

p=0

(
n

2p

)


+

⌊(t−1)/2⌋∑

l=1

(
t

2l + 1

)
2n−1 −

l−1∑

p=0

(
n

2p+ 1

)


=2t2n−1 −

⌊t/2⌋∑

l=1

(
t

2l

) l−1∑

p=0

(
n

2p

)
−

⌊(t−1)/2⌋∑

l=1

(
t

2l + 1

) l−1∑

p=0

(
n

2p+ 1

)

=2t2n−1 −
t∑

i=2

(
t

i

)(
n

i− 2

)
−

⌊t/2⌋∑

l=2

(
t

2l

) l−2∑

p=0

(
n

2p

)

−

⌊(t−1)/2⌋∑

l=2

(
t

2l + 1

) l−2∑

p=0

(
n

2p+ 1

)
= . . .

= 2t2n−1 −

⌊t/2⌋∑

j=1

t∑

i=2j

(
t

i

)(
n

i− 2j

)
.

Recall that two functions ϕ1(n) and ϕ2(n) are asymptotically equal and we write

ϕ1(n) ≈ ϕ2(n) if limn→∞ ϕ1(n)/ϕ2(n) = 1. Then the following corollary is an obvious

consequence of the previous theorem.
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Corollary 4.1.1. cLn(G̃) ≈ 2t2n−1.

The proof of Theorem 4.1.1 suggests a convenient decomposition of PL
n (G̃). For any

n ≥ 1 and for all γ1, . . . , γk ∈ L distinct, we set

Φγ1,...,γk = {γ1, . . . , γk, 1, . . . , 1︸ ︷︷ ︸
n−k

}.

We define

P
Φγ1,...,γk
n = spanF {x

ε1
σ(1) . . . x

εn
σ(n) | σ ∈ Sn, εi ∈ Φγ1,...,γk},

a Sn-submodule of PL
n . Since for all γ1, . . . , γk, β1, . . . , βk ∈ L, P

Φγ1,...,γk
n and P

Φβ1,...,βk
n

are isomorphic as Sn-modules, we introduce the notation

PL
n,k = P

Φδ1,...,δk
n .

In particular, for k = 0 we have PL
n,0 = Pn. Hence for any 0 ≤ k ≤ t, we set

PL
n,k(G̃) =

PL
n,k

PL
n,k ∩ IdL(G̃)

and

cLn,k(G̃) = dimF P
L
n,k(G̃).

As consequence of proof of the Theorem 4.1.1 we have the following.

Corollary 4.1.2. cLn(G̃) =
∑t

k=0

(
t
k

)
cLn,k(G̃), where

cLn,k(G̃) =





2n−1, if k = 0, 1

2n−1 −
∑⌊k/2⌋−1

j=0

(
n
2j

)
, if k ≥ 2 is even

2n−1 −
∑⌊k/2⌋−1

j=0

(
n

2j+1

)
, if k ≥ 3 is odd

.

Next we shall be concerned with the growth of the differential codimension of G̃.

Notice that by Corollary 4.1.1 varL(G̃) has exponential growth, nevertheless it has

no almost polynomial growth. In fact, the Grassmann algebra G (ordinary case) is an

algebra with L-action where δi, i = 1, . . . , t, acts trivially on G, i.e., xδi ≡ 0, i = 1, . . . , t,

are differential identities of G. Then it follows that G ∈ varL(G̃), but by Theorem 1.3.1

cn(G) = 2n−1. Thus we have the following result.

Theorem 4.1.2. varL(G̃) has no almost polynomial growth.
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4.2 Differential cocharacter of G

Throughout this section F will be a field of characteristic zero.

Let χL
n,k(G̃) be the character of the Sn-module PL

n,k(G̃). Then we can write

χL
n,k(G̃) =

∑

λ⊢n

mL
λ,kχλ, (4.7)

where mL
λ,k ≥ 0 is the multiplicity corresponding to the irreducible character χλ.

Next we shall compute the multiplicities mL
λ,k in (4.7).

Lemma 4.2.1. Let χL
n,k(G̃) =

∑
λ⊢nm

L
λ,kχλ be the character of PL

n,k(G̃). Then we have:

1. mL
λ,k = 1, if λ = (n− r + 1, 1r−1) and r ≥ k, r 6= 0;

2. mL
λ,k = 0 in all other cases.

Proof. If k = 0, we have PL
n,0 = Pn and χL

n,0(G̃) = χn(G). Then by Theorem 1.3.4 the

theorem is proved in case k = 0.

Suppose that k ≥ 1. Assume that δ1, . . . , δk, act on P
L
n,k(G̃). If λ = (n− r+1, 1r−1)

and r ≥ k, we define Tλ to be the tableau

1 r + 1 . . . n

2
...

r

.

Then RTλ
= Sn−r+1{1, r + 1, . . . , n} and CTλ

= Sr, where Sn−r+1{1, r + 1, . . . , n}

denotes the symmetric group acting on the set {1, r+1, . . . , n}. We associate to Tλ the

polynomial

wδ1...δk
r = eTλ

(xδ11 . . . xδkk xk+1 . . . xn)

=


 ∑

σ∈Sn−r+1{1,r+1,...,n}

σ




(
∑

τ∈Sr

(sgn τ)xδ1τ(1) . . . x
δk
τ(k)xτ(k+1) . . . xτ(r)

)
xr+1 . . . xn.

We claim that wδ1...δk
r , r ≥ k, is not an identity of G̃. In fact, we consider the evaluation

ϕ : F 〈X|L〉 → G such that

ϕ(xi) = ei, 1 ≤ i ≤ r

and

ϕ(xr+1) = er+1er+2, . . . , ϕ(xn) = e2n−r−1e2n−r
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such that for all i ∈ {1, . . . , 2n − r}, ei /∈ Supp{gj}, for all j ∈ {1, . . . , k}. Then, since

for all i ∈ {1, . . . , r} and j ∈ {1, . . . , k}, ϕ(x
δj
i ) = gjϕ(xi), we obtain

ϕ(
∑

τ∈Sr

(sgn τ)xδ1τ(1) . . . x
δk
τ(k)xτ(k+1) . . . xτ(r))

=
∑

τ∈Sr

(sgn τ)g1ϕ(xτ(1)) . . . gkϕ(xτ(k))ϕ(xτ(k+1)) . . . ϕ(xτ(r))

= (±g1 . . . gk)
∑

τ∈Sr

(sgn τ)eτ(1) . . . eτ(r) = ±(r!)g1 . . . gke1 . . . er 6= 0.

Thus, since ϕ(xr+1), . . . , ϕ(xn) are central in G,

ϕ(wδ1...δk
r ) = ±(r!)(n− r + 1)!g1 . . . gke1 . . . e2n−r 6= 0.

We have proved that wδ1...δk
r is not an identity of G̃. Hence this implies that mL

λ,k ≥ 1,

if λ = (n− r + 1, 1r−1) and r ≥ k. Then, since cLn,k(G̃) =
∑

λ⊢nm
L
λ,kχλ(1), we have

n∑

r=k

χ(n−r+1,1r−1)(1) ≤ cLn,k(G̃). (4.8)

By the hook formula (Proposition 1.2.2) χ(n−r+1,1r−1)(1) =
(
n−1
r−1

)
, then, if k = 1, we

have
n∑

r=1

χ(n−r+1,1r−1)(1) =

n∑

r=1

(
n− 1

r − 1

)
= 2n−1.

On the other hand, by Corollary 4.1.2, cLn,1(G̃) = 2n−1. Then, if k = 1 we get the

equality in (4.8), and in this case the theorem is proved. Suppose then k ≥ 2,

n∑

r=k

χ(n−r+1,1r−1)(1) =
n∑

r=1

(
n− 1

r − 1

)
−

k−1∑

r=1

(
n− 1

r − 1

)
= 2n−1 −

k−1∑

r=1

(
n− 1

r − 1

)
.

Hence in order to get the equality in (4.8) we need to prove that

2n−1 −
k−1∑

r=1

(
n− 1

r − 1

)
≥ cLn,k(G̃).

Thus, if k = 2l with l ≥ 1, by Corollary 4.1.2 we need to check that

2n−1 −
2l−1∑

r=1

(
n− 1

r − 1

)
≥ 2n−1 −

l−1∑

j=0

(
n

2j

)
.

But by induction on l ≥ 1, it is easy to verify that
∑2l−1

r=1

(
n−1
r−1

)
=

∑l−1
j=0

(
n
2j

)
and also

in this case the theorem is proved. Suppose finally that k = 2l + 1 with l ≥ 1. Since
∑2l−1

r=1

(
n−1
r−1

)
=

∑l−1
j=0

(
n

2j+1

)
, by Corollary 4.1.2 we get the equality in (4.8) and the

theorem is proved.



Chapter 4. The Grassmann algebra and its differential identities 61

Theorem 4.2.1. Let F be a field of characteristic zero and G̃ be the infinite dimensional

Grassmann algebra over F with L = spanF {δ1, . . . , δt}-action. If χL
n(G̃) =

∑
λ⊢nm

L
λχλ

is the nth differential cocharacter of G̃, then we have:

1. mL
λ =





∑r
i=0

(
t
i

)
, r < t

2t, r ≥ t
, if λ = (n− r + 1, 1r−1);

2. mL
λ = 0 in all other cases.

Proof. By Corollary 4.1.2, mL
λ =

∑t
k=0

(
t
k

)
mL

λ,k. Then by using Lemma 4.2.1 we get the

proof of the theorem.



Chapter 5

Algebras with involution and

multiplicities bounded by a

constant

In this chapter we characterize algebras with involution, satisfying a non-trivial

identity, whose multiplicities of the cocharacter are bounded by a constant.

Throughout this chapter F will be a field of characteristic zero.

5.1 Grassmann envelope and superalgebras with superin-

volution

Recall that the Grassmann algebra G over F has a natural Z2-grading G = G0⊕G1

where G0 is the subspace of G spanned ba all monomials of even length and G1 is the

subspace of spanned by all monomials of odd length.

Given any Z2-graded algebra A one can form a new superalgebra with the help of

G.

Definition 5.1.1. Let A = A0 ⊕ A1 be a Z2-graded algebra (or superalgebra). The

algebra

G(A) = (G0 ⊗A0)⊕ (G1 ⊗A1)

is called the Grassmann envelope of A.

Clearly the Grassmann envelope G(A) has a natural Z2-grading, G(A) = G(A)0 ⊕

G(A)1, where G(A)0 = A0 ⊗G0, G(A)1 = A1 ⊗G1.

62
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Next we introduce the concept of superinvolution in order to define such kind of

map on G.

Definition 5.1.2. Let A = A0 ⊕A1, B = B0 ⊕B1 be two superalgebras. A linear map

ϕ : A→ B is said to be graded if ϕ(Ai) ⊆ Bi, i = 0, 1.

Definition 5.1.3. Let A = A0⊕A1 be a superalgebra. We say that A is a superbalgebra

with superinvolution ♯ if it is endowed with a graded linear map ♯ : A → A with the

following properties:

1. (a♯)♯ = a, for all a ∈ A,

2. (ab)♯ = (−1)|a||b|b♯a♯, for any homogeneous elements a, b ∈ A0∪A1 of homogeneous

degree |a| and |b|, respectively.

Let A = A0 ⊕ A1 be a superalgebra with superinvolution ♯. Since charF = 0, we

can write A = A+
0 ⊕ A−

0 ⊕ A+
1 ⊕ A−

1 , where for i = 0, 1, A+
i = {a ∈ Ai|a

∗ = a} and

A−
i = {a ∈ Ai|a

∗ = −a} denote the sets of homogeneous symmetric and skew elements

of Ai, respectively.

We define a superinvolution on G, that we denote ⋆, by requiring that

e⋆i = −ei,

for i ≥ 1. A basic property of this superinvolution is that G+ = G0 and G− = G1.

A fundamental property of the superinvolution of the Grassmann algebra defined

above is that of allowing to bridge between involutions and superinvolutions of a super-

algebra and its Grassmann envelope.

Notice that if A is a superalgebra with superinvolution ♯, we can write A = A0⊕A1

where A0 = A+
0 ⊕ A−

0 and A1 = A+
1 ⊕ A−

1 . Hence the Grassmann envelope G(A) can

be regarded as an algebra with the involution ∗ : G(A) → G(A) such that

(a⊗ g)∗ = a♯ ⊗ g⋆.

In [1] Aljadeff, Giambruno and Karasik proved a very useful theorem.

Theorem 5.1.1 ([1],Theorem 4). If A is an algebra with involution satisfying a non-

trivial ∗-identity, then there exists a finite dimensional superalgebra with superinvolution

B such that Id∗(A) = Id∗(G(B)).
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Next we want to define a map whose properties will be late use (see [1]). In order

to do this we first recall some notation.

Let F 〈X, s, ♯〉 be the free super algebra with superinvolution on a countable set X

over F . We write X as the disjoint union Y + ∪ Z+ ∪ Y − ∪ Z−, where

Y + = {y+i |i ≥ 1}, Z+ = {z+i |i ≥ 1}, Y − = {y−i |i ≥ 1}, Z− = {z−i |i ≥ 1}

are countable sets such that the variables in Y + are even and symmetric, the variables

in Y − are even skew, those in Z+ are odd symmetric and those in Z− are odd skew.

It is clear that F 〈X, ∗〉 is embedded into F 〈X, s, ♯〉 by identifying x+i with y+i + z+i

and x−i with y−i + z−i , i ≥ 1.

If A = A+
0 ⊕A−

0 ⊕A+
1 ⊕A−

1 is a superalgebra with superinvolution, then a polynomial

f(y+1 , . . . , y
+
m, y

−
1 , . . . , y

−
n , z

+
1 , . . . , z

+
p , z

−
1 , . . . , z

−
q ) ∈ F 〈X, s, ♯〉 is a Z2-graded polynomial

identity with superinvolution of A (or simply a superidentity with superinvolution), and

we write f ≡ 0, if f(s1, . . . , sm, r1, . . . , rn, k1, . . . , kp, h1, . . . , hq) = 0 for all s1, . . . , sm ∈

A+
0 , r1, . . . , rn ∈ A−

0 k1, . . . , kp ∈ A−
1 , h1, . . . , hq ∈ A−

1 . We shall denote by Id♯(A) the

ideal of Z2-graded identities with superinvolution of A.

Let m,n, p, q ≥ 0 be integers and P ♯
m,n,p,q the space of multilinear polynomials of

F 〈X, s, ♯〉 in the variables y+1 , . . . , y
+
m, y

−
1 , . . . , y

−
n , z

+
1 , . . . , z

+
p , z

−
1 , . . . , z

−
q . If w ∈ P ♯

m,n,p,q,

we write

w = w1z
εσ(1)

σ(1) . . . z
εσ(i1)

σ(i1)
w2z

εσ(i1+1)

σ(i1+1) . . . z
εσ(i2)

σ(i2)
w3 . . . wr+1,

where σ ∈ Sp+q, εij ∈ {+,−} and the wi’s are (eventually empty) monomials in even

variables.

Then we consider the linear map

˜: P ♯
m,n,p,q → P ♯

m,n,q,p

define by

w̃ = (sgnσ)w1z
ησ(1)

σ(1) . . . z
ησ(i1)

σ(i1)
w2z

ησ(i1+1)

σ(i1+1) . . . z
ησ(i2)

σ(i2)
w3 . . . wr+1,

where ηi = −εi for all i.

In [1], the authors gave the following basic properties of the map .̃

Lemma 5.1.1 ([1], Lemma 2). The map˜: P ♯
m,n,p,q → P ♯

m,n,q,p has the following prop-

erties.

1. If f ∈ P ♯
m,n,p,q, then

˜̃
f = f .
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2. If A is a superalgebra with superinvolution, then f ∈ Id♯(A) if and only if f̃ ∈

Id∗(G(A)).

Another basic result we shall need in what follows is the Wedderburn-Malcev the-

orem for finite dimensional superalgebras with superinvolution. First we recall some

definitions.

Definition 5.1.4. An ideal (subalgebra) I of a superalgebra A with superinvolution ♯ is

a ♯-superideal (♯-superalgebra) if it is a graded ideal(subalgebra) and I♯ = I.

Definition 5.1.5. An algebra A is a simple ♯-superalgebra if A2 6= 0 and A has non-

trivial ♯-superideals.

Theorem 5.1.2 ([16], Theorem 4.1). Let A a finite dimensional superalgebra with su-

perinvolution over a field F of characteristic zero. Then there exists a semisimple ♯-

superalgebra B ⊂ A such that

A = B + J(A)

and J(A) is a ♯-superideal.

We shall present the classification of the finite dimensional simple ♯-superalgebras

over an algebracally close field F (see [5, 25, 46]). In order to describe such a result we

first recall same important facts.

It is well known (see [24],Theorem 3.5.3) that if F is algebraically closed, a simple

superalgebra A is of one the following types:

(i) Given k + l ≥ 1, k ≥ l ≥ 0,

Mk,l(F ) =

{(
X Y

Z T

)
|X ∈Mk(F ), Y ∈Mk×l(F ), Z ∈Ml×k(F ), T ∈Ml(F )

}

= (Mk,l(F ))0 ⊕ (Mk,l(F ))1

where (Mk,l(F ))0 =

{(
X 0

0 T

)}
and (Mk,l(F ))1 =

{(
0 Y

Z 0

)}
;

(ii) Q(n) = Mn(F ⊕ cF ) = Q(n)0 ⊕ Q(n)1, where Q(n)0 = Mn(F ) and Q(n)1 =

cMn(F ) with c
2 = 1.

If A is a superalgebra, we denote by Asop the superalgebra which has the same graded

vector space structure as A but the product in Asop is given on homogeneous elements

a, b by

a ◦ b = (−1)(deg a)(deg b)ba.
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The direct sum R = A ⊕ Asop is a superalgebra R0 = A0 ⊕ Asop
0 , R1 = A1 ⊕ Asop

1 and

R is endowed with the exchange superinvolution

(a, b)ex = (b, a).

Recall that A and B are two algebras (superalgebras) endowed with an involution (su-

perinvolution) ∗ and ⋆, respectively, then (A, ∗) and (B, ⋆) are isomorphic, as algebras

(superalgebras) endowed with involution (superinvolution), if there exist an isomor-

phism of algebras (superalgebras) φ : A→ B such that φ(x∗) = φ(x)⋆, for all x ∈ A.

Theorem 5.1.3. Let A be a finite dimensional ♯-simple superalgebra over an alge-

braically closed field F of characteristic different from 2. Then A is isomorphic to one

of the following:

1. Mk,2s(F ) with the orthosymplectic superinvolution osp define by

(
X Y

Z T

)osp

=

(
Ik 0

0 Q

)−1 (
X −Y

Z T

)t (
Ik 0

0 Q

)

where t denotes the usual matrix transpose, Q =

(
0 Is

−Is 0

)
and Ik, Is are the

identity matrices of orders k and s, respectively;

2. Mk,k(F ) with the transpose superinvolution trp define by

(
X Y

Z T

)trp

=

(
T t −Y t

Zt Xt

)
;

3. Mk,l(F )⊕Mk,l(F )
sop with the exchange superinvolution;

4. Q(n)⊕Q(n)sop with the exchange superinvolution.

Let A be an algebra with involution over a field F . We may assume that F is

algebraically closed. In fact, if F is the algebraic closure of F , then A can be naturally

embedded in the ∗-algebra A⊗F F and Id∗(A)⊗F F = Id∗(A⊗F F ).

By this argument, if B is a finite dimensional superalgebra with superinvolution

such that Id∗(A) = Id∗(G(B)), then we can assume that B has a Wedderburn-Malcev

decomposition B1 + · · · + Bm + J where Bi are ♯-simple superalgebras specified in

Theorem 5.1.3.

We finish the section with the following results which will be useful later.
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Let now consider M = F (e11+e44)⊕F (e22+e33)⊕Fe12⊕Fe34 ⊂ UT4(F ) endowed

with the reflection involution ρ, i.e. the involution obtained by reflecting a matrix along

its secondary diagonal. If M sup is the algebra M with grading M0 = F (e11 + e44) ⊕

F (e22 + e33) and M1 = Fe12 ⊕ Fe34.

SinceM2
1 = 0, the reflection involution ρ is a graded involution, i.e. the homogeneous

components are stable under ρ: Mρ
0 ⊆ M0 and Mρ

1 ⊆ M1. Hence M sup can be viewed

as algebra with superinvolution.

Lemma 5.1.2. The Grassmann envelope G(M sup) of M sup is ∗-PI-equivalent to M ,

i.e. Id∗(G(M sup)) = Id∗(M).

Proof. Notice that the Grassmann envelope of M sup is

G(M sup) ∼=








g01 g11 0 0

0 g02 0 0

0 0 g02 g12

0 0 0 g01




|g01, g
0
2 ∈ G0, g

1
1, g

1
2 ∈ G1





with involution 


g01 g11 0 0

0 g02 0 0

0 0 g02 g12

0 0 0 g01




∗

=




g01 −g12 0 0

0 g02 0 0

0 0 g02 −g11

0 0 0 g01



.

Clearly, G(M sup) satisfies z1z2 ≡ 0. Conversely, let g ∈ G1, g 6= 0, and

Cg = spanF {e11 + e44︸ ︷︷ ︸
a

, e22 + e33︸ ︷︷ ︸
b

, ge12︸︷︷︸
c

,−ge34︸ ︷︷ ︸
c∗

} ⊂ G(M sup)

with induced involution. Then the application φ :M → Cg given by

φ(e11 + e44) = a, φ(e22 + e33) = b, φ(e12) = c, φ(e34) = c∗,

is an isomorphism such that φ(Xρ) = X∗ for all X ∈M . It follows that G(M sup) is PI

∗-equivalent to M .

Remark 5.1.1. The algebras (M1,1(F ), trp) and (Q(1) ⊕Q(1)sop, ex) contain a subal-

gebra with induced superinvolution isomorphic to F ⊕F with exchange superinvolution.

In fact, if we consider the subalgebra C1 = Fe11 + F22 of M1,1(F ) and the subalgebra

C2 = (Q(1) ⊕ Q(1)sop)0 of Q(1) ⊕ Q(1)sop, it is not difficult to see that (C1, trp) and

(C2, ex) are isomorphic to (F ⊕ F, ex).
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5.2 Some lemmas

In this section, we shall study the structure of a generating algebra with involution

of a variety V not containing the algebra (M,ρ).

Lemma 5.2.1. Let A be an algebra with involution. If (M,ρ) /∈ var∗(A), then

(G(Mk,2l(F )), osp) /∈ var∗(A),

for any k ≥ 2 or l ≥ 2.

Proof. Suppose that (G(Mk,2l(F )), osp) ∈ var∗(A). Let us consider first k ≥ 0 and l ≥ 2.

We can consider the elements a = ek+1,k+1 + ek+l+1,k+l+1, b = ek+2,k+2 + ek+l+2,k+l+2,

c = e1,2 and cosp = ek+l+2,k+l+1. Let C ∼= spanF {a, b, c, c
osp} be a subalgebra of

(G(Mk,2l(F )), osp) with induced involution. Then the application φ :M → C given by

φ(e11 + e44) = a, φ(e22 + e33) = b, φ(e12) = c, φ(e34) = cex,

is an isomorphism such that φ(Xρ) = Xosp for all X ∈M . Hence C is an algebra with

involution isomorphic to (M,ρ) and C ∈ var∗(A), a contradiction.

Let now k ≥ 2 and l ∈ {0, 1}. Let C ∼= spanF {e11, e12, e21, e22} be a subalgebra

of (G(Mk,2l(F )), osp) with induced involution. Clearly C is isomorphic to the ma-

trix algebra of order 2 with the transpose involution t, (M2(F ), t). Since (M,ρ) ∈

var∗(M2(F ), t) (see [51] Remark 3.2), it follows (M,ρ) ∈ var∗(M2(F ), t) = var∗(C) ⊆

var∗(G(Mk,2l(F )), osp) ⊆ var∗(A), a contradiction.

Lemma 5.2.2. Let A be an algebra with involution. If (M,ρ) /∈ var∗(A), then

(G(M1,2(F )), osp) /∈ var∗(A).

Proof. First notice that

Id∗(G(M1,2(F ))) ⊆ Id∗(G(M sup)). (5.1)

In fact, by Lemma 4.3 in [30], if f ∈ Id♯(M1,2(F )), then f ∈ Id♯(M sup). Hence, by

lemma 5.1.1, if f̃ ∈ Id∗(G(M1,2(F ))), then f̃ ∈ Id∗(G(M sup)).

Since M /∈ var∗(A), by lemma 5.1.2, follows G(M sup) /∈ var∗(A). Thus, by (5.1),

(G(M1,2(F )), osp) /∈ var∗(A).

Lemma 5.2.3. Let A be an algebra with involution. If (M,ρ) /∈ var∗(A), then

(G(Mk,k(F )), trp) /∈ var∗(A),

for any k ≥ 2.
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Proof. Suppose that (G(Mk,k(F )), trp) ∈ var∗(A) with k ≥ 2. We can consider its

subalgebra

C ∼= spanF {e11 + ek+1,k+1︸ ︷︷ ︸
a

, e22 + ek+2,k+2︸ ︷︷ ︸
b

, e12︸︷︷︸
c

, ek+2,k+1︸ ︷︷ ︸
ctrp

}

with induced involution trp. Then the application φ :M → C given by

φ(e11 + e44) = a, φ(e22 + e33) = b, φ(e12) = c, φ(e34) = ctrp,

is an isomorphism such that φ(Xρ) = Xtrp for all X ∈ M . Hence C is an algebra

with involution isomorphic to (M,ρ) and C ∈ var∗((G(Mk,k(F )), trp)) ⊆ var∗(A), a

contradiction.

Lemma 5.2.4. Let A be an algebra with involution. If (M,ρ) /∈ var∗(A), then

(G(Mk,l(F )⊕Mk,l(F )
sop), ex) /∈ var∗(A),

for any k, l such that k + l ≥ 1.

Proof. Suppose that (G(Mk,l(F ) ⊕Mk,l(F )
sop), ex) ∈ var∗(A) with k + l ≥ 1 and let

us consider the elements a = (e11, e11), b = (ek+1,k+1, ek+1,k+1), c = (ge1,k+1, 0) and

cex = (0,−ge1,k+1), where g ∈ G1, g 6= 0. Let C ∼= spanF {a, b, c, c
ex} be a subalgebra of

(G(Mk,l(F )⊕Mk,l(F )
sop), ex) with induced involution. Then the application φ :M → C

given by

φ(e11 + e44) = a, φ(e22 + e33) = b, φ(e12) = c, φ(e34) = cex,

is an isomorphism such that φ(Xρ) = Xex for all X ∈ M . Hence C is an algebra with

involution isomorphic to (M,ρ) and C ∈ var∗(A), a contradiction.

Lemma 5.2.5. Let A be an algebra with involution. If (M,ρ) /∈ var∗(A), then

(G(Q(n)⊕Q(n)sop), ex) /∈ var∗(A),

for any n ≥ 2.

Proof. Suppose by contradiction that (G(Q(n)⊕Q(n)sop), ex) ∈ var∗(A) with n ≥ 2.

Notice that ((Q(n)⊕Q(n)sop)0, ex) is an algebra with involution equal to the direct

sum of the full matrix algebra of order n and its opposite algebra with the exchange

involution, (Mn(F ) ⊕Mn(F )
op, ex). Then (Mn(F ) ⊕Mn(F )

op, ex) is isomorphic to a

subalgebra C ∼= (Q(n)⊕Q(n)sop)0 of (G(Q(n)⊕Q(n)sop), ex) with induced involution.

Hence (Mn(F ) ⊕ Mn(F )
op, ex) ∈ var∗(C) ⊆ var∗(G(Q(n) ⊕ Q(n)sop), ex) ⊆ var∗(A),

contradiction to the lemma 4.4 of [51].
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Lemma 5.2.6. Let V be a ∗-variety such that (M,ρ) /∈ V. Then

V = var∗(G(A1)⊕ · · · ⊕G(An)),

where for every i ∈ {1, . . . , n}, Ai is a finite dimensional superalgebra with superinvolu-

tion isomorphic to one of the following algebras:

1. F + Ji, with trivial superinvolution on F ,

2. F ⊕ F + Ji, with exchange superinvolution on F ⊕ F ,

3. M0,2(F ) + Ji, with orthosymplectic superinvolution on M0,2(F ),

4. M1,1(F ) + Ji, with transpose superinvolution on M1,1(F ),

5. Q(1)⊕Q(1)sop + Ji, with exchange superinvolution on Q(1)⊕Q(1)sop,

and Ji is the Jacobson radical of Ai.

Proof. By theorem 5.1.1, we can write V = var∗(G(A)) where G(A) is the Grassmann

envelope of a finite dimensional superalgebra with superinvolution A.

Let A = B + J be the Wedderburn-Malcev decomposition of A, where J = J(A) is

the Jacobson radical and B is a maximal semisimple subalgebra of A. It is well known

that B is a ♯-superalgebra and J is a ♯-superideal of A. Moreover, we can write

B = B1 ⊕ · · · ⊕Bm

where B1, . . . , Bm are simple ♯-superalgebras. Now, by previous lemmas, for each i =

1, . . . ,m, either Bi
∼= F with trivial superinvolution or Bi

∼= (F ⊕ F, ex) or Bi
∼=

(M0,2(F ), osp) or Bi
∼= (M1,1(F ), trp) or Bi

∼= (Q(1)⊕Q(1)sop, ex).

Suppose now that BiJBj 6= 0 for some i 6= j. Since by [51, Remark 3.3] and Remark

5.1.1 the algebras (M0,2(F ), osp), (M1,1(F ), trp) and (Q(1) ⊕ Q(1)sop, ex) contain a

subalgebra C ∼= F ⊕ F with exchange superinvolution, then we can apply the same

technique of [51, Lemma4.6] for the superinvolution case to reach a contradiction.

Thus we have

BiJBj = BiBj = 0

for all i 6= j. Clearly, these relations imply that

G(Bi)G(J)G(Bj) = G(Bi)G(Bj) = 0, for all i 6= j (5.2)

Set Ai = Bi+J , i = 1, . . . ,m. Then A = B1⊕· · ·⊕Bm+J = (B1+J)+· · ·+(Bm+J) =

A1 + · · · + Am. Moreover for each i = 1, . . . ,m, J ⊆ Ai is the Jacobson radical of Ai,
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and Ai/J ∼= Bi. So, each Ai is isomorphic to one of the algebras (i),(ii), (iii), (iv) or

(v).

Now we claim that Id∗(G(A1) + · · ·+G(Am)) = Id∗(G(A1)) ∩ · · · ∩ Id∗(G(Am)).

In fact, if f = f(y1, . . . , yr, z1, . . . , zn−r) ∈ Id∗(G(A1)) ∩ · · · ∩ Id∗(G(Am)) is multi-

linear, we shall prove that f ≡ 0 on Id∗(G(A1)+ · · ·+G(Am)). In order to do so, let us

consider an evaluation in G(A1)∪· · ·∪G(Am) such that yi → yi ∈ G(A1)
+∪· · ·∪G(Am)+

and zj → zj ∈ G(A1)
− ∪ · · · ∪ G(Am)−. Now if y1, . . . , yr, z1, . . . , zn−r ∈ G(Ak), for

some k, then f(y1, . . . , yr, z1, . . . , zn−r) = 0, since f ∈ Id∗(G(Ak)). Otherwise, by

observing that G(Ai) = G(Bi + J) for all i, there exist k, l with k 6= l such that

one of the following occurs: either yk ∈ G(Ak)
+ and yl ∈ G(Al)

+, or yk ∈ G(Ak)
+

and zl ∈ G(Al)
−, or zk ∈ G(Ak)

− and zl ∈ G(Al)
−. In all these cases, by 5.2 we

obtain wσ(1) . . . wσ(n) = 0, for the corresponding evaluation of any monomial. Thus

f ∈ Id∗(G(A1)⊕ · · ·⊕G(Am)). Since the other inclusion is obvious we get the equality.

Since A = A1+· · ·+Am and Id∗(G(A1))∩· · ·∩Id
∗(G(Am)) = Id∗(G(A1)⊕· · ·⊕G(An)),

it follows that var∗(G(A)) = var∗(G(A1)⊕ · · · ⊕G(An)).

5.3 The main result

In this section we study the nth cocharacter of a variety V not containing the algebra

(M,ρ).

We start by recalling some notation. For integers k, l ≥ 0, we define a hook shaped

part of the plane of arm d and leg l,

H(d, l) = {λ = (λ1, λ2, . . . ) ⊢ n ≥ |λd+1 ≤ l}.

Also given an algebra A with involution ∗ satisfying a non-trivial ∗-polynomial identities

we say that its nth ∗-cocharacter χ∗
n(A) lies in two hooks H(k1, l1) and H(k2, l2) if in the

decomposition (2.1) of χ∗
n(A), mλ,µ 6= 0 implies that λ ∈ H(k1, l1) and µ ∈ H(k2, l2).

We write

χ∗
n(A) ⊆ (H(k1, l1), H(k2, l2)).

There is a close relation between algebras with involution satisfying a non-trivial ∗-

polynomial identity and infinite hooks in the following sense.

Theorem 5.3.1 ([20],Theorem 5.9). Let A be an algebra with involution satisfying a

non-trivial ∗-polynomial identity. Then there exist integer k1, l1, k2, l2 ≥ 0 such that

χ∗
n(A) ⊆ (H(k1, l1), H(k2, l2)),
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for all n ≥ 1.

For any partition λ ⊢ r let Tλ be a Young tableau of shape λ and eTλ
the corre-

sponding minimal essential idempotent of the group algebra FSn. Recall that eTλ
=

∑
σ∈RTλ
τ∈CTλ

(sgn τ)στ where RTλ
and CTλ

are the subgroups of row and column permuta-

tions of Tλ, respectively.

Let Tλ and Tµ be tableaux of shape λ ⊢ r and µ ⊢ n−r, respectively. In what follows

whenever we write eTλ
eTµg(x

+
1 , . . . , x

+
r , x

−
1 , . . . , x

−
n−r), for same polynomial g ∈ P ∗

r,n−r,

we understand that eTλ
acts on the symmetric variables x+1 , . . . , x

+
r and eTµ acts on the

skew variables x−1 , . . . , x
−
n−r.

Next we recall the following useful result.

Lemma 5.3.1 ([1],Lemma 7). Let λ ⊢ r, µ ⊢ n − r be such that λ ∈ H(k1, l1) and

µ ∈ H(k2, l2). Suppose that for some tableaux Tλ and Tµ and some polynomial g ∈

P ∗
r,n−r, we have that eTλ

eTµg 6= 0. Then there exist a polynomial f ∈ P ∗
r,n−r such that

F (Sr × Sn−r)f = F (Sr × Sn−r)eTλ
eTµg and two decompositions into disjoint sets

{x+1 , . . . , x
+
r } = X+

1 ∪ · · · ∪X+
k′1

∪ T+
1 ∪ · · · ∪ T+

l′1
,

{x−1 , . . . , x
−
n−r} = X−

1 ∪ · · · ∪X−
k′2

∪ T−
1 ∪ · · · ∪ T−

l′2
,

where k′i ≤ ki, l
′
i ≤ li (i = 1, 2), such that f is symmetric in the variables of each of

the sets X+
i , X

−
j , 1 ≤ i ≤ k′1, 1 ≤ j ≤ k′2, and alternating on each of the sets T+

i , T
−
j ,

1 ≤ i ≤ l′1, 1 ≤ j ≤ l′2.

Lemma 5.3.2. Let A = C+J be a finite dimensional superalgebra with superinvolution,

where J = J(A) is its Jacobson radical and C is a ♯-simple subalgebra of A which is

isomorphic to either F with trivial superinvolution or (F ⊕ F, ex) or (M1,1(F ), trp) or

(Q(1) ⊕ Q(1)sop, ex). If χ∗
n(A) =

∑
|λ|+|µ|=nmλ,µχλ,µ, then there exists a constant K

such that mλ,µ ≤ K, for all n ≥ 1 and |λ|+ |µ| = n.

Proof. Since G(A) ⊆ A ⊗ G, G(A) satisfies a non-trivial ∗-polynomial identity. Then

by Theorem 5.3.1, the ∗-cocharacter of G(A) lies in two hooks H(d1, d1) and H(d2, d2)

for some integers d1, d2, i.e.,

χ∗
n(G(A)) ⊆ (H(d1, d1), H(d2, d2)).

Suppose that C is isomorphic to (M1,1(F ), trp), then one can choose {a+0 , . . . , a
+
s−1},

{b+0 , . . . , b
+
t−1}, {a

−
0 , . . . , a

−
u−1}, {b

−
0 , . . . , b

−
v−1} basis of A

+
0 , A

+
1 , A

−
0 and A−

1 , respectively,
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such that a+0 ∈ C+
0 , b+0 ∈ C+

1 , a−0 ∈ C−
0 , b−0 ∈ C−

1 and a+1 , . . . , a
+
s−1, b

+
1 , . . . , b

+
t−1,

a−1 , . . . , a
−
u−1, b

−
1 , . . . , b

−
v−1 ∈ J .

Let q be the least positive integer such that Jq = 0 and set N0 = ((2q)d)4d1d2 where

d = s + t + u + v is the dimension of A. We shall prove that any multiplicity mλ,µ in

χ∗
n(G(A)) is bounded by dN0.

To this end let λ ⊢ r and µ ⊢ n − r be two partitions such that λ ⊂ H(d1, d1) and

µ ⊂ H(d2, d2), and consider the corresponding pair of Young tableaux (Tλ, Tµ). Let eTλ

and eTµ be the essential idempotents corresponding to Tλ and Tµ, respectively. Hence

the element e = eTλ
eTµ is an essential idempotent in the group algebra F (Sr × Sn−r).

Clearly, there exists a multilinear polynomial g ∈ F 〈X, ∗〉, such that eg = eTλ
eTµg 6= 0

in F 〈X, ∗〉.

By Lemma 5.3.1, there exists f ∈ P ∗
r,n−r, f 6= 0, such that F (Sr × Sn−r)f =

F (Sr×Sn−r)eTλ
eTµg and the variables of the polynomial f are partitioned into 2(d1+d2)

disjoint subsets

X+
1 ∪ · · · ∪X+

d1
∪ T+

1 ∪ · · · ∪ T+
d1

∪X−
1 ∪ · · · ∪X−

d2
∪ T−

1 ∪ · · · ∪ T−
d2
,

such that f is symmetric in the variables of each sets X+
i , X

−
j , 1 ≤ i ≤ d1, 1 ≤ j ≤ d2,

and alternating on each of the sets T+
i , T

−
j , 1 ≤ i ≤ d1, 1 ≤ j ≤ d2. Notice that if

λ = (λ1, λ2, . . . ) and µ = (µ1, µ2, . . . ), then X
+
i is empty if λi ≤ d1 and X−

j is empty

if µj ≤ d2. On the other hand, if λi > d1 and µj > d2, then |X+
i | = λi − d1 and

|X−
j | = µj − d2. Moreover, |T+

i | = λ
′

i and |T−
j | = µ

′

j where λ
′

= (λ
′

1, λ
′

2, . . . ) and

µ
′

= (µ
′

1, µ
′

2, . . . ) are the conjugate partitions of λ and µ, respectively.

Notice that for any σ1 ∈ Sr and any σ2 ∈ Sn−r we have σ1eTλ
6= 0 and σ2eTµ 6= 0

and so for ρ = (σ1, σ2) ∈ Sr × Sn−r we have ρe 6= 0. It follows that if f ∈ P ∗
r,n−r is a

∗-polynomial such that ef 6= 0, then the polynomials ef and g
′

= ρef generate the same

irreducible Sr × Sn−r-module. Now we choose σ1 and σ2, in such a way that σ1eTλ
f is

symmetric on the first λ1 − d1 variables, on the next λ2 − d1 variables and so on. A

similar condition holds for the alternating sets of variables T+
j , 1 ≤ j ≤ d1. In the same

way we choose σ2eTµf is symmetric on the first µ1 − d2 variables, on the next µ2 − d2

variables and so on. A similar condition holds for the alternating sets T−
j , 1 ≤ j ≤ d2.

Let f1, . . . , fK be multilinear ∗-polynomials generating in P ∗
r,n−r different but iso-

morphic Sr ×Sn−r-modules corresponding to the same pair of partitions (λ, µ). By the

above remark, we can choose permutations ρ1, . . . , ρK ∈ Sr × Sn−r and a decomposi-

tion X = X+ ∪ X− ∪ T+ ∪ T−, where X+ = X+
1 ∪ · · · ∪ X+

d1
, X− = X−

1 ∪ · · · ∪ X−
d2
,

T+ = T+
1 ∪· · ·∪T+

d1
and T− = T−

1 ∪· · ·∪T−
d2

and ρ1f1, . . . , ρKfK are simultaneously sym-
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metric on X+
i and X−

j and alternating on T+
i and T−

j for all i = 1, . . . , d1, j = 1, . . . , d2.

Thus without loss of generality, we may assume that f1, . . . , fK satisfy this condition.

Let us now assume by contradiction that mλ,µ = K > d((2q)d)4d1d2 . We shall prove

that G(A) satisfies a ∗-identity of the type

f = γ1f1 + · · ·+ γKfK , (5.3)

where γ1, . . . , γK ∈ F are not all zero. Then we shall reach a contradiction because this

will say that f1, . . . , fM are linearly dependent modulo Id∗(A).

It is sufficient to verify that f has only zero values on elements of the form a+i ⊗ g1,

b−l ⊗ g
′

2, a
−
j ⊗ g2 and b+k ⊗ g

′

1, where g1, g2 ∈ G0 and g
′

1, g
′

2 ∈ G1. First we define a

substitution of special kind.

Let 0 ≤ α+
j0, . . . , α

+
j(s−1), β

+
j0, . . . , β

+
j(t−1), α

−
k0, . . . , α

−
k(u−1), β

−
k0, . . . , β

−
k(v−1) be integers

such that
s−1∑

i=0

α+
ji +

t−1∑

i=0

β+ji = |X+
j |, 1 ≤ j ≤ d1,

s−1∑

i=0

α+
ji +

t−1∑

i=0

β+ji = |T+
j−d1

|, d1 + 1 ≤ j ≤ 2d1,

u−1∑

i=0

α−
ki +

v−1∑

i=0

β−ki = |X−
k |, 1 ≤ k ≤ d2,

u−1∑

i=0

α−
ki +

v−1∑

i=0

β−ki = |T−
k−d2

|, d2 + 1 ≤ k ≤ 2d2.

We say that an evaluation ϕ has type

(α+
j0, . . . , α

+
j(s−1), β

+
j0, . . . , β

+
j(t−1), α

−
k0, . . . , α

−
k(u−1), β

−
k0, . . . , β

−
k(v−1)),

1 ≤ j ≤ 2d1, 1 ≤ k ≤ 2d2, if we replace the variables in the following way: for fixed j,

1 ≤ j ≤ d1, we replace the first α
+
j0 variables from X+

j by elements a+0 ⊗g (with distinct

elements g for distinct x ∈ X+
j ), the next α+

j1 variables by elements a+1 ⊗ g, and so on

up to the last α+
j(s−1) symmetric variables by elements a+s−1⊗ g, where all elements g lie

in G0. Now we evaluate the next β+j1 variables from X+
j in elements b+0 ⊗ g

′

, the next

β+j1 variables in elements b+1 ⊗ g
′

, and so on up to the last β+j(t−1) symmetric variables

in elements b+t−1 ⊗ g
′

, where all elements g
′

lie in G1. For j = d1, . . . , 2d1 we apply the

same procedure in order to replace variables in T+
j−d1

by elements of type a+h ⊗ g and

b+h ⊗ g
′

.
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For fixed k an analogous evaluation will be made in order to replace the skew vari-

ables from X−
k and T−

k−d2
by elements of type a−h1

⊗ g, 1 ≤ h1 ≤ u − 1, and b−h2
⊗ g

′

,

1 ≤ h2 ≤ v − 1, where all elements g lie in G0 and all elements g
′

lie in G1.

In order to give a non-zero value in (5.3) any substitution should satisfy the following

restrictions. If 1 ≤ j ≤ d1 and 1 ≤ k ≤ d2, then:

1. β+ji ≤ 1, 0 ≤ i ≤ t− 1, and β−kh ≤ 1, 0 ≤ h ≤ v − 1;

2.
∑s−1

i=1 α
+
ji ≤ q − 1 and

∑u−1
i=1 α

−
ki ≤ q − 1;

3. α+
j0 = |X+

j | − (α+
j1 + · · ·+ α+

j(s−1) + β+j0 + · · ·+ β+j(t−1)) and α
−
k0 = |X−

k | − (α−
k1 +

· · ·+ α−
k(u−1) + β−k0 + · · ·+ β−k(v−1)).

The first property follows since f is symmetric on X+
j and X−

k ; for example, f becomes

zero when we evaluate two variables of X+
j in b+h ⊗g′, b+h ⊗g′′, for some g′, g′′ ∈ G1. The

second property follows since Jq = 0. Similarly, if d1+1 ≤ j ≤ 2d1 and d2+1 ≤ k ≤ 2d2,

it follows that:

1. α+
ji ≤ 1, 0 ≤ i ≤ s− 1, and α−

kh ≤ 1, 0 ≤ h ≤ u− 1;

2.
∑t−1

i=1 β
+
ji ≤ q − 1 and

∑v−1
i=1 β

−
ki ≤ q − 1;

3. β+j0 = |T+
j−d1

|− (β+j1+ · · ·+β+j(t−1)+α
+
j0+ · · ·+α+

j(s−1)) and β
−
k0 = |T−

k−d2
|− (β−k1+

· · ·+ β−k(v−1) + α−
k0 + · · ·+ α−

k(u−1)).

Let 1 ≤ j ≤ d1. Then the number of distinct t-tuples (β+j0, . . . , β
+
j(t−1)) is less then

2t and the number of distinct s-tuples (α+
j0, . . . , α

+
j(s−1)) is at most qs. Thus the total

number of distinct t + s-tuples (α+
j0, . . . β

+
j(t−1)) is bounded by (2q)s+t. Similarly, for

d1 + 1 ≤ j ≤ 2d1, the number of distinct s-tuples (α+
j0, . . . , α

+
j(s−1)) is less then 2s and

the number of distinct t-tuples (β+j0, . . . , β
+
j(t−1)) is at most qt. Hence (2q)s+t is an upper

bound of the total number of distinct t+s-tuples (α+
j0, . . . β

+
j(t−1)), for each 1 ≤ j ≤ 2d1.

In the same way from the conditions (1)-(3) above we get that the total number of

distinct u+ v-tuples (α−
k0, . . . , β

−
k(v−1)) is bounded by (2q)u+v, for each 1 ≤ k ≤ 2d2.

Thus, for given 1 ≤ j ≤ 2d1, 1 ≤ k ≤ 2d2 the total number of different special

substitutions is less than (2q)s+t+u+v = (2q)d. Since the number of pairs (j, k) is

4d1d2, it follows that the total number N of distinct types of substitutions is less than

((2q)d)4d1d2) = N0.

Notice that if ϕ, ϕ′ are two substitutions of the same type and ϕ(z) = r⊗p for some

z ∈ X, r ∈ A, p ∈ G, then ϕ′(z) = r ⊗ p′ with the same grading of the elements p, p′.

Hence if X = {z1, . . . , zn}, ϕ(zi) = ri ⊗ pi, ϕ
′(zi) = ri ⊗ p′i, then
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ϕ(f) = f(r1 ⊗ p1, . . . , rn ⊗ pn) = w ⊗ p1 . . . pn,

ϕ′(f) = f(r1 ⊗ p′1, . . . , rn ⊗ p′n) = w ⊗ p′1 . . . p
′
n,

with the same w. In this case we say that ϕ and ϕ′ are similar.

Now let ϕ1, . . . , ϕN be substitutions chosen one from each similarity class of distinct

types. If ϕ is one of these substitutions, and h1, h2 are two multilinear polynomials

of degree n, then by multilinearity and supercommutativity ϕ(h1) = q1 ⊗ p1 . . . pn and

ϕ(h2) = q2 ⊗ p1 . . . pn, where p1, . . . , pn ∈ G and q1, q2 ∈ A.

Now consider all these N substitutions of distinct type ϕ1, . . . , ϕN . Then, for each

j = 1, . . . , N and i = 1, . . . , L we get

ϕj(fi) = aij ⊗ pj1 . . . pjn, (5.4)

where aij ∈ A and pj1, . . . , pjn depend on ϕj only.

The matrix (aij), 1 ≤ i ≤ K, 1 ≤ j ≤ N , has K rows and N columns of elements

from A. Since K ≥ d((2q)d)4d1d2 , where dimA = d, the rows of (aij) are linearly

dependent. Hence there exist γ1, . . . , γK ∈ F not all zero, such that

K∑

i=1

γiaij = 0, 1 ≤ j ≤ N.

This, together with (5.4), implies that ϕj(
∑K

i=1 γifi) = 0, 1 ≤ j ≤ N .

We claim that this implies that f =
∑K

i=1 γifi is an identity of G(A). In fact, by

multilinearity of f , it is enough to check only substitutions ϕ∗ where the variables are

evaluated into elements of the type r ⊗ p, where r = a+i or b+i or a−i or b−i , for some i,

and p ∈ G0 ∪G1.

Now, given such ϕ∗, there exists a permutation σ ∈ Sn of the variables (preserving

the involution) such that ϕ∗σ = ϕ′ is similar to some ϕj , 1 ≤ j ≤ N . Thus ϕ′(fi) =

aij ⊗ p′j1 . . . p
′
jn and, so, ϕ′(fi) = 0. We remark that the above σ satisfies σ(X+

i ) = X+
i ,

σ(T+
i ) = T+

i , σ(X−
j ) = X−

j , σ(T−
j ) = T−

j , 1 ≤ i ≤ d1, 1 ≤ j ≤ d2. Since f is symmetric

on X+
i , X−

j and alternating on T+
i , T−

j , therefore ϕ′(f) = ϕ∗σ(f) = ϕ∗(σf) = ±ϕ(f).

Thus ϕ∗(f) = 0.

This show that modulo the identities of G(A), any K polynomials corresponding

to the same pair of tableau are linearly dependent and this is equivalent to say that

mλ,µ ≤ K for any pair (λ, µ)and the proof of the lemma is complete in case C is

isomorphic to (M1,1(F ), trp).
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A similar proof holds also in case C is isomorphic to either F with F ∗ = F or

(F ⊕ F, ex) or (Q(1)⊕Q(1)sop, ex), so it will be omitted.

Recall that (M2(F )), s) is the 2 × 2 matrix algebra with the symplectic involution.

Then we have the following.

Theorem 5.3.2. Let A be an algebra with involution ∗ satisfying a nontrivial identity,

and

χ∗
n(A) =

∑

|λ|+|µ|=n

mλ,µχλ,µ

its nth cocharacter. If there exist a constant K such that for all n ≥ 1 and |λ|+ |µ| = n

the inequality mλ,µ ≤ K holds, then (M,ρ) /∈ var∗(A).

Conversely, if (M,ρ), (M2(F )), s) /∈ var∗(A), then there exist a constant K such that

for all n ≥ 1 and |λ|+ |µ| = n the inequality mλ,µ ≤ K holds.

Proof. Suppose by contradiction that (M,ρ) ∈ var∗(A). By Theorem 2.4.2 the mul-

tiplicities in χ∗(M) are not bounded by a constant. Thus by Lemma 2.4.1 we get an

absurd and the first statement is proved.

Conversely, if (M,ρ), (M2(F )), s) /∈ var∗(A), then the proof follows from Lemmas

2.4.1, 5.2.6 and 5.3.2.

Lemma 5.3.3. Let A = C+J be a finite dimensional superalgebra with superinvolution,

where J = J(A) is its Jacobson radical and C is a ♯-simple subalgebra of A which

is isomorphic to either F with trivial involution or (F ⊕ F, ex) or (M0,2(F ), osp) or

(M1,1(F ), trp) or (Q(1) ⊕ Q(1)sop, ex). If χ∗
n(G(A)) =

∑
|λ|+|µ|=nmλ,µχλ,µ, then there

exists a constant N such that

|λ| − λ1 − λ′1 ≤ N and |µ| − µ1 − µ2 − µ3 − µ′1 ≤ N.

Proof. Let (λ, µ) be a pair of partitions with |λ| + |µ| = n and let q be the index of

nilpotence of the Jacobson radical J of A. We claim that if mλ,µ 6= 0, then λ2 ≤ q + 1

and µ4 ≤ q + 3.

In fact, suppose by contradiction that µ4 ≥ q+4 and mλ,µ 6= 0 (the proof is similar

if λ2 ≥ q + 2). Then there exists a pair of Young tableau (Tλ, Tµ), a corresponding

essential idempotent eTµeTλ
and a polynomial f ∈ P ∗

n such that eTµeTλ
f /∈ Id∗(G(A)).

Hence there exists τ ∈ RTµ such that g = τC−
Tµ
eTµeTλ

f /∈ Id∗(G(A)), where C−
Tµ

=
∑

σ∈CTµ
(sgnσ)σ. Let Tµ contain the integers i1, . . . , iq+2 in the first q + 4 boxes of the

first row, j1, . . . , jq+2 in the first q + 4 boxes of the second row, k1, . . . , kq+2 in the first
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q + 4 boxes of the third row and h1, . . . , hq+2 in the first q + 4 boxes of the fourth row.

Then the polynomial g = τC−
Tµ
eTλ

f is alternating on each of the following sets

{x−τ(i1), x
−
τ(j1)

, x−τ(k1), x
−
τ(h1)

}, . . . , {x−τ(iq+4)
, x−τ(jq+4)

, x−τ(kq+4)
, x−τ(hq+4)

}.

Notice that the variables are evaluated in

G(A)− = (C−
0 ⊗G0)⊕ (J−

0 ⊗G0)⊕ (C+
1 ⊗G1)⊕ (J+

1 ⊗G1)

and since C is isomorphic to either F with F ∗ = F or (F ⊕ F, ex) or (M0,2(F ), osp)

or (M1,1(F ), trp) or (Q(1) ⊕Q(1)sop, ex), then C−
0 is at most 3-dimensional and C+

1 is

at most 1-dimensional. If at least q sets {x−τ(is), x
−
τ(js)

, x−τ(ks), x
−
τ(hs)

} are evaluated in

J−
0 ⊗ G0 ∪ J

+
1 ⊗ G1, then we get g ≡ 0 on G(A) since Jq = 0. Hence we have at least

five sets {x−τ(is), x
−
τ(js)

, x−τ(ks), x
−
τ(hs)

} that are evaluated in C−
0 ⊗ G0 ∪ C

+
1 ⊗ G1. If one

of these sets, say {x−τ(i1), x
−
τ(j1)

, x−τ(k1), x
−
τ(h1)

}, is evaluated in the algebra C−
0 ⊗G0, then

we will get that g vanishes in G(A), since g is alternating on x−τ(i1), x
−
τ(j1)

, x−τ(k1), x
−
τ(h1)

and dimC−
0 ≤ 3. Then we deduce that there are at least two variables corresponding to

indices in the same row of Tµ, say x
−
τ(i1)

and x−τ(i2), that are evaluated in C+
1 ⊗G1. But

the polynomial eTµeTλ
f is symmetric on x−i1 , . . . , x

−
iq+4

. Since τ ∈ RTµ , eTµeTλ
f is also

symmetric on x−τ(i1), . . . , x
−
τ(iq+4)

. Since the variables x−τ(i1) and x
−
τ(i2)

are evaluated on

C+
1 ⊗G1, which is anticommutative, we get that eTµeTλ

f ∈ Id∗(G(A)), a contradiction.

Hence the claim is proved.

Next we claim that if mλ,µ 6= 0, then λ′2 ≤ 2q and µ′2 ≤ 2q + 4.

In fact, suppose to the contrary that µ′2 ≥ 2q+ 5 and mλ,µ 6= 0 (the proof is similar

if λ′2 ≥ 2q+1). As before, there exists a pair of Young tableau (Tλ, Tµ), a corresponding

essential idempotent eTµeTλ
and a polynomial f ∈ P ∗

n such that eTµeTλ
f /∈ Id∗(G(A)).

Hence there exists τ ∈ RTµ such that g = τC−
Tµ
eTµeTλ

f /∈ Id∗(G(A)). Let i1, . . . , i2q+5

denote the integers in the first 2q + 5 boxes of the first column of the Tµ. Similarly,

let j1, . . . , j2q+5 be the integers in the first 2q + 5 positions of the second column of Tµ.

Then g is alternating on {x−τ(i1), . . . , x
−
τ(i2q+5)

} and on {x−τ(j1), . . . , x
−
τ(j2q+5)

}.

In order to get a non zero value of g, we have to evaluate at most q − 1 variables of

each set into J−
0 ⊗G0 ∪ J

+
1 ⊗G1. Moreover, since C−

0 is at most 3-dimensional and G0

is commutative, we evaluate at most three variables of each set on C−
0 ⊗G0. It follows

that two variables corresponding to the same row, say x+τ(i1) and x
+
τ(j1)

, are evaluate on

C+
1 ⊗G1. Since g is symmetric on these two variables and C+

1 ⊗G1 is anticommutative,

we get that g vanishes in G(A) and the claim is proved.

Thus λ2 ≤ q + 1, λ′2 ≤ 2q, µ4 ≤ q + 3 and µ′2 ≤ 2q + 4, if mλ,µ 6= 0. It follows that

the diagram of λ out of the first row and the first column contains at most q(2q − 1)
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boxes and the diagram of µ out of the first three row and the first column contains at

most (q+2)(2q+1) boxes. Hence, mλ,µ may be non zero only if |λ| − λ1 − λ′1 ≤ K and

|µ| − µ1 − µ2 − µ3 − µ′1 ≤ K ′ where K = q(2q − 1) and K ′ = (q + 2)(2q + 1). Therefore

N = K ′ is the desired constant, and the proof is complete.

Theorem 5.3.3. Let A be an algebra with involution ∗ satisfying a nontrivial identity,

and

χ∗
n(A) =

∑

|λ|+|µ|=n

mλ,µχλ,µ

its nth cocharacter. Then the following conditions are equivalent.

1. (M,ρ) /∈ var∗(A).

2. There exists a constant N such that for all n ≥ 1 and |λ|+ |µ| = n the inequalities

|λ| − λ1 − λ′1 ≤ N, |µ| − µ1 − µ2 − µ3 − µ′1 ≤ N

hold whenever mλ,µ 6= 0.

Proof. By Lemmas 5.2.6 and 5.3.3 it follows that (1) implies (2).

Conversely, suppose by contradiction that (M,ρ) ∈ var∗(A). If

χ∗
n(M) =

∑

|λ|+|µ|=n

m′
λ,µχλ,µ,

then by Theorem 2.4.2 for λ = (λ1, λ2, 1) and µ = ∅ we have m′
λ,µ = λ1 − λ2 − 1 > 0.

Thus m′
λ,µ 6= 0 for any pair of partitions (λ, µ) with µ = ∅ and |λ| − λ1 arbitrary large.

Hence A does not satisfy condition (2) and the proof is complete.
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