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Abstract

Indoor camera localization from egocentric images is a challenge computer vision

problem which has been strongly investigated in the last years. Localizing a camera

in a 3D space can open many useful applications in different domains. In this

work, we analyse this challenge to localize shopping cart in stores. Three main

contributions are given with this thesis. As first, we propose a new dataset for

shopping cart localization which includes both RGB and depth images together with

the 3-DOF data corresponding to the cart position and orientation in the store. The

dataset is also labelled with respect to 16 different classes associated to different

areas of the considered retail. A second contribution is related to a benchmark

study where different methods are compared for both, cart pose estimation and

retail area classification. Last contribution is related to the computational analysis

of the considered approaches.



iii

Acknowledgements
I would like to tanks my supervisor Prof. Giovanni Maria Farinella as well as Prof.

Sebastiano Battiato and Dr. Antonino Furnari for their guide and support during

my PHD studies.



iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Works 7

2.1 Localization in a retail store . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Image based camera localization methods . . . . . . . . . . . . . . . . 7

2.2.1 Classification based methods . . . . . . . . . . . . . . . . . . . 8

2.2.2 Regression based approaches . . . . . . . . . . . . . . . . . . . 8

2.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Background 12

3.1 Structure from motion . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Features and matching . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Camera pose estimation . . . . . . . . . . . . . . . . . . . . . 13

3.1.3 3D structure estimation . . . . . . . . . . . . . . . . . . . . . 14

3.1.4 SAMANTHA . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Support Vector Regression . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 K-NN regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Improved Fisher Vector . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Siamese and Triplet networks . . . . . . . . . . . . . . . . . . . . . . 25

4 EgoCart dataset 30

4.0.1 3-DOF labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



v

4.0.2 Classification labels . . . . . . . . . . . . . . . . . . . . . . . . 34

4.0.3 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Methods 39

5.1 Image retrieval methods . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Regression based methods . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Classification methods . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.1 3 DOF camera pose estimation . . . . . . . . . . . . . . . . . 47

5.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Results 50

6.0.1 Retrieval based methods . . . . . . . . . . . . . . . . . . . . . 50

6.0.2 Regression based methods . . . . . . . . . . . . . . . . . . . . 55

6.0.3 Retrieval based methods VS Regression based methods . . . . 60

6.0.4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Conclusion and future works 66

A 68

A.1 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



1

Chapter 1

Introduction

1.1 Motivation

The ability to estimate the position and orientation of a mobile object from egocen-

tric images is crucial for many industrial applications[14, 11, 13]. In robotics, for

instance, the opportunity to use a camera for the auto-localization of the robots is a

cheap solution and not invasive for the context. In outdoor contexts the more tradi-

tional technology used for localization is the GPS, differently the classic solutions to

address indoor localization include the employment of RF-ID tags [1] or Beacons [2]

and the use of fixed cameras monitoring the different areas of the indoor context [4].

While these technologies can be used to obtain effective localization systems, they

both have downsides. For instance, GPS and Beacons are not very accurate [2] and

struggle with occlusions which can attenuate their signal [3], whereas pipelines based

on fixed cameras need the installation of camera networks and the use of complex

algorithms capable of re-identifying people across the different scenes.

To overcome these issues, localization using egocentric images has been investi-

gated both in the context of indoor and outdoor environments [11, 13, 14] according

to different levels of localization precision, in function of the environment character-

istics and of application in which is involved, e.g. 6 Degrees Of Freedom (6-DOF)

pose estimation [11, 13] for 3D location estimation, 3-DOF pose estimation [9] for

2D location estimation and room-based location recognition [22, 40, 41].

As it has been investigated by Santarcangelo et al. [40], in the context of retail

stores, the position of shopping carts equipped with a camera can be obtained

exploiting computer vision pipelines for scene classification. Such information can

be used to analyse the customer behaviours, trying to infer, for instance, where they
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spend more time, which areas of the store are preferred (e.g., fruit, gastronomy,

etc.) and how the placement of products can affect sales. Image-based localization

abilities are also necessary to allow a robot to navigate and monitor the store or to

assist the costumers [21].

1.2 Aims and approaches

This thesis work is focused on the problem of localizing shopping carts in retail stores

from egocentric images acquired by cameras mounted on shopping carts. Differently

from other indoor environments, retail is a very hard and specific environment for

camera localization presenting unique properties and challenges:

• It is often large scale environment

• The 3D structures are typically repetitive (e.g. many shelves with same di-

mensions)

• similar products, form a visual point of view, can be in different parts of the

store

• many visually dissimilar products are spatial near producing a strong visual

difference between images acquired in similar position.

Figure 1.1 shows some examples of the typical variability of egocentric images ac-

quired in a retail store.

In the last years the growing interest related to localization by means of egocen-

tric images bring the scientific community to produce different dataset to address

this task in indoor and outdoor environment [11, 14, 13]. Despite this growing in-

terest a large dataset to address the task of shopping cart localization in a retail

store was still missing. Hence, during my PHD activity, we proposed a new large

scale dataset of RGB and depth images acquired in a retail store by using cameras

mounted on shopping carts. By means of careful semi-automatic 3D reconstruction

and registration procedures, each image has been labelled with a six Degrees Of

Freedom (6-DOF) pose summarizing the 3D position of the shopping cart, as well

as its orientation in the 3D space.
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Figure 1.1: Visual variability of acquired egocentric images.
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Our data analysis points out that most of the variance of the collected shopping

cart positions is explained by their first two principal components. This leads us

to frame the egocentric shopping cart localization problem as a three Degrees Of

Freedom (3-DOF) pose estimation task. Therefore, we created a 3-DOF version of

the dataset by projecting the 6-DOF poses onto a 2D plane parallel to the floor

of the store. In this version of the dataset, each frame is associated with the 2D

coordinates and angle describing the position and orientation of the shopping cart.

Furthermore, to allow a deeper analysis of the problem, for each image of the dataset

we furnished a depth image and a belonging class. The dataset was divided in 16

different classes each of them groups all the images of a convex area of the store.

We decided to introduce depth image informations to analyse their usefulness to

pose prediction and because several devices available on the market are now able to

provide it in real time 1.

In order to deep investigate cart localization problem we benchmark two principal

classes of approaches based on classification and regression.

The camera 3-DOF regression problem was investigate through two different families

of methods:

• Traditional image retrieval based approaches

• Camera 3-DOF regressor-based approaches

Moreover an analysis of how much depth images can be useful to improve regres-

sion and classification performances was proposed. To examine which techniques

shall be preferred depending on the computational constraints imposed by the em-

ployed hardware and by real-time requirements we proposed also a computational

comparison of the different approaches.

1.3 Contributions

The main contributions of this thesis are the follow:

1http:www.stereolabs.com

http:www.stereolabs.com
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• We propose a dataset to study the problem of egocentric shopping cart local-

ization as classification and regression problem. The dataset is intended to

foster research on the problem and it is publicly available at our web page2;

• We benchmark classification, retrieval-based and regression-based localization

techniques in the proposed application domain

• We propose an analysis of time performance and memory usage of best ap-

proaches

• We investigate different loss functions and architectures for CNN-based ap-

proaches

• We study the usefulness of depth information for classification and regression

task in the considered context

The principal contribution of this thesis have been published in international

journal and conferences:

International journal :

• E. Spera, A.Furnari, S. Battiato and G.M.Farinella. Egocart: shopping cart

localization from egocentric videos.Submitted to Computer Vision and Image

Understanding

International conferences :

• E.Spera,A.Furnari,S.Battiato,G.M.Farinella. Egocentric Shopping Cart Lo-

calization. In International Conference on Pattern Recognition (ICPR), 2018

• E.Spera,A.Furnari,S.Battiato,G.M.Farinella.Performance Comparison of Meth-

ods Based on Image Retrieval and Direct Regression for Egocentric Shopping

Cart Localization. In 4th International Forum on Research and Technologies

for Society and Industry (RTSI), 2018

2http://iplab.dmi.unict.it/EgocentricShoppingCartLocalization/

http://iplab.dmi.unict.it/EgocentricShoppingCartLocalization/
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Appendix A reports a list of other works not directly related to this thesis published

during my Ph.D.

The remainder of this work is organized as follows: In Section 2, we review the

state of the art approaches for camera localization. In Section 3, we review the prin-

cipal classic methods that we used during our study. In Section 4, we present the

proposed shopping chart localization dataset. Section 5 discusses the approaches in-

vestigated in this study, whereas Section 6 discusses the results. Section 7 concludes

the paper and reports insights for future research.
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Chapter 2

Related Works

2.1 Localization in a retail store

Previous works have investigated the problem of localizing customers in a retail

store. For instance, Contigiani et al. [5] designed a tracking system to localize cus-

tomers using Ultra-Wide Band antennas installed in the store and tags placed on

the shopping carts. Pierdicca et al. [6] addressed indoor localization using wire-

less embedded systems. Other researchers has focused on the integration of vision

and radio signals to improve localization accuracy. Among those, Sturari et al. [2]

proposed to fuse active radio beacon signals and RGBD data to localize and track

customers in a retail store. Other researchers focused on computer vision based

solutions. Liciotti et al. [7] used RGB-D cameras to monitor customers in a retail

environment. Del Pizzo et al. [8] designed a system to count people from RGBD

cameras mounted on the ceiling.

Differently from the aforementioned works, we consider a scenario in which shop-

ping carts are localized relying only on images acquired from an on-board egocentric

camera.

By the point of view of our research the localization of the shopping cart can be see

as the camera localization task.

2.2 Image based camera localization methods

Camera localization methods are divisible in two principal families: algorithms that

face the task as a classification problem and others that treat it as a regression prob-

lem. The regressive approaches are divided in two principal subfamilies: methods
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based on image-retrieval and methods based on regressors.

In this section we propose an overview of works related to these different approaches.

2.2.1 Classification based methods

Classification-based approaches [22, 40, 41, 56, 54] face localization problem in a

space divided in different areas and, by dividing the dataset in classes related to the

different areas, tackle localization as classification problem.

These approaches aren’t able to produce a fine-grade position estimation (e.g., ac-

curate 2D or 3D coordinates) but could be the best choice in context in which a

fine-grade estimation is not useful or is too hard to have.

Some of these methods are based on a BoW representation [56, 54]; differently in

[41] transfer learning techniques and an entropy-based rejection algorithm have been

used to employ representations based on Convolutional Neural Networks (CNN).

On the other hand in [22] a CNN is trained end to end to face image geolocation

problem as a classification-problem. They subdivide the surface of the earth into

thousands of multi-scale geographic cells and show how their classification network

outperforms classical approaches based on image-retrieval. Different classification

methods [75, 76, 77, 78] use dataset of landmark building obtained through the

clustering of web-photo collection. These methods normally lever on the landmark

building framed to perform image retrieval approaches. Differently in [79] Support

Vector Machine was trained on BoW of the different clusters associated with the

landmark buildings. In Grocery context Santarcangelo et al. [40] propose a hierar-

chical classifier of egocentric image from a shopping cart that jointly classify action

of the cart (stop and moving) and market department (e.g. Fruit,Gastronomy).

2.2.2 Regression based approaches

Unlike the classification approaches, regressive approaches try to predict accurately

the 6-DOF camera pose starting by acquired image. Some of these methods are

based on image retrieval techniques [46, 47]; they work by associating to a query

image a set composed by the more similar images of geo-tagged training set in a

particular features space and defined a specific metric. Different heuristics (e.g.,

k-NN approach) are finally used to estimate query image pose starting by the poses
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of images included in the set associated to it. Over the years, to improve these

methodologies, some study focused on confusing [50] and repetitive [51] structures,

or to scale to larger scenes [49], [52]. To handle large datasets, image retrieval meth-

ods that take advantage of descriptor quantization, inverted file scoring, and fast

spatial matching, were proposed [45] [48] [46].

The image representation has a central role in image retrieval approaches. Some

approaches encode the images using hand-crafted local features [23, 24], other use

features extracted from CNNs intermediate layer. Some works use representation

extracted from CNN model trained on different dataset on other task [26], other

methods use representation extracted from CNN trained using the target dataset on

classification or regression [28].

In [53], in order to face with the disturbing presence of repetitive structures, an

automatically weight of features on the similarity score between images is proposed

to reduce the impact of those related to repetitive structures and to take more the

features with an unique local appearance into account.

Also Triplet and Siamese networks have been used to learn the features to address

the 3D object pose estimation [32, 33], a task strongly correlated to that we are

investigating in this work. In some of these works a contrastive loss [29] was used to

train the network to build a features space in which similar images result clustered

and dissimilar images result faraway between them [30, 31]. Some works investigate

camera pose estimation in shopping small. In [81] the authors propose a methods

based on Markov Random Field that, using monocular images and the shopping

mall’s floor-plan, jointly perform text detection, shop facades segmentation and

camera pose estimation. In [80] was proposed a method based on two consecutive

steps. In the first step the query image is matched by involving matching of store

signs with the training set images to identify the ”closest”. In the second step the

pose of the query image, respect to the ”closest” camera reference system, is com-

puted. Many of regression-based methods are based on a 3D model of the scene [14]

[15] [37]. Associating the 3D points with one or more local descriptor, these methods

build a matching between local features extracted by query image and a set of 3D

points. Starting by these 2D-3D matching a query image pose is estimated using

different heuristics [38] [39] [43]. To solve the time consuming problem, procured

by descriptor matching task, different strategies were proposed: either searching for
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the match on a subset of the 3D points [44], or based on a 3D model compression

scheme [55, 79].

In the last years many works investigate CNN-based approaches that try to regress

camera pose directly from images. In [11] the first end-to-end CNN based model

for pose regression (POSENET) was proposed. This model based on GoogleNet

architecture [42] has been obtained replacing classification layers with two fully

connected layers to tackle the regression task. In [12] two different loss functions

were proposed for the same architecture: one is based on trying to learn an opti-

mal balance between position error and orientation error, the other one is based

on geometric re-projection error. In [13] Long-Short-Term-Memory (LSTM) was

combined with Posenet architecture for camera pose regression. The LSTM units

allow to identify a more useful feature’s correlations for the task of pose estimation.

In [57] the authors use encoder-decoder CNN to camera pose prediction. In [58] a

multi-task CNN, to deal the trade-off between orientation and position, and a data

augmentation method for camera pose estimation was proposed. Even if these meth-

ods result less performing, in term of accuracy, compared to the methods based on

3D models, they are characterized by compactness and very short processing times.

These characteristics make this family of methods very likable, in particular for work

in embedded settings.

2.3 Dataset

In the last years different datasets were proposed in indoor and outdoor environments

for camera localization task. One of the best known, for indoor context, is 7-Scenes

dataset. This dataset was released in 2013 by Microsoft and formed by 7 different

scenes and for each scene several sequences were provided each one consisting of

500-1000 frames. The dataset was collected using a handheld kinect RGB-D camera

at 640× 480 resolution. To obtain ground truth cameras poses, an implementation

of the KinectFusion system and a dense 3D model of the scenes were used. The

dataset was built extracting frames from different sequences for each scene. Each

frame is formed by RGB images, depth images and positions and orientations of

the cameras. Like most indoor datasets, in 7 scene dataset as well,the scenes are

spanning the extension of a single room, only in the last years large scale indoor
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dataset was proposed. In [13], for instance, the authors propose TU Munich Large-

Scale Indoor dataset and it is one of the first covering a whole building floor with

a total area of 5,575 m2. In order to generate ground truth pose information for

each image, the authors captured the data using a mobile system equipped with six

cameras and three laser range finders. In [82] a dataset acquired in the ground level

of a shopping mall with an extenction of 5,000 m2 was proposed. The training set

images of this dataset was captured using DSLR cameras while test set is composed

by 2,000 cell phone photos taken by different users. To estimate ground truth camera

pose 3D-2D matching algorithm was used levering on a 3D model obtained with a

high precision LiDAR scanner.

Related to outdoor context, relevant datasets are Rome16k and Dubrovnik6k [79],

and The Cambridge Landmarks dataset in [11]. Dubrovnik6k and Rome16k datasets

were build from photos retrieved by Flick, the first is formed by 6,844 images while

the second by 16,179 images. Both these datasets contain also 3D model of the

scenes. The Cambridge Landmarks dataset is formed by 5 different scenes and

contains 12K images with full 6-DoF camera poses. All these three outdoor datasets

were generated using Structure From Motion algorithm.

In grocery context only VMBA15 dataset [40] composed by 7839 samples is available,

the images are labelled according to action (i.e. stop, moving) location (indoor,

outdoor) and scenes context (e.g. gastronomy, fruit) but isn’t labelled in terms of 6

D.O.F. of the cameras.
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Chapter 3

Background

3.1 Structure from motion

Starting from a set of images acquired in the same scene, Structure From Motion

(SFM) problem consist by recovering the 3D scene and the camera 6 DOF for each

image of the set.

Figure 3.1: Structure From Motion aim1

The SFM algorithms are based on three main stage:

• By extracting image features and matching the features extracted by different

frames between them

• Estimation of camera motion

• By buildind the 3D scene using the estimated motion and features

1 image by http://www.cad.zju.edu.cn/home/gfzhang/training/SFM/SfM.html

http://www.cad.zju.edu.cn/home/gfzhang/training/SFM/SfM.html
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3.1.1 Features and matching

Different features were proposed for SFM task. One of the most used features is

the scale invariant feature transform (SIFT) [64], which has been extensively used

in many of the SFM methods based on corresponding point. The SIFT features,

based on local gradient histograms, result to be well performing for SMF methods

because of their invariant to scaling and rotation, and their robustness as it regards

illumination changes. To obtain a more compact representation in [65] PCA-SIFT

features were proposed, obtained by applying principal component analysis (PCA)

to the image gradients. Others features largely used in SFM algorithms are Speeded-

Up Robust Features (SURF) as proposed in [66]. These features are invariant respect

to scale and rotation as well and they require less computational cost for extraction

compared with SIFT features. The features matching is generally performed by

considering similar descriptors to be more likely matches. In many cases match

correctly the features extracted by different images is a very hard task. For instance

the presence in the 3D space of different objects that look similar can produce

incorrect match of unrelated features and consequently major errors in camera pose

estimation and 3D reconstruction. To face with ambiguity problem during features

matching, different disambiguation approaches were proposed. In [67] the incorrect

features matches are identified by means of relations induced by pairwise geometric

transformations. Differently, in [68] disambiguation is performed by optimizing a

measure of missing image projections of potential 3D structures.

3.1.2 Camera pose estimation

The first works, which investigate the theoretical opportunity to estimate camera

pose using matching points, are of the early twentieth century. In [69] was proved

for the first time that given two images, both framing at least the same five distinct

3D points, is possible to recover the positions of the points in the 3D space and

at the same time the relative positions and orientations between the cameras up

to a scale value. After many years by this first work, in [70] was showed that it’s

possible to estimate essential matrix of two cameras starting from eight different

points correspondents just solving a linear equation. They also showed that, by

mean of the decomposition of the essential matrix, is possible to obtain the relative
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cameras orientations and positions. The basic idea for the position and orientation

camera estimation is levering on the epipolar constraints Eq. 3.1 imposed by the

points matching by using the pinhole camera model (Figure 3.2).

pT
i

(
[RT

i (tj − ti)]×R
T
i Rj

)
pj =: pT

i Eijpj = 0 (3.1)

where pi and pj are the representation of the 3D point P respectively on the

image planes i and j. ti and tj are the locations and Ri and Rj the orientation

matrices respectively of the i’th and j’th camera and Eij ∈ R3×3 is the essential

matrix

Figure 3.2: Pinhole camera model2

It’s easy to observe that fixing a scale for the entries of Eij (e.g. ∥Eij∥ = 1) the

9 different elements of the essential matrix can be determined just imposing eight

points matches and consequently eight epipolar constraints.

3.1.3 3D structure estimation

The methods for 3D points estimation are classically based on triangulation (Fig-

ure 3.3). Given the projection matrices of different cameras is theoretically possible

2image by [73]
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to compute the exact 3D points position in the scene from their positions in images

acquired by two or more views. Because of the noise, the back-projected rays, start-

ing by the different centres of projection of cameras, are not generally intersected

each other.

Figure 3.3: Graphical representation of triangulation procedure 3

To find a good approximation of the 3D points locations, several methods try to

minimize an appropriate error metric. Given a 3D point, the standard reconstruction

algorithm identifies the 3D coordinate of the point as those that minimize the sum

of squared errors between the measured pixels positions associated to the 3D point

in two or more images, and the theoretical pixels positions associated to the 3D

3image by [74]
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point, on the same images, computed by mean of projections Eq.3.2

P = argmin
P

∑
i=1

∥pi − p̂i(P )∥2 (3.2)

Where P is the predicted 3D point, pi is the measured pixel position associated to

3D point in the i’th image and p̂i(P ) is the predicted pixel position for the same view

(Figure 3.4). If the pixels positions noise is Gaussian-distributed this optimization

give the maximum likelihood solution for P.

Figure 3.4: Graphical representation of minimization of the squared errors sum between
measured and predicted pixel positions during triangulation

To face with SFM problem for an arbitrary number of view, two different ap-

proaches types were proposed: the sequential and the factorization algorithms. The

sequential approaches are those working adding a different view one at time to the

scene. These algorithms typically produce a scene initialization by computing cam-

era orientation and 3D points cloud for the first two views. For any other image
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added to the scene a partial reconstruction is performed, by computing the positions

of 3D points through triangulation. Different approaches were used to register new

views to the scene, some of them levering on the two-view epipolar geometry to esti-

mate position and orientation of the new camera starting by those of its predecessor.

Other methods use the 3D-2D correspondents between the already reconstructed 3D

points and the features extracted from the new image to determine its pose. In fact,

it is possible to prove that through only 6 3D-2D matches the camera pose can be

determinate. Other sequential SFM algorithms work by merging partial reconstruc-

tions related to different subset of views by using 3D points correspondents.

Differently from sequential approaches, factorization methods work computing 3D

points cloud and cameras poses by using all the images simultaneously. This family

of methods, introduced in [71], is generally based on direct SVD factorization of a

measurement matrix composed by the measurements of the 3D points by the dif-

ferent cameras. These algorithms, compared to sequential methods, achieve a more

evenly distributed reconstruction error across all measurements, but they fail for

some structure and motion configuration.

Obtained a initial estimation of 3D points and of cameras poses a refinement pro-

cess of these estimations are usually conducted using bundle adjustment techniques.

Bundle adjustment works with an iterative non linear optimization to minimize a

cost function related to a weighted sum of squared re-projection errors.

Bundle adjustment procedures try to determine an optimal set of parameters δ not

directly measurable (cameras projection matrices, 3D points coordinates) for a set

of noisy observations (e.g. pixel position associated to 3D points). Given a set of

measurements Mi and the set of δ-dependent associated estimations, the features

prediction errors Mi(δ) are defined as:

∆Mi(δ) =: Mi −Mi(δ) (3.3)

Bundle adjustment produces a minimization of a cost function depending of the

likelihood of the features prediction errors. Assuming a Gaussian-distribution of the

noise associated with the measurements, a typical appropriate cost function is:

f(δ) =
1

2

∑
i

∆Mi(δ)
TWiMi(δ) (3.4)
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where Wi is the matrix that approximate the inverse covariance matrix of the

noise associated with the measurement Mi. To optimize the cost function during

bundle adjustment procedure several optimization methods were used and three

main categories were strongly investigated during the years:

• the second-order Newton-style methods

• first order methods

• the sequential methods incorporating a series of observations one-by-one

A deep analysis of these methods was proposed in [72].

3.1.4 SAMANTHA

In this section we will describe the SFM algorithm [17, 16] used to obtain poses

labels for the images of our dataset. This algorithm is based on a reconstruction

process levering on a binary tree built through a hierarchical cluster of the images

set. Each image corresponds to a leaf of the tree while the internal nodes are as-

sociated to a partial reconstruction of the model obtained by merging the partial

models associated to the two sub-nodes. The first step of SAMANTHA algorithm

is to perform the extraction of features based on difference of Gaussian with radial

descriptor. The features matching is performed using nearest neighbour approach

and different heuristics are sequentially implemented to maintain only the more sig-

nificant matches. Given the features matching, an image affinity measure is used, in

agglomerative clustering algorithm, to build the hierarchical cluster tree. The im-

age affinity measure used takes in account the number of features matching between

images and how much the features are spread in the images. With a bottom-up

procedure the agglomerative clustering algorithm, starting from clusters formed by

single images, merge iteratively the clusters with the smallest cardinality (sum of

the views belonging to the two clusters) among the n closest pairs of clusters. The

simple linkage rule is used to measure the distance between the different clusters.

By exploiting the cardinality of the clusters during agglomerative clustering pro-

cedure, the algorithm is able to produce a more balancing hierarchical cluster tree

(Figure 3.5) and consequently a reduction of time complexity [16].

4image by [16]
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Figure 3.5: Example of hierarchical cluster tree produced merging the closest clusters
using simple linkage role (left) and the more balanced tree obtained merging the clusters
with the smallest cardinality among the n closest pairs 4

Computed this hierarchical organization of the images the scene reconstruction

is implemented. During this process three different operations are involved: the two

views reconstruction ( to merge two different views), a resection-intersection step to

add a single view to the model and the fusion of two partial models (Figure 3.6).

Figure 3.6: Example of hierarchical cluster tree in which on each internal node is associated
the relative reconstruction operation. The circle corresponds to the creation of a stereo-
model, the triangle corresponds to a resection-intersection, the diamond corresponds to a
fusion of two partial independent models. 5

5image by [25]
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3.2 Support Vector Regression

The Support Vector Regression is a generalization of Support Vector Machine for

regression task. Suppose to have a training set (x1, y1), (x2, y2), ....(xn, yn), with

xi ∈ X where X denotes the space of the input patterns and yi ∈ R, the Support

Vector Regression method try to find a function f(x) that have at most a distance

ϵ from all the target yi and is as flat as possible. This method therefore do not

care about errors smaller than ϵ and optimize the parameters of f(x) considering

the prediction error bigger than ϵ. In this algorithm a central role is played by the

choice of f(x) function (e.g. linear, Polynomial). By using a linear function Eq.3.5

f(x) = ⟨w, x⟩+ b (3.5)

with w ∈ X and b ∈ R is possible to write the regression problem as the minimization

problem of the Soft Margin Loss functon Eq.3.6 [63]

minimize
1

2
∥w∥2 + C

n∑
1

(δi + δ∗i ) (3.6)

subject to the follow constraints:

yi − ⟨w, xi⟩ − b 6 ϵ+ δi

⟨w, xi⟩+ b− yi 6 ϵ+ δ∗i

δi, δ
∗
i > 0

(3.7)

where δi and δ∗i are variables that represent how much the target i is far from the

area around the regression function, identified by the margin ϵ (Figure 3.7). The

variables aforementioned are defined as follows:

δϵ :=

{
0 if δ 6 ϵ

∥δ − ϵ∥ otherwise
(3.8)

where δ =∥yi − f(xi)∥, δi = δϵ if yi > f(xi) and δ∗i = δϵ otherwise.

The constant C > 0 in 3.6, fixes a trade-off between the flatness of f and the amount

of tolerated deviations larger than ϵ.
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𝒊
∗

Figure 3.7: Soft margin loss for linear SVR

The minimization problem 3.6 can be solved using its dual formulation obtained

through the Lagrangian function L:

L :=
1

2
∥w∥2 + C

n∑
i=1

(δi + δ∗i )−
n∑

i=1

(ηiδi + η∗i δ
∗
i )+

−
n∑

i=1

αi(ϵ+ δi − yi + ⟨w, xi⟩+ b)+

−
n∑

i=1

α∗
i (ϵ+ δ∗i + yi − ⟨w, xi⟩ − b)

(3.9)
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where the Lagrange multipliers αi, α
∗
i , ηi and η∗i have to satisfy the follow con-

straint:

αi, α
∗
i , ηi, η

∗
i > 0 (3.10)

Imposing equal to zero the partial derivatives of L, with respect to the primal

variables (w, b,....), it’s possible rewrite the equation 3.9 as the follow dual optimiza-

tion problem:

maximize

⎧⎪⎪⎨⎪⎪⎩
−1

2

n∑
i,j=1

(αi − α∗
i )(αj − α∗

j )⟨xi, xj⟩

−ϵ
n∑

i=1

(αi + α∗
i ) +

n∑
i=1

yi(αi + α∗
i )

(3.11)

subjected to:

n∑
i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C] (3.12)

by levering the conditions imposed on partial derivatives the function f(x) can

be expressed as follow:

f(x) =
n∑

i=1

(αi − α∗
i )⟨xi, x⟩+ b (3.13)

This formulation allows to evaluate f(x) in terms of dot products between the

data without compute explicitly w. Different optimization methods can be used

to compute the b variable (e.g. using KKT conditions, interior point optimization

method).

The typical approach to make SVR algorithm able to regress a non linear function

consist to map the input onto a m-dimensional features space, by using some fixed

(non linear) mapping, and then by applying the standard SVR algorithm to build

a linear model in this feature space. Fixed a mapping function γ and defined the

Kernel function K as dot product in the mapping space:

K(x, xi) = ⟨γ(xi), γ(x)⟩ (3.14)
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the linear regressive function in the feature space can be expressed as folow:

f(x) =
n∑

i=1

(αi − α∗
i )K(xi, x) + b (3.15)

Some of the kernel functions most commonly used are the Polynomial function

Eq.3.16 and the Radial basis function Eq.3.17

K(x, xi) = (⟨γ(x), γ(xi)⟩+ C)d (3.16)

K(x, xi) = exp

(
− ∥x− xi∥2

2σ2

)
(3.17)

Where d is the degree of the polynomial while σ is a free parameter.

As can be observed in Figure 3.8 the ability of SVR algorithm to perform a good

regression strongly depend on the kernel function used.

Figure 3.8: Sample of SVR regression curve obtained with different kernel on toy 1D data.6

6image by http://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.

html

http://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
http://scikit-learn.org/stable/auto_examples/svm/plot_svm_regression.html
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3.3 K-NN regression

K nearest neighbours is a simple and classical algorithm for the variable’s regression.

Given a query example and fixed a value of K, the basic idea of K-NN approach is

to associate to the query example the average of the K nearest neighbours examples

in the representation space. The average can be weighted with a multiplicative

factor inversely proportional to the distance between query example and neighbours

in the representation space. The choice of the distance used and of the K value

have a central role for the algorithm performance. Classically, euclidean, cosine or

Manhattan distances have been largely used for K-NN approach. The K value choice

is frequently done through cross validation approach.

3.4 Improved Fisher Vector

Fisher Vector [19] is a global image descriptor obtained by pooling local image

features. It works capturing the average of the differences, of first and second order,

between the images descriptors and the centres of the Gaussian Mixed Model (GMM)

that fits the distribution of the descriptors of the whole dataset. This representation

was strongly used for image classification task. The procedure to build a Fisher

Vector representation consist of different phases:

• extract a set of descriptors x⃗1,...,x⃗N (e.g. sift) from each image

• learn a GMM fitting the distribution of the descriptors

• compute a soft assignments of each descriptor xi to the K Gaussian compo-

nents given by the posterior probability:

qik =
exp[−1/2(x⃗i − µ⃗k)

T
∑−1

k (x⃗i − µ⃗k)]
K∑
1

exp[−1/2(x⃗i − µ⃗k)T
∑−1

k (x⃗i − µ⃗k)]

(3.18)
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• given the set of descriptors x1,...,xN of an image, for each k=1,...,K, compute

the mean and variance deviation vectors

ujk =
1

N
√
πk

N∑
i=1

qik
xji − µj,i

δjk
(3.19)

vjk =
1

N
√
2πk

N∑
i=1

qik

[(
xji − µj,i

δjk

)2

− 1

]
(3.20)

• build Fisher vector for the query image as concatenation of uk and vk for all

GMM components:

FV = [u⃗1, v⃗1, ..., u⃗k, v⃗k] (3.21)

The Improved Fisher Vector add other two components to classical Fisher Vector:

the use Helling’s kernel (or other non-linear additive kernel) and the normalization

of the Fiher Vector through the l2 norm. A modified version of Improved Fisher

Vector is the spatially enhanced Improved Fisher Vector, it is obtained appending

to the local descriptors x⃗i their normalised spatial coordinates (wi, hi) in the image

before the quantization with the GMM as show below:

x⃗SE
i =

[
x⃗T
i ,

wi

W
− 0.5,

hi

H
− 0.5

]T
(3.22)

where W ×H are the dimensions of the image.

3.5 Siamese and Triplet networks

In the last years Siamese and Triplet architecture was used in computer vision for

different tasks as classification or 3D object pose estimation. A Siamese network

consist of two networks, sharing the same weights, that are trained with couple of

images labelled as similar or dissimilar. This type of network (Figure 3.9) can be

trained with contrastive loss Eq.3.23 on embedding space with the aim to minimize
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Figure 3.9: Typical siamese network architecture using contrastive loss

distance between similar samples and maximize distance between dissimilar images

in the representation space.

Contrastive Loss() = 1/2 ∗ δ(yi, yj) ∗ (∥Net(xi)−Net(xj)∥2)+

+1/2 ∗ (1− δ(yi, yj)) ∗ (∥Net(xi)−Net(xj)∥2)
(3.23)

Where δ(.) denotes the Dirac delta function, yi and yj are the labels associated

to the frame xi and xj, Net(x) is the embedding representation space produced by

the network for the image x. Another typical loss function used to train Siamese

network is the pairwise similarity loss:

Pairwise Similarity Loss() = δ(yi, yj) ∗ (1/k +Net(xi, xj))+

+(1− δ(yi, yj)) ∗Net(xi, xj)
(3.24)

where Net(xi, xj) is the pairwise similarity score of the network (Figure 3.10).
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Figure 3.10: Typical siamese network architecture using pairwise similarity loss

The Siamese networks has been extended as triplet networks formed by 3 in-

stances of the same feedforward network with shared parameters (Figure 3.11). This

architecture during training take 3 input images, an anchor image denoted with x, a

positive sample similar to the anchor sample denoted with x+ and a negative sam-

ple dissimilar to the anchor sample denoted with x−. When fed with the samples,

the network outputs the distances between anchor sample representation and the

representations of positive and negative samples in the embedding space.

This architecture is typically trained to separate similar samples by dissimilar

in embedding space of a margin m (Figure 3.12) using the following Triplet loss

Eq.3.25:

TripletLoss() = max(d(Net(x+), Net(x))− d(Net(x−), Net(x)) +m, 0) (3.25)

where d is a distance defined in embedding space.

Typically, Triple and Siamese networks include a large number of parameters and,
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Figure 3.11: Typical siamese network architecture using pairwise similarity loss

by using typical Siamese and Triplet losses, most of the pairs or triplets samples

produce a small or non-existent networks weights update during the training. Due

to these two undesirable characteristics a huge number of pairs or triplets of sam-

ples must be processed to obtain a robust model. Moreover, sampling all possible

pairs or triplets, as the size of the training dataset increases, can quickly become

intractable and produce very slow convergence of the models. To face with this

sampling problem, different heuristics was proposed in the last years. Some works

prose a smart sampling strategy [59], by selecting pairs or triplet samples to avoid

the useless samples for the training and to focus on the samples that show the most

contradictory representations. Other works attach the problem by proposing global

loss function to train the network [60] .
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Figure 3.12: Graphical representation of how Triplet loss works in embedding space
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Chapter 4

EgoCart dataset

In this section we introduce a large-scale indoor dataset of geo-localized images in

grocery context proposed to address the shopping cart localization problem through

egocentric images. Usually to build an accurate dataset for camera localization task,

using only cameras, is necessary to acquire a huge quantity of images (normally

through the acquisition of continuous videos) and, using SFM algorithms, infer

at the same time a 3D model and image poses [11]. The images are in this way

labelled with 6-DOF camera poses using 3D coordinates for the positions labelling

and quaternions, Euler angles or other angular representation [58] for the camera

orientations. In accordance with [13], we observe how this procedure become very

difficult to apply in the context we are analysing, due to two principal reasons:

• The presence of repetitive structure elements (e.g, shelves, products, doors,

check-out) that tend to create ambiguity.

• The big dimension of the environment that implies the need of a big number

of images, and consequently a high computational cost, to build an accurate

3d model and an accurate poses estimation.

The datasets proposed for camera localization in indoor context are mostly re-

lated to small space with extension of a single room and only few dataset was

proposed for camera localization in large scale indoor environments. For the com-

plexity to apply standard procedure to build this type of dataset in large scale indoor

environments, some time other sensors were used to simplify the dataset collection.

In [13], for instance, the dataset was collected using a system composed by six high

resolution cameras and three laser range finders.
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To address the hard task of build a dataset for camera localization in our setting

and to maintain a lower computational cost, we perform SFM algorithms on subset of

images, extracted from the different videos, by building different 3D models related

to parts of the store partially overlapping between them and with some images

present in more than on subsets of the whole dataset. By taking advantage of the

presence of the same images placed in the different 3D models we register them

together in order to have an overall 3D model and all the frames in placed in the

same reference system. The proposed dataset collects RGB images and the depth

images associated (Figure 4.1) extracted from nine different videos acquired with the

left cameras of two zed-cameras 1 mounted on a shopping cart. The depth images

have been computed using the zed camera API. The cameras was positioned with

focal axis parallel between them and to the store floor looking toward the travel

direction of shopping cart (Figure 4.2).

The video frames were extracted with a frame rate of 3 fps and the SFM algo-

rithm to estimate the camera position and orientation was performed using using

SAMANTHA algorithm implemented on 3D ZEPHIR software [17, 16]. The dataset

was collected in a store with extension of 782 m2 during closing time. The dataset

is formed by 19, 531 couples of RGB images and depth images divided in train and

test set. These two set are obtained selecting images extracted from six videos for

training set (13, 360 frames) and images from the remaining three videos for test set

(6, 171 frames). Both training and test set contain images covering the entire store.

Moreover the dataset was divided in 16 different classes each of them is related to

a specific part of the store (e.g. corridors, fruit area) (Figure 4.4). The images

was therefore labelled with their pose coordinate and with the id of belonging class.

Figure 4.3 shows confounding pairs of images for pose regression task, couples of

frames with high visual similarity and very dissimilar position and/or orientation

and images acquired in the same position but with low visual similarity due to the

different orientation of the cameras, that characterize the proposed dataset.

4.0.1 3-DOF labels

Due to the acquisition setting (cameras fixed to the shopping cart with focal axis

with direction and verse concordant with shopping cart displacement vector) the

1http://www.stereolabs.com
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Figure 4.1: Samples of RGB images and depth images associated of our dataset

camera poses of the proposed dataset are limited to have 3 degrees of freedom. Two

identifying the position and one identifying the orientation on a 2D plane parallel

to the floor of the store. Applying the Principal Component Analysis (PCA) on 3D
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Figure 4.2: The hardware setup employed to collect the dataset using shopping carts

Figure 4.3: Confounding couples of frames for pose regression task: A) and H) images
that frame the same shelf at different scale, B) and G) frames in the same corridor with
opposite direction, C) and F) frames with same position but different orientation, D)
and E) images, with different positions, frame similar structure, L) and I) images of two
different corridors with high visual similarity
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positions, obtained through SFM algorithm, of the images of our dataset is possible

to observe that more than the 99.99% of the whole variance appertain to the first

two principal components. These two components represent a reference system for

the plane in witch the cameras moved during the acquisitions. By projecting all the

3D coordinates and the orientation vectors on these two component we obtain a 2D

representation of the poses of the images of our dataset. In Figure 4.4 are showed

the 2D coordinate of the images in the store. We take in consideration this 2D

representation of our data considering it the most pertinent given the application

domain characteristics. Specifically, we represent the shopping cart poses through

two 2D vectors, one representing the position p = (x, y) and the other, with unitary

length, representing orientation o = (u, v) of the cart. We represent the direction

of the shopping cart with a 2D unitary vector rather than with a more compact

scalar values, by expressing the angle in radians or degree, to preserve the increas-

ing monotony of the relation between the distance between 2 different orientations

and numerical distance between their representations. By using, for instance, scalar

representation that express the angle in degree in the interval [-180,180], between

a fixed vector and the direction vector of the shopping cart, we would have repre-

sent faraway between them two cameras with similar direction if their labelling are

respectively near to the maximum and the minimum of the representation range

(e.g. the directions corresponding to -179◦ and 179◦ differ between them by only

2◦ but the distance between their representation is of 364◦) and more near two

cameras with directions less similar (e.g the directions corresponding to -90◦ and

90◦ are 180◦ distant and their representation distance is also of 180◦). Our choice

of directions representation was therefore guided to avoid this counter-productive

characterization.

4.0.2 Classification labels

In the stores, that are typically organized in department, also a rough localization

of the cart could be very useful to analyse how the costumers move between the

different departments. This type of analysis could have a central role to reorganize

departments location in costumer-friendly manner. To analyse the image-based

place recognition task in grocery context, we partitioned the store surface in 16

different convex areas and divided the dataset in 16 different classes each one gather
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all the images of a specific area. Fourteen of the classes are associated with the same

amount of corridors, one is related to an open space and the last one is associated

to a marginal area of the store composed by some shortest corridors. In Figure 4.4

a graphical representation of dataset subdivision is reported.

4.0.3 Error analysis

To have a qualitative reference point to evaluate the performances of the image-

retrieval based methods that we benchmark for our dataset we compute the mini-

mum error achievable with an image-retrieval approach for localization task on the

proposed dataset. To compute the minimum error at each frame of the test set we

associate the training set image nearest in the position-orientation 3D space. Due

to the different measure units, meters for the 2D subspace associated with position

and degrees for the 1D subspace associated with orientation, the identification of

the nearest frame of the training set to a query image is possible only fixed an equiv-

alence between a distance in the position space and a distance in the orientation

space (e.g. 1m is equivalent to 10◦ ). We fixed implicitly this equivalence using as

metric a weighed sum of the two distances. Given two 3-DOF poses pi and pj, we

define the following parametric distance measure:

d(pi, pj;α) = α · dp(pi, pj) + (1− α) · do(pi, pj) (4.1)

where dp(pi, pj) represents the Euclidean distance between the positions of the poses

pi and pj, do(pi, pj) represents the angular distance between the orientations of the

poses pi and pj, and α is a parameter that define the weights associated with posi-

tion and orientation distances. By choosing a specific value for α, we determinate

a particular weights for the two distances summed in and consequently a specific

equivalence between the distances in position space and the distances in orientation

space and, fixed it, a well determined proximity measure between cameras. Fixed

α and given a test image si with ground truth pose pi, optimal nearest neighbour

search is realize associating to si the training sj with pose pj such that d(pi, pj;α)

is minimized. To measure the minimum errors achievable with image-retrieval ap-

proach we compute the error on position and orientation separately for α varying

between 0 and 1.
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Figure 4.4: Training set divided in classes. The 2D locations of the cameras are plotted,
images belong to the same class are plotted with the same colour
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Mean Median

α P.E.(m) O.E.(◦) P.E.(m) O.E.(◦)

0 9.89 0.54 9.00 0.31

0.1 0.32 1.73 0.27 1.34

0.2 0.25 2.48 0.21 1.87

0.3 0.21 3.20 0.18 2.35

0.4 0.18 4.03 0.16 2.84

0.5 0.16 4.99 0.14 3.44

0.6 0.14 6.31 0.12 4.22

0.7 0.12 7.98 0.11 5.28

0.8 0.11 10.47 0.10 6.63

0.9 0.09 17.31 0.08 10.08

1 0.05 90.45 0.04 90.47

Table 4.1: Mean and median position and orientation lower-bound errors obtained with
optimal nearest neighbour search.

Table 4.1 reports the mean and median values of the Position Errors (P.E.)

and of the Orientation Errors (O.E.) computed over the whole test set varying α

on the parametric-distance defined above. For α = 0 the weigh associated with

position distance is 0 and the one associated with orientation distance is equal to

1 consequently the search of the nearest frame of the training set for each test

image is determined exclusively only through the orientation. For this α value, we

obtain a largest lower-bound position error of 9.89m and a smallest orientation error

of 0.54◦. As the value of α increases the position distance becoming increasingly

important in determining which of the training images is the closest to a query

image and therefore the lower-bound position errors decrease and differently the

lower-bound orientation errors increase their values until, for α = 1, we obtain the

larger mean orientation errors (up to 90.45◦) and lower mean position errors (up to

0.05 m). The lower bound errors for image-retrieval based approaches proposed in

Table 4.1 represent the best performances obtainable by these methods when a given

equivalence between position distances and orientation distances is chosen. In an

analysis in witch a desirable trade-off between position error and orientation error

is not a priori fixed a method is considerable good if his mean and median errors
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are close to the values reported in someone of the rows of the Table 4.1.
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Chapter 5

Methods

To face with egocentric image base shopping cart localization problem we analyse

performances of two different type of approaches: classification based methods and

methods for the 3 DOF camera pose estimation. The classification based approaches

are less accurate trying to associate each test image to one of the sixteen parts of

the market discussed in the previous section. The approaches that try to regress

the 3 DOF of the camera are divided in two different sub-families: image retrieval

based methods and regression based methods. This chapter presents the investigated

methods and is organized as follows: in the first three sections are discussed methods

based on RGB images only, the first one presents the image retrieval approach, the

second one concerns the regression based methods while the third section is related

to the methods for classification task, in the forth section are showed the methods

that use depth images and in the last one the experimental setting are reported.

5.1 Image retrieval methods

The image-retrieval approaches are the more classical methods for the camera local-

ization problem and for same applicative context they could be the more appropri-

ate approaches despite their undesirable characteristic to require a memory quantity

growing linearly with training set dimension. As image-retrieval based method we

test k-nn approach on different features spaces varying k between 1 and 30. To

perform nearest neighbour search we use euclidean distance and cosine distance in

all the different spaces, moreover we also use Pearson correlation coefficient to de-

fine the vicinity on RGB linearised vectors space. We investigate different space

typologies, the first space analysed was the space obtained by linearisation of RGB



Chapter 5. Methods 40

images, afterwards we focus on the Improved Fisher Vector and on the spatially en-

hanced Improved Fisher Vector shallow representations. Finally features extracted

from CNN layers trained on classification or regression task on our dataset or on

different datasets were investigated. To test transfer learning ability we used the

features-vector formed by 4096 elements extracted from the fc7 layer of the VGG16

network and the 2048-dimensional features-vector extracted from the mixed-7c layer

of inception-V3 both trained on the ImageNet dataset [18]. Both these two represen-

tation spaces were modified, to confront with localization task, fine-tuning the two

models through triplet architecture [30]. The similarity concept between images,

needed for triplet training, was defined by considering similar two images if their

spacial distance is less than 30cm and the orientation distance is smaller than 45◦

and dissimilar if at least one of these two conditions are not verified. Furthermore, to

investigate the intermediate representation produced by training end to end CNNs

to regress directly by images the 3 D.O.F. of camera poses we use two different

architectures. We extract internal representations obtained from a 2D version of

POSENET [11](obtained reducing the output space of the network) trained on our

dataset with the parameter α = 125 and from a modified version of POSENET

derived from Inception-V3 architecture (INCEPTION-V3 POSENET) trained with

the NPP loss function showed in Eq. 5.2 and proposed in [12]. We will discuss

deeply these architectures in the next section. Finally, we conducted experiments to

evaluate the increasing of performances obtainable by imposing temporal constraint

to K-nn approach. To impose the temporal constraint we took in consideration the

sequentiality of the frames extracted from the different videos. The pose of the first

frame of each video was regressed with the classical K-nn procedure while for the

successive frames we implemented the nearest neighbour search on a subspace of

the market space as described by the follow heuristic. Given the fi frame of a video

we conduct nearest neighbour search on the subset of training set composed by the

frames placed on a neighbourhood of the position pi−1 associated to fi−1 frame of

the video. We test this heuristic for different neighbourhood sizes observing the drift

effect for too small sizes and the irrelevance of the heuristic for too big sizes. We

find an approximation of optimal value for neighbourhood size by fixing a radius of

4m.
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5.2 Regression based methods

The methods for camera localization based on regression are characterized by very

valuable properties, they don’t need to maintain the wall training set in memory

and consequently are generally more compact, moreover some of them allow also

fast inference. To investigate the performance of CNN-based methods we adapt

POSENET architecture [11] to our 3 DOF camera pose estimation problem by

modifying the architecture to produce a 2D vector corresponding to cart position

and a 2D unit vector for orientation. We train the architecture using the follow

parametric loss function (PP loss) proposed in [11]:

PP loss = d(PGT
i , P PR

i ) + αd(OGT
i , OPR

i ) (5.1)

Where d is the euclidean distance PGT
i and OGT

i are respectively the ground

truth position and orientation vector of the frame i, P PR
i and OPR

i are the position

and orientation vector predicted by the network while α is a parameter to weight

orientation error in relation to position error. We test this architecture varying

the α parameter between the following values {500, 250, 125, 62.5} to search the

best trade-off between position error and orientation error in the loss function. For

α = 125 we obtain the best performance for this network so in our analysis we

will refer to this parametric value. Moreover we built an alternative version of

POSENET architecture based on Inception-V3 architecture. The INCEPTION-V3

POSENET architecture was obtained replacing, in the Inception-V3 architecture

[61], the final classification layer with two fully connected layers. Is possible to

think this architecture as composed by two different parts with two different roles:

the first part that take as input the images and bring it in a representation space

and the second part, formed by the two fully connected layers, that has the role to

regress the cameras poses from the representation space produced by the first part of

the network. The INCEPTION-V3 POSENET architecture has been trained using

the following No Parametric Loss function (NPP loss) Eq. 5.2 proposed in [12] that

automatically try to compute the optimal trade-off between the position and the

orientation losses:

NPP loss = e−Spd(PGT
i , P PR

i ) + Sp + e−Sod(OGT
i , OPR

i ) + So (5.2)
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Where Sp and So are two weights added to the network to automatically learn an

optimal trade off between the position and orientation error, d is euclidean distance,

PGT
i and OGT

i are the ground truth position and orientation vector of the frame i and

P PR
i and OPR

i are the position and orientation predicted by the network. By using

this loss we don’t need to define any hyper-parameter α. To investigate if through

multi task learning is possible to achieve best performance on localization task we

train INCEPTION-V3 POSENET with a loss function obtained as sum of the NPP

Loss function for the 3 DOF camera prediction Eq.5.2 and a cross entropy loss for

classification task on the sixteen classes defined on our dataset. Furthermore we

conducted experiments to analyse the relation between the characterization of the

internal representation produced by the first part of INCEPTTION-V3 POSENET

and the ability to regress the cameras 3 D.O.F of the network. We test if by forcing

the INCEPTTION-V3 POSENET to represent near to each other images acquired

by cameras close between them, in terms of position and orientation, and faraway

the images far from each other the precision of the cameras poses regression could

be improved. To investigate this opportunity we test two different strategy:

1. We implement a classical triplet network [30] with three additional regres-

sive parts that take as input the three embedding representation of the triplet

network (named ”INCEPTION-V3 POSENTET REGRESSION AND CLAS-

SIFICATION”) (Figure 5.1). The network was trained using a loss obtained

summing the Triplet loss function Eq.5.3 proposed in [30] that work on em-

bedding space and the NPP loss for camera pose estimation presented above

Eq.5.2.

2. We pretrain the not regressive part of inception-V3 POSENET network with

triplet architecture using the similarity between images defined in the previous

section and, starting by the weights determined through triplet training, we

fine-tune the whole inception-V3 network with the NPP loss for camera pose

estimation Eq.5.2.

Triplet Loss(d+, d−) = ∥(d+, d−1)∥22 (5.3)

where

d+ =
e∥Net(x)−Net(x+)∥2

e∥Net(x)−Net(x+)∥2 + e∥Net(x)−Net(x−)∥2
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and

d− =
e∥Net(x)−Net(x−)∥2

e∥Net(x)−Net(x+)∥2 + e∥Net(x)−Net(x−)∥2
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Figure 5.1: Graphical representation of INCEPTION-V3 POSENTET REGRESSION
AND CLASSIFICATION architecture

To test if with CNN-based methods, by learning singularly position and orien-

tation, it’s possible to reach best results we conduct two experiments. We train

INCEPTION-V3 POSENET, modified to produce a 2D vector output, by using as

loss functions respectively the euclidean distance only between positions and only be-

tween the orientation vectors. Furthermore we perform experiments to analyse if by

reducing the constraints imposed to prediction it’s possible to improve performance

of CNN-based approaches on position estimation. We train the INCEPTION-V3

POSENET architecture version for position prediction only to learn arbitrary posi-

tions such that the distances of the different pairs of images is preserved. To this

aim we propose the following loss function:

Distances Loss =
k−1∑
i=1

k∑
j=i+1

d(pGT
i , pGT

j )− d(pPR
i , pPR

j ) (5.4)
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Where K is the batch size dimension, pGR
x is the ground truth position of the

x-th frame of the batch and pPR
x is the position predicted by the network for the x-th

frame of the batch and d is the euclidean distance. By a geometrical point of view is

possible, with the appropriate roto-translation transformation, to map the arbitrary

reference system used by the network for positions prediction to the original one.

To perform this mapping we computed the optimal roto-translation transformation

between ground truth positions and predicted positions of the training set images

by using the method based on Singular Value Decomposition (SVE) proposed in

[62]. To observe how the choice of the samples present in each batch can influence

the performances of this method we proposed two experiments that differ from each

other for the strategies used to build the different batches. One experiment was

conducted using a random sampling to form each batch, the other by inserting in

each batch same reference frames and, for each one of these, a related set of frames.

Each set of frames related to a reference frame was composed by selecting half of

the frames randomly between the images that result to be close to the reference

frame in terms of position and orientation (position distance less than 2 m and

orientation distance less than 45◦) and the other half randomly from the whole

training set. When we use this second sampling strategy, we train the network

through a variation of the Distance Loss function proposed in 5.4. In fact the loss

function used in the smart sampling case take in consideration only the distance

between the frames belonging to the same set of images and therefore associated

to the same reference frame. This second approach, that we will name ”SMART

SAMPLING”, try to impose to the network the same consideration to local and

global relation between images to build the regressive model.

To analyse if it’s possible to produce a performances improvement, by partitioning

the market surface in different regions and by regressing the cameras poses separately

for each part of the market, we adopt two different approaches:

1. We trained separately INCEPTION-V3 POSENET for position prediction on

the images of each of the sixteen classes defined on our dataset and measured

the performances of the sixteen models obtained jointly by computing mean

and median errors on the whole dataset.

2. We structured a new neural network architecture FORK INCEPTION-POSENET
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Figure 5.2: Graphical representation of FORK INCEPTION-POSENET architecture

which differs from INCEPTION-POSENET for the regressive part of the net-

work and the loss used with the aim to predict a partition of dataset frames

and at the same time the cameras 3 DOF.

The regressive part of FORK INCEPTION-POSENET is formed by two distinct

branches taking as input the same image representation vector. Each branch regress

a camera pose and the probability of the branch to outperform the other branch in

camera pose prediction for the input image (Figure 5.2).

The network is trained with the following loss:

Fork Loss = NPP Loss(pgt, pbp) + |prbp − 1|+ |prwp| (5.5)

Where NPP Loss is the loss function presented in Eq.5.2, that we used to train

INCEPTION-POSENET, pgt is the camera pose ground truth, pbp is best cam-

era pose predicted, prbp is the probability predicted by the branch that performed

the best camera pose prediction and prwp is the probability predicted by the other

branch. During the training phase, given a frame, the loss function try simultane-

ously to minimize the NPP loss function proposed in Eq.5.2, for the pose predicted
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by the more performing branch, the distance from one of more performing branch

probability prediction and the distance from zero of the less performing branch prob-

ability prediction. During the test phase the probabilities predictions are used to

select the more reliable pose prediction between the two produced by the network.

Finally to investigate if classical regressive approach can be competitive respect

to CNN-based methods we test performance of Support Vector Regressors on two

images representation spaces:

• Representation learned fine-tuning VGG16 model (pretrained on ImageNet)

with Triplet network

• Features space of the cls3 fc1 internal layer of POSENET trained on our

dataset

5.3 Classification methods

To study the performances on place recognition task in grocery context, we use the

sixteen classes previously defined to test classification accuracy by using different

approaches. We tested the performance of modified version of inception-V3, ob-

tained by modifying the classification layer to work on the sixteen classes of our

dataset, pretrained on ImageNet and fine-tuned on our dataset. To test if the more

accurate information about the 3 DOF camera poses can be useful to support clas-

sification task, we analysed the performance on classification task obtained training

the INCEPTION-V3 POSENET REGRESSION AND CLASSIFICATION network

(Figure 5.1). This network was trained with the sum of 3 DOF camera loss pre-

sented in Eq. 5.2 and cross entropy classification loss. Finally, to analyse how

the algorithms, trained to the more constrictive 3 DOF camera estimation task,

perform on the more simple place recognition task, we measured the classification

accuracy by associating at each frame a class in function of position predicted by

INCEPTION-V3 POSENET network.
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5.4 Depth

An other aspect analysed during my studies, was related to the employment of depth

images into camera localization task. We tested methods based on depth images

only and methods that take as input RGB images and depth images together, both

for 3 DOF camera pose estimation task and for classification task .

5.4.1 3 DOF camera pose estimation

By modifying the first convolutional layer of INCEPTION-V3 POSENET pretrained

on ImageNet and adapted to the 16 classes of our dataset, we built an architecture to

camera localization able for work on grayscale depth images (named INCEPTION-

V3 POSENET DEPTH). The first convolutional layer was modified to work on

a single channel, the weights of the one channel convolutional layer was obtained

as mean of the weights of the original three RGB channels convolutional layer.

Moreover we tested the opportunity to improve the performances using a network

that at the same time take in input RGB images and depth images. To do this we

implemented an architecture formed by two branches, one for the RGB images and

one for the depth images which create two separate representation spaces, and a

regressive component formed by two fully connected layers to regress the poses from

the concatenation of the two features space (Figure 5.3). The branches for RGB

images and depth images were obtained removing the two final fully connected

layers from INCEPTION-V3 POSENET and INCEPTION-V3 POSENET DEPTH

respectively.

5.4.2 Classification

To analyse the methods based on depth images for classification task we perform

different experiments. We tested the performances of Inception-V3, pretrained on

imagenet, on depth images as well as on RGB images and depth images together.

To evaluate the classification task on grey scale depth images we replaced the two

final fully connected layers of INCEPTION-V3 POSENET DEPTH with a classifi-

cation layer. To test the use of RGB images and depth images together, we modified

the architecture, based on two braches, implemented to regress poses (Figure 5.3)

by images and depth images, presented in the previous section. The network was
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Figure 5.3: Graphical representation of the network used to regress camera pose from
RGB image and Depth image

modified by substituting the two final fully connected layers with a classification

layer.

An other approach experimented to test the usage of RGB images and depth images

together was the late fusion between the output on inception-v3 and the output of

inception-v3 modified for depth-images. To perform the late fusion test we computed

the mean of the probabilistic output of the two network trained singularly.

5.5 Experimental settings

Improved Fisher Vector was computed using gaussian mixed model with 256 compo-

nents and reducing SIFT descriptor dimensionality to 80 by using PCA as suggested

in [19]. The 2D version of POSENET was trained weighting position errors and ori-

entation errors with different ratios α =500, 250, 125 and 62.5 in the loss function.

The model was optimised using ADAM and with a learning rate of 10−3. The α

hyper-parameter is not required for the methods based on Inception-v3 that uses

the NPP loss function Eq. 5.2. These methods as well as classification methods
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based on Inception-v3 architecture has been optimised using ADAM with a learning

rate of 10−4. The SVR models were trained with RBF and Linear kernels by using a

grid search for parameters optimization. For both the kernels the parameter C was

searched on values spaced evenly on a log scale between 10−3 and 10, whereas for

RBF kernel the parameter γ was searched in the interval between 10−3 and 1. To

estimate the errors for each approach we computed the mean and median distance

of predicted values from camera positions and orientations ground truth.
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Chapter 6

Results

In Table 6.1 we report position and orientation mean and median errors of the

different K-NN approaches proposed.

All the methods based on the K-NN reached for K = 1 the best performances or

performances very near to the best one. Consequently we report in Table 6.1 the

results obtained with this parametrization. At the end of the table, the methods

denoted by ”TC” are those characterized by the temporal constraint. Differently

Table 6.2 shows the results obtained with regression-Based Methods. In both the

tables best results for each column are point out with bold number. A graphical

representation of the same result was proposed in Figure 6.1(a) and (b) with position

error represented on x axis and orientation error on y axis. In Figure 6.1(a) the mean

errors are reported whereas in Figure 6.1(b) there are the median errors. To have a

reference point for performance evaluation we plot in Figure 6.1 also the lower-bound

values, obtained varying α in Eq. 4.1, for image-retrieval approaches.

6.0.1 Retrieval based methods

An analysis of 1-NN approaches shows different interesting elements. As can be

expected the nearest neighbour approach on RGB image linearised space produces

the worst performance: euclidean ad cosine distances result more adapt to preserve

poses distance in this space compared to correlation.

1-NN on Improved Fisher vector features results show very similar performances

for the two metrics analysed (mean errors 1.62 m and 13.87◦ and median errors

0.31 m and 3.25◦ using euclidean distance and mean errors 1.62 m and 13.91◦ and

median errors 0.31 m and 3.25◦ using cosine distance) while 1-NN on Improved

Fisher vector using spatial extended local descriptor performs better by using cosine
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Figure 6.1: Graphical representation of mean (A) and median (B) position and orientation
errors of the different 1-NN based methods.
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Table 6.1: Mean and median position and orientation errors results.

Mean Median

Methods P.E.(m) O.E.(◦) P.E.(m) O.E.(◦)

1-NN RGB (EUC) 2.77 16.5 0.34 2.6

1-NN RGB (COS) 2.70 16.99 0.34 2.6

1-NN RGB (CORRELATION) 2.95 19.98 0.45 2.97

1-NN FISHER (EUC) 1.62 13.87 0.31 3.25

1-NN FISHER (COS) 1.62 13.91 0.31 3.25

1-NN FISHER SE (EUC) 1.63 13.48 0.31 3.32

1-NN FISHER SE (COS) 1.44 12.32 0.3 3.29

1-NN VGG16 (EUC) 0.72 7.32 0.28 3.11

1-NN VGG16 (COS) 0.79 7.86 0.28 3.12

1-NN TRIPLET VGG16 (EUC) 0.55 6.52 0.28 3.17

1-NN TRIPLET VGG16 (COS) 0.59 6.56 0.29 3.18

1-NN INCEPTION-V3(EUC) 0.73 8.06 0.28 3.25

1-NN INCEPTION-V3(COS) 0.69 7.81 0.28 3.23

1-NN TRIPLET INCEPTION-V3(EUC) 0.69 6.47 0.32 2.98

1-NN TRIPLET INCEPTION-V3(COS) 0.69 6.44 0.32 2.99

1-NN POSENET(EUC) 2.17 11.53 1.38 7.07

1-NN POSENET(COS) 2.21 11.66 1.41 7.16

1-NN INCEPTION-V3 POSENET(EUC) 0.71 2.29 0.41 1.53

1-NN INCEPTION-V3 POSENET(COS) 0.74 2.28 0.42 1.47

1-NN TRIPLET TC (EUC)(2m) 4.65 32.31 0.43 5.13

1-NN TRIPLET TC (COS)(2m) 2.33 14.26 0.36 3.88

1-NN VGG16 TC (EUC)(2m) 3.38 27.66 0.39 4.47

1-NN VGG16 TC (COS)(2m) 0.76 10.28 0.29 3.24

1-NN TRIPLET TC (EUC)(4m) 0.44 5.76 0.29 3.2

1-NN TRIPLET TC (COS)(4m) 0.49 5.89 0.29 3.2

1-NN VGG16 TC (EUC)(4m) 0.52 7.09 0.28 3.13

1-NN VGG16 TC (COS)(4m) 0.72 8.78 0.29 3.22

distance compare to euclidean distance (mean errors 1.62 m and 13.48◦ and median

errors 0.31 m and 3.32◦ using euclidean distance and mean errors 1.44 m and 12.32◦

and median errors 0.3 m and 3.11◦ using cosine distance). The results obtained

with CNN features extracted from VGG16 and from Inception-v3, both trained on
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Table 6.2: Mean and median position and orientation errors results.

Mean Median

Methods P.E.(m) O.E.(◦) P.E.(m) O.E.(◦)

SVR TRIPLET (RBF kernel) 1.46 8.04 0.9 4.39

SVR TRIPLET (Linear kernel) 1.45 23.92 1.08 14.66

SVR POSENET (RBF kernel) 1.96 10.1 1.54 6.14

POSENET 1.62 7.52 1.23 4.63

INCEPTION-V3 POSENET (PP loss) 0.99 2.2 0.67 1.08

INCEPTION-V3 POSENET 0.57 1.81 0.39 1.13

INCEPTION-V3 POSENET (pretrained with triplet) 0.55 1.86 0.36 1.11

INCEPTION-V3 TRIPLET-POSENET 0.56 1.35 0.42 1.07

FORK INCEPTION POSENET 0.6 2.08 0.42 1.14

INCEPTION-V3 POSENET DEPTH 0.82 3.1 0.48 1.4

INCEPTION-V3 POSENET IMAGE AND DEPTH 0.62 1.52 0.40 1.14

INCEPTION-V3 POSENET REGRESSION AND CLASSIFICATION 0.66 2.38 0.47 1.32

INCEPTION-V3 POSENET ONLY ORIENTATION - 1.4 - 1.02

INCEPTION-V3 POSENET ONLY POSITION 0.42 - 0.29 -

INCEPTION-V3 POSENET (DISTANCES loss)(SMART sampling) 0.44 - 0.29 -

INCEPTION-V3 POSENET (DISTANCES loss)(RANDOM sampling) 1.10 - 0.81 -

INCEPTION-V3 POSENET ONLY POSITION (on each class) 0.75 - 0.53 -

ImageNet for classification task, either using euclidean or cosine distance, outper-

form significantly the performances obtained with Improved Fisher Vector represen-

tations: the worst results obtained with features extracted from CNN trained on

classification task, obtained using VGG features and cosine distance (mean errors

0.79 m and 7.86◦ and median errors 0.28 m and 3.12◦), are strongly better than the

best results obtained with Improved fisher vector features (mean errors 1.44 m and

12.32◦ and median errors 0.3 m and 3.29◦).

The best performances obtained with CNN features can be explained as it follows:

those features have a higher semantic level compared to the improved fisher vector

features. This is due to the fact that these features are obtained through the use of

classification task.

The results obtained, using euclidean distance, with the features extracted from

VGG16 model and inception-v3 both pre-trained on ImageNet and fine-tuned with

triplet architecture (mean errors 0.55 m and 6.52◦ and median errors 0.28 m and

3.17◦ with VVG16 features and mean errors 0.69 m and 6.47◦ and median errors

0.32 m and 2.98◦ with inception-v3 features) are more performing in term of mean

errors respect to those obtained with the off-the-shelf VGG16 features and inception-

v3 features pre-trained on ImageNet (mean errors 0.72 m and 7.32◦ and median
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errors 0.28 m and 3.11◦ with VVG16 features and mean errors 0.73 m and 8.06◦

and median errors 0.28 m and 3.25◦ with inception-v3 features). Also with cosine

distance this improvement appears evident for VGG16 features (mean errors 0.79 m

and 7.86◦ and median errors 0.28 m and 3.12◦ with VVG16 features and mean er-

rors 0.59 m and 6.56◦ and median errors 0.29 m and 3.18◦ with TRIPLET VVG16

features) while for inception-v3 features the improvement of mean error is only in

orientation prediction (mean errors 0.69 m and 7.81◦ and median errors 0.28 m and

3.23◦ with INCEPTION-V3 features and mean errors 0.69 m and 6.47◦ and median

errors 0.32 m and 2.99◦ with TRIPLET INCEPTION-V3 features).

Experiment conducted using features extracted by model trained on camera re-

localization task on our dataset are strongly dependent by architecture and loss

function used. The 1-NN approach, that uses POSENET features, shows perfor-

mances significantly less accurate respect to those discussed before, both with eu-

clidean distance (mean errors 2.17m and 11.53◦ and median errors 1.38m and 7.07◦)

and cosine distance (mean errors 2.21 m and 11.66◦ and median errors 1.44 m and

7.16◦). Differently, by using features of Inception-v3 POSENET, the 1-NN approach

outperforms all the others 1-NN approaches in term of orientation error (mean error

2.29◦ and median error 1.53◦ with euclidean distance and 2.28◦ and 1.47◦ with cosine

distance) but results less accurate respect to the best methods in term of position

error (mean error 0.71 m and median error 0.41 m using euclidean distance and

0.74 m and 0.42 m with cosine distance) for all the investigated metrics.

As it can be expected, by imposing to the 1-NN a temporal constraint and assum-

ing therefore the opportunity of a sequential localization of frames extracted from

a video, it’s possible to observe an improvement of performances both on VGG16

feature and triplet representation. Fixing the neighbourhood size to 4 m using both

euclidean and cosine distance the method outperforms classical 1-NN on the same

features for the mean errors and an equivalent performance for median errors (reach-

ing a mean position error of 0.52 m and mean orientation error of 7.09◦ for VGG16

features with euclidean distance, a mean position error of 0.72 m and mean orienta-

tion error of 8.78◦ for VGG16 features with cosine distance, a mean position error

of 0.44 m and mean orientation error of 5.76◦ for triplet features with euclidean

distance and a mean position error of 0.49 m and mean orientation error of 5.89◦ for

triplet features with cosine distance). The choice of an appropriate neighbourhood
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size is central for the goodness of this approach. We observe how, by fixing it to

2m, drifting effect can produce very poor results. For instance by using euclidean

distance and working with triplet features we observe a mean errors of 4.65 m and

32.31◦ and median errors of 0.43 m and 5.13◦.

It’s interesting to observe how the improvement obtained imposing temporal con-

straint on VGG16 features it’s comparable to that obtained fine-tuning the model

with triplet architecture without impose any constraint. Furthermore, how it’s possi-

ble to observe in Table 6.2, the effect of temporal constraint on triplet representation

is less significant. These two observations suggest that network fine-tuning obtained

through triplet, as described in section 5.1, is a useful instrument to reduce the

representation ambiguity due to the presence of similar structure in different part

of the store. This ambiguity reduction depends on the ability of triplet network to

create a representation space in which images of nearby locations are mapped close

and images not near are mapped not close one to each other. Finally, it should

be noted that triplet fine-tuning it’s always applicable, while differently the condi-

tions to impose temporal constraint to 1-NN search are not always substantiated,

in particular when low-power devices, working only at a low frame rate, are used.

Moreover the absence of drift effect due to temporal constraint it’s impossible to

guarantee a priori.

6.0.2 Regression based methods

The methods based on regression show very different results depending on regressor

type and for CNN-based methods also on architecture and loss function used. Sup-

port Vector Regressor shows the worst performances between the regressive model

analysed. On the features extracted by VGG fine-tuned with Triplet, both using

RBF kernel (mean position error 1.46 m, mean orientation error 8.04◦, median posi-

tion error 0.9m and median orientation error 4.39◦) and Linear kernel (mean position

error 1.45m, mean orientation error 23.92◦, median position error 1.08m and median

orientation error 14.66◦), the results are very far away from the performance of 1-NN

approach with the same features analysed in the previous section. Also on features

extracted by POSENET architecture trained on our dataset, SVR approach shows

to be inaccurate (mean position error 1.96 m, mean orientation error 10.01◦, median

position error 1.54 m and median orientation error 6.14◦) being outperformed by
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Figure 6.2: Graphical representation of mean (A) and median (B) position and orientation
errors of the different regression based methods.
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POSENET model in all the considered measures (mean position error 1.62 m, mean

orientation error 7.52◦, median position error 1.23 m and median orientation error

4.63◦). The methods based on INCEPTION-v3 model produce significantly better

performances respect to the other regressive approaches. The results obtained by

replacing Googlenet architecture with INCEPTION-V3 in POSENET, maintaining

the PP loss presented in Eq. 5.1 and fixing α = 125 (mean position error 0.99 m,

mean orientation error 2.2◦, median position error 0.67 m and median orientation

error 1.08◦), show how the embedding part of the architecture has a central role

to determine the CNN-based model performance. Using the same architecture but

training it with the loss reported in Eq. 5.2 we observe an other significant reduc-

tion of position error (passing by a mean error of 0.99 m and a median error of

0.67 m with parametric POSENET Loss to a mean error of 0.57 m and a median

error of 0.39 m with the no parametric POSENET Loss). It should be noted that

by pre-training inception-V3 network with triplet, as discussed in section 5.1, and

using this model as embedding model in INCEPTION-v3 POSENET architecture,

there is an increase of position estimation performance respect to the same model

trained by employing inception-v3 pre-trained with ImageNet as initial embedding

model (mean position errors decreases from 0.57 m to 0.55 m, while median position

error decreases from 0.39 m to 0.36 m). Differently the model trained with the loss

composed by a sum between triplet loss and NPP loss, named INCEEPTION-v3

TRIPLET-POSENET outperforms INCEPTION-v3 POSENET in terms of orien-

tation errors (mean orientation errors decreases from 1.81◦ to 1.35◦, while median

orientation error decreases from 1.13◦ to 1.07◦) and prove to be less accurate in

terms of median position errors (0.39m reach by INCEPTION-v3 POSENET and

0.42m by INCEPTION-v3 TRIPLET-POSENET). The experiment conducted with

FORK INCEPTION-V3 POSENET model, presented in the previous section, shows

performances (0.60 m and 2.08◦ mean errors and 0.42 m and 1.14◦ median errors)

less accurate compare to those obtained with INCEPTION POSENET architec-

ture. The partition of the space automatically produced by our architecture looks

like qualitatively subdividing the dataset in two coherent parts. As it is possible

to observe in Fig. 6.3, FORK INCEPTION-V3 POSENET tends to assign to the

same regressor the frames acquired consecutively through the same video when the

camera is moving with a constant direction (e.g. cart is moving in a corridor).



Chapter 6. Results 58

Figure 6.3: Partition produced on test set by FORK INCEPTION-3 POSENET architec-
ture, in blue are coloured the cameras associated to the first regressor of the network in
red those associated to the second regressor

Under these conditions the visual information is strongly related between different

frames. Differently when the cameras turn (e.g. cart is moving by a corridor to an

other perpendicular) the visual informations are quickly change and consequently

also the best regressor that is associated to the query frame can change. Despite the

characteristics aforementioned of space partition are intuitively useful for camera

pose regression task, the worst performance obtained compared to INCEPTION-

POSENET can suggest two possible explanations:

1. The shared embedding space between the two regressors can be suboptimal

for both the regressors;

2. The reduction of samples on which each regressor is trained can reduce the

generalization ability of the two regressors.

The experiment conducted using INCEPTION-V3 POSENET trained with depth

images, as it can be expected, achieves worse results (0.82 m and 3.1◦ mean errors

and 0.48 m and 1.4◦ median errors) compared to the same network trained on RGB
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images (0.57 m and 1.81◦ mean errors and 0.39 m and 1.13◦ median errors). The

principal motivation of this gap could be the regularity of 3D structure of the market

that makes the depth information less useful to disambiguate the different parts of

the store compared to RGB information. Using our CNN model, based on inception-

v3 to perform camera pose regression, which uses RGB images together with depth

images, we observe performances (0.62 m and 1.52◦ mean errors and 0.40 m and

1.14◦ median errors) similar to those observed with INCEPTION-V3 POSENET in

terms of median errors, an increase as regards position mean error and a decrease of

orientation mean error. These results show questionable benefit to introduce depth

informations for regression task.

The CNN model based on loss function, wich join NPP loss Eq.5.2 and classification

loss, shows worse results (0.66 m and 2.38◦ mean errors and 0.47 m and 1.32◦ me-

dian errors) compared to the same model with only regression loss. This comparison

point out that the classification loss prevents weight optimization for regression task.

Moreover the two INCEPTION-V3 POSENET networks, trained respectively only

on the position regression (mean error 0.42 m and median error 0.29 m) and only

on the orientation regression (mean error 1.4◦ and median error 1.02◦), show that

tackling the two problems separately is more effective. If the results related to ori-

entation appear similar to those obtained with TRIPLET POSENET architecture

the performance in position estimation strongly outperforms all other methods in

terms of mean error and is equivalent to those obtained by best methods in median

position error. The appreciable performances obtained by many of the methods

based on INCEPTION-V3 architecture in orientation estimation (less than 2◦ of

mean error) bring us to focus our attention on position prediction.

Testing the INCEPTION-V3 POSENET architecture with Distances Loss Eq.5.4

for position estimation it’s possible to observe that, with the random sampling, the

model is unable to reach performance comparable with those observed with the

NPP loss presented in Eq.5.2 (mean error of 1.10 m and median error of 0.81 m).

Differently using the smart sampling discussed in section 5.2 the method based on

Distance Loss reaches performances similar to those obtained with INCEPTION-

V3 POSENET trained to regress only the cameras position (mean error 0.44 m and

median error 0.29 m with Distance Loss and mean error of 0.42 m and median error

of 0.29 m for INCEPTION-V3 POSENET using NPP loss 5.2).
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Finally, we observe that, joining the results of the sixteen different INCEPTION-V3

POSENET models (each one trained to infer cameras position in one of the sixteen

classes defined in 4.0.2), the performances are less accurate, in terms of both mean

and median position error (mean error 0.75 m and median error 0.53 m), compared

to those obtained with almost all the methods discussed based on INCEPTION-V3

architecture.

6.0.3 Retrieval based methods VS Regression based meth-

ods

In this section we will compare the most representative image retrieval based meth-

ods and regression based methods between them , through an analysis of perfor-

mances and computational costs. In Figure 6.4 is reported the graphical representa-

tion of the performance of the 3 DOF camera pose estimation methods selected for

the comparison. Differently in Table 6.3 we show the inference times and required

amounts of memory for the same methods.

The times proposed are related to the poses predictions of 100 images and are

evaluated both on CPU and on GPU. The memory required by the different models

was expressed in megabytes (MB) and for image-retrieval approaches were reported

both training set dimension and models dimension. The timings performances on

CPU have been obtained using a machine with Intel(R) Xeon(R) CPU E5-2620

v3 @ 2.40GHz and 32 GB of RAM. The times on GPU were computed using a

NVIDIA K-40 GPU. Generally the regression-based methods are less space con-

suming compared with retrieval-based methods. This is motivated by the need, of

the image-retrieval methods, to maintain the training set in memory. However, it

should be noted that, for compact features spaces, the training sets dimension can be

small (e.g., the training set represented on features space extracted from POSENET

or INCEPTION-V3 consume only 104 MB). Moreover the regression-based meth-

ods result also faster both in CPU and GPU. By comparing CNN-regressive ap-

proaches with 1-NN approaches on the features extracted by these CNN architec-

tures, it’s possible to observe significant differences in terms of time performances

on GPU (e.g., 2s for pose inference with POSENET, while 6s are required by 1NN

POSENET. Similarly 3s are required by INCEPTION-V3 POSENET, while 1-NN

INCEPTION-V3 requires 7 seconds); while the aforementioned differences are less
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Figure 6.4: Graphical representation of mean (A) and median (B) position and orientation
errors of the most representative methods.
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significant working on CPU (2 : 08 minutess for POSENET against 2 : 12 minutes

for 1-NN POSENET and 34s for INCEPTION-V3 POSENET against 38s needed

using 1-NN INCEPTION-V3 approach). In Fig. 6.4 A) is possible to observe how,

in terms of mean errors, the best regressive based methods are similar in cameras

position estimation and more accurate in orientation cameras prediction compared

to the best image retrieval methods. Only the model composed by two distinct CNN,

one trained on position prediction and one on orientation prediction, is able to out-

perform all image-retrieval based approaches also in mean position errors (mean

position error 0.42 m , mean angular error 1.4◦, median position error 0.29 m and

median angular error 1.02◦). In terms of median errors 1-NN approaches are gener-

ally more accurate for the position estimation and less accurate for the orientation

estimation. Moreover it’s interesting to observe that, by considering median position

error, only the INCEPTION-V3 POSENET ONLY POSITION + ONLY ORIEN-

TATION regression-based method reaches performances similar to those obtained by

best image-retrieval approaches (0.29m for INCEPTION-V3 POSENET ONLY PO-

SITION +ONLY ORIENTATION and 0.28m for 1-NN INCEPTION-V3). However

INCEPTION-V3 POSENET ONLY POSITION + ONLY ORIENTATION model

results to be less compact (258MB) and less fast (0 : 06min on GPU and 1 : 08

on CPU) compared to other regression methods based on INCEPTION-V3 archi-

tecture (129MB, 0 : 03min on GPU and 0 : 34min on CPU) as well as compared

to image retrieval approaches based on features extracted from INCEPTION-V3 ar-

chitecture (197MB, 0 : 07min on GPU and 0 : 38min on CPU). It’s also interesting

to observe that 1-NN approaches based on features extracted from regressive model

(1-NN POSENET and 1-NN INCEPTION-V3 POSENET) result less performing

compared to the corresponding regressive model, POSENET and INCEPTION-V3

POSENET.

6.0.4 Classification

Table6.4 reports the results of the different methods proposed for classification task,

in Figure 6.5 are instead represented theirs confusion matrices. It’s possible to ob-

serve that using INCEPTION-V3 POSENET model to predict the cameras 3 DOF

and by associating at each position predicted the associated class we obtain the 92%
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Table 6.3: Time and memory requirements.

MODEL PROCESSING TIMES MEMORY REQUIREMENTS

ON GPU (mm:ss) ON CPU (mm:ss) TRAINING SET (MB) MODEL (MB) TOTAL MEMORY USED (MB)

1-NN FISHER - 04:08 4175 0.4 4175.4

1-NN VGG16 00:12 01:18 209 512 721

1-NN TRIPLET(VGG16) 00:12 01:17 209 512 721

1-NN POSENET 00:06 02:12 104 37 141

1-NN INCEPTION-V3 00:07 00:38 104 93 197

1-NN TRIPLET(INCEPTION-V3) 00:07 00:38 104 93 197

1-NN INCEPTION-V3 POSENET 00:07 00:38 104 93 197

POSENET 00:02 02:08 - 73 73

BASED INCEPTION-V3 POSENET 00:03 00:34 - 129 129

INCEPTION-V3 POSENET REGRESSION AND CLASSIFICATION 00:03 00:36 - 130 130

INCEPTION-V3 POSENET IMAGE AND DEPTH 00:05 01:50 - 332 332

INCEPTION-V3 POSENET ONLY POSITION + ONLY ORIENTATION 00:06 1:08 - 258 258

of accuracy, less than all the other methods proposed. As observed for the regres-

sion task, also for classification task, the RGB images result to be more informative

compared to the depth-images. In fact it’s possible to observe that Inception-V3

trained exclusively on RGB images outperforms the modified version of Inception-

V3 trained on depths images (95.1% of accuracy against 94.1%). Furthermore also

the late fusion between prediction of INCEPTION-V3 trained with images and of

INCEPTION-V3 trained with depth-images result less performing (94.8%) com-

pared to the simpler INCEPTION-V3 model trained with images (95%). This result

shows that there is a strong relation in what the two models have learned.

It should be noted that, differently from what we have seen in the previous section for

regression task, in the case of classification task the inception-v3 model, trained si-

multaneously on regression and classification, outperforms the same network trained

only for classification task (95.9% in front of 95.1%). The regressive component of

the loss function probably helps to build a more structured representation space use-

ful to discriminate the different classes. Finally, the experiment conducted by using

both the RGB images and the depth images, differently from what we discussed for

regression task, outperforms the RGB image-based model (96.4% in front of 95.1%)

and all the other models proposed. The confusion matrices reported in Figure 6.5

show that all the classification methods tested fail principally by classifying as be-

longing to classes 11 and 15 images belonging to other classes. This is due to two

principal motivation:

1. the classes 11 and 15 are related to market surfaces bigger than those associated

to the other classes and consequently present more images

2. the parts of the market associated to this two classes are adjacent to many

other parts of the market associated to the other classes and consequently
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Table 6.4: Mean and median position and orientation errors results.

Methods accuracy

INCEPTION-V3 ON IMAGE AND DEPTH 96.4

INCEPTION-V3 POSENET REGRESSION AND CLASSIFICATION 95.9

INCEPTION-V3 ON IMAGE 95.1

INCEPTION-V3 ON DEPTH 94.1

INCEPTION-V3 POSENET 92.0

LATE FUSION 94.8

many images belonging to these two classes are very similar to images belong-

ing to other classes acquired in positions near to the adjacent lines.
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Figure 6.5: Confusion matrix of the different methods used on classification task.
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Chapter 7

Conclusion and future works

In this work, we investigated the shopping cart localization problem by egocentric

images. We proposed the first dataset for shopping cart localization in retail store,

correlated with RGB images and depth images labelled to face the problem both as

camera 3 DOF estimation problem and as place recognition problem. To analyse

the camera localization task in retail environment, we benchmark CNN-based clas-

sification approaches for place recognition task and, for camera 3 DOF estimation

task, the retrieval-based and regression-based approaches. Through the classifica-

tion experiments we observe that the depth images are less informative for this task

compared to RGB images. Nevertheless that it’s possible to use jointly the depth and

RGB information to improve RGB image based classification approaches. Moreover

the experiments point out that, by combining a 3 DOF regression loss function and

a classification loss function, the performance on classification task improves respect

to that obtained when the experiment is conducted with the same architecture and

only the classification loss. Differently the improvement of the performance doesn’t

happen considering the regression task. Regarding the camera 3 DOF estimation

methods we show that the regression based methods are generally more compact

and fast. The best regression based methods outperform the retrieval based meth-

ods in orientation estimation, are similar in terms of mean position errors and less

accurate by considering median position errors. The only regressive model able to

perform similar to the retrieval models, in terms of median position errors, results

to be that one composed by two different networks working separately on orienta-

tion and position estimation. This model requires an amount of memory and time

greater than that required by the most compact retrieval based methods. An other

interesting element pointed out by our analysis is the opportunity to use triplet
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network architecture to improve the performances both of methods based on im-

age retrieval and, less significantly, of regression based methods. This result shows

that, binding the distances between representations in the embedding features space

with distances between cameras poses, is possible to facilitate the 3 DOF camera

pose task. By observing the interesting results obtained using triplet network ar-

chitecture to model the embedding space, in the future investigations should take

into account a more systematic analysis of the relation between regressive methods

performance and the characterization of the embedding space (e.g. using triplet

architecture and imposing different and more sophisticate concepts of similarity be-

tween images). Moreover, to take in consideration the typical characterization of

frames acquisitions in store context during the daily activity, other aspects to inves-

tigate will be: how the different models work with the presence of occlusions and

the models robustness to the exchange of products position in the store.
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Appendix A

A.1 Other Publications

In the following, it is reported a list of works published during my Ph.D. but not

directly related to this thesis.

International Journals:

• A. Agodi, M. Barchitta, A. Quattrocchi, E. Spera, G. Gallo, F. Auxilia, S.

Brusaferro, M.M. D’Errico, M. T. Montagna, C. Pasquarella, S. Tardivo, I.

Mura. Preventable proportion of intubation-associated pneumonia: Role of

adherence to a care bundle. In PloS one. 2017

• E. Spera, M. Migliore, N. Unsworth, D. Tegolo. On the cellular mechanisms

underlying working memory capacity in humans. In Neural Network World.

2016

International Conference:

• E.Spera, G. Gallo, D. Allegra, F. Stanco, A. Maugeri, A. Quattrocchi, M. Bar-

chitta, A. Agodi. Randomized G-Computation Models in Healthcare Systems.

In IEEE 31st International Symposium on Computer-Based Medical Systems
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