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ABSTRACT

Artificial intelligence and machine learning have long attempted to

emulate human visual system. With the recent advances in deep

neural networks, which take inspiration from the architecture of the

primate visual hierarchy, human-level visual abilities are now coming

within reach of artificial systems. However, the existing computational

models are designed with engineering goals, loosely emulating compu-

tations and connections of biological neurons, especially in terms of

intermediate visual representations.

In this thesis we aim at investigating how human skills can be

integrated into computational models in order to perform fine-grained

image categorization, a task which requires the application of specific

perceptive and cognitive abilities to be solved. In particular, our goal

is to develop systems which, either implicitly or explicitly, combine

human reasoning processes with deep classification models. Our

claims is that by the emulation of the process carried out by humans

while performing a recognition task it is possible to yield improved

classification performance.
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To this end, we first attempt to replicate human visual atten-

tion by modeling a saliency detection system able to emulate the

integration of the top-down (task-controlled, classification-driven)

and bottom-up (sensory information) processes; thus, the generated

saliency maps are able to represent implicitly the way humans

perceive and focus their attention while performing recognition, and,

therefore, a useful supervision for the automatic classification system.

We then investigate if and to what extent the learned saliency maps

can support visual classification in nontrivial cases. To achieve this,

we propose SalClassNet, a CNN framework consisting of two networks

jointly trained: a) the first one computing top-down saliency maps

from input images, and b) the second one exploiting the computed

saliency maps for visual classification.

Gaze shifts change in relation to a task is not the only process

when performing classification in specific domains, but humans also

leverage a-priori specialized knowledge to perform recognition. For

example, distinguishing between different dog breeds or fruit varieties

requires skills that not all human possess but only domain experts. Of

course, one may argue that the typical learning-by-example approach

can be applied by asking domain experts to collect enough annotations

from which machine learning methods can derive the features neces-

sary for the classification. Nevertheless, this is a really costly process

and often infeasible. Thus, the second part of this thesis aim at ex-

plicitly modeling and exploiting domain-specific knowledge to perform

recognition.

To this end, we introduce and demonstrate that computational

ontologies can explicitly encode human knowledge and that it can be
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used to support multiple tasks from data annotation to classification.

In particular, we propose an ontology-based annotation tool, able to

reduce significantly the efforts to collect highly-specialized labels and

demonstrate its effectiveness building the VegImage dataset, a collec-

tion of about 4,000 images belonging to 24 fruit varieties, annotated

with over 65,000 bounding boxes and enriched with a large knowledge

base consisting of more than 1,000,000 OWL triples.

We then exploit this ontology-structured knowledge by combining

a semantic-classifier, which performs inference based on the informa-

tion encoded in the domain ontology, with a visual convolutional neu-

ral network, showing that the integration of semantics into automatic

classification models can represents the key to solve a complex task

such as the fine-grained recognition of fruit varieties, a task which

requires the contribution of domain expert to be completely solved.

Performance evaluation of the proposed approaches provides a ba-

sis to assess the validity of our claim along with the scientific soundness

of developed models, able to effectively integrate human skills in the

visual categorization process.
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CHAPTER

ONE

MOTIVATION AND OBJECTIVES

The fascinating idea of an artificial intelligence system able to

perceive, think and act in the same way a human being does, has

been a recurrent topic in the contemporary culture, ranging from

romances to movies, where the plot is mostly focused on the extend

of the feelings a machine can experience, to science blogs, which are

usually more interested on how the newly created intelligence may

affect the everyday life. While the aspect of machine feelings has

been relegated to science-fiction authors’ imagination, researchers

have been working on developing algorithms which could help people

in performing everyday task. An example is the recently introduced

Google Duplex, an AI System able to have a conversation over the

phone in order to accomplish real-world tasks such as scheduling

a hair salon appointment or calling a restaurant, totally replacing

the human operator. Google researchers have pushed the limits of

machine learning capabilities with the Magenta project, a collection

1



2 Chapter 1. Motivation and objectives

of algorithms designed for art and music production, thus attempting

to emulate the human creative process. Human creativity poten-

tialities are particularly expressed in lifelong learning experiences,

where humans are embedded in a cycle Perception-Elaboration-

Memorization of new information in order to develop structured

knowledge and skills which are then reused in similar tasks. Even

though machines are still far from being able to perform tasks they

have not been trained for, their performance on well defined scenarios

have reached impressive performance in the last years, specially

since the rediscovery of Convolutional Neural Networks applied to

solve computer vision problems such as object recognition or object

localization [1, 2, 3, 4]. Whilst AI algorithms become more and

more sophisticated, with machines, for example, able to beat human

champions at chess, Go and Jeopardy, recently Uber has announced

that self-driving cars will be back on public roads, but under human

control, thus leaving open the debate on what should be the human

contribution essential for a safe interaction with AI systems. Despite

not exploring these limits, which would even pose moral and ethical

issues, in this thesis we aim at investigating how computation

models can encode human skills and whether these skills may help

in improving accuracy of computer vision methods. In particular, we

develop machine learning models which incorporate, either implicitly

or explicitly, the capabilities humans have and the knowledge they

exploit in performing visual categorization. To this end, we study

how human knowledge can support fine-grained classification, which

is a typical problem requiring specific perceptive skills and reasoning

processes, starting from a very implicit way of providing human

contribution (i.e., through saliency maps which emulate the human
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ability to focus on discriminative regions), then demonstrating how

computational ontologies are able to explicitly encode structured

human knowledge and boost the process of dataset annotation

and finally proving that through the exploitation of this structured

knowledge it is possible to improve fine-grained classification accuracy.

Indeed, computer vision and machine learning methods have long

attempted to emulate humans while performing visual tasks. Despite

the high intentions, the majority of the existing automated methods

rely on a common schema, i.e., learning low- and mid-level visual

features for a given task, often without taking into account the pe-

culiarities of the task itself. One of the most relevant example of

task-driven human process is visual attention, i.e., gating visual infor-

mation to be processed by the brain according to the intrinsic visual

characteristics of scenes (bottom-up process) and to the task to be

performed (top-down process). Saliency detection building only on

the bottom-up process mainly employs low-level visual cues, modeling

unconscious vision mechanisms, and shows huge limitations in task-

oriented computer vision methods. For example, traditional saliency

methods (5) miss objects of interest in highly cluttered backgrounds

since they detect visual stimuli, which often are unrelated to the task

to be accomplished, as shown in Figure 1.1. Analogously, image clas-

sifiers fail in cases of cluttered images as they tend to extract low

and mid-level visual descriptors and match them with learned data

distributions without focusing on the most salient image parts.
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Figure 1.1: First column — Eye fixations in free-viewing exper-

iments in images with multiple objects. Some of the salient regions

cannot be used for dog species classification. Second Column —

Eye fixation shifts when asking to guess dog breeds.



5

Under this scenario, we investigate whether it is possible to learn

saliency maps encoding the human ability to identify task-dependent

discriminative regions, i.e., those regions that could help in per-

forming fine-grained recognition. Thus, our main objective is to

develop a method for saliency detection guided by a classification task

and demonstrate that exploiting task-based saliency maps improves

classification performance. Since it is not possible to imagine an

automatic system using human data, especially in inference, we

we propose and train, in an end-to-end fashion, a convolutional

neural network — SalClassNet — consisting of two parts: the first

one generating top-down (classification-guided) saliency maps from

input images, while the second one taking images and the learned

maps as input to perform visual categorization (see Chapter 3 for

more details). In particular, we demonstrate how the propagation

of a mixed saliency/classification loss throughout the upstream

SalClassNet saliency detector is the key to learn task-guided saliency

maps able to better detect the most discriminative features in the

categorization process.

If the integration of saliency maps, computed emulating the way

humans focus their attention while performing classification, can im-

prove recognition, we want to investigate whether it is possible to emu-

late the complex perceptive, cognitive and reasoning processes humans

carry out when a classification task has to be accomplished. Indeed,

in spite of their impressive performance on the 1000-class ImageNet

dataset, classification approaches are still predominantly based on vi-

sual features, whose distributions are learned through machine learn-

ing algorithms. While this has proved to be an effective strategy even
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in complex scenarios such as fine-grained image classification [6, 7, 8],

there are cases where relying on visual appearance only might fail, es-

pecially in specific application domains (for which it is very complex

— if not impossible — to collect large scale samples). For exam-

ple, Figure 1.2 (left) shows four different varieties of cherry (“Bing”,

“Black Tartarian”, “Burlat” and “Lapin”) that cannot be easily dis-

criminated through typical visual description approaches. However,

objects in the real world do not appear as isolated items, but come

in a rich context (the right-hand image in Figure 1.2 shows the same

cherry varieties in their natural context), which is largely exploited by

human experts to infer visual classes.

We believe that research in computer vision should also look into

this direction, especially in all those cases where visual cues alone

fail to express the difference among classes especially when the lim-

ited number of images hinders the capabilities of deep learning meth-

ods to learn class distributions. The need for exhaustive knowledge

is highlighted by the recent sprout of methods employing high-level

knowledge (mainly unstructured) for computer vision tasks: knowl-

edge transfer methods [9, 10, 11] and semantic relation graphs [12, 13]

have been adopted to deal with the limitations of traditional multi-

class or binary models, which suffer from being overly restrictive or

overly relaxed, respectively. Our hypothesis is that, for a real break-

through in computer vision, computers need to emulate the human

visual process by combining perceptive elements (visual descriptors)

and cognitive-semantic factors (high-level knowledge). However, em-

ploying high-level semantic information into computer vision methods

is not trivial and poses several challenges: How can we extract and

represent visual world semantics, especially for very specific applica-
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Figure 1.2: Left: four cherry varieties, namely (left to right, top

to bottom) “Bing”, “Black Tartarian”, “Burlat” and “Lapin”. Right:

the same varieties in their natural context. Information about leaf

shape, distance between fruit and leaves, peduncle length may support

the disambiguation between the four object classes.

tion domains? How can we effectively integrate high-level semantic

information into machine learning methods? How do we build com-

puter vision systems tackling extremely complex tasks with a limited

number of samples?

We aim at addressing the above questions by proposing a new

“human in the loop” approach, where humans are not seen as simple

workers, as in the classic sense of the paradigm [14, 15], but rather as

the main core of the system, providing the necessary intelligence that

is then encoded into machines to make them perform specific visual

tasks. More specifically, our objectives are:
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• adopting computational ontologies as a principled way to model

— in a machine readable manner — visual world semantics as

perceived by humans and showing how they can guide the visual

annotation process according to a specialized domain knowledge

model.

• leveraging high-level structured knowledge for devising a clas-

sification approach able to combine low level visual cues and

semantic information to solve complex vision tasks.

As a test applications, for all research branches, we tackle the

problem of fine-grained image classification in a complex tasks which

require extensive human-knowledge to be solved: fruit variety image

classification.

The comparison between our approach and state-of-the-art deep

learning methods, over the considered scenario, shows a performance

improvement when employing structured semantics. Thus, Chapter 4

introduces our domain-agnostic ontology and its generalization capa-

bilities in modeling visual knowledge for specific application domains;

then, in order to to prove computational ontologies’ potentialities,

we present our ontology-based annotation tool and show how it can

boost the annotation process in two different scenarios: the creation

of VegImage, a new fine-grained image dataset enriched with struc-

tured knowledge, and the curation of photographic data and text doc-

uments of historical buildings for indexing, retrieval and classification

through a specific extension of the annotation tool, named CulTO.

Afterwards, Chapter 5 describes how a classifier, able to take advan-

tage of ontology-encoded domain knowledge, can support a standard

visual convolutional classifier, showing also the results achieved by our

knowledge-powered classifier on the test dataset.
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Finally, Chapter 6 draws the conclusions of this thesis, pointing out

the importance of the integration, whether implicit or explicit, of hu-

man skills to solve computer vision tasks.
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CHAPTER

TWO

LITERATURE REVIEW

This Chapter provides the reader with the state of the art on the top-

ics covered in this thesis. Since the main objective is to transfer both

perceptive, through saliency maps, and cognitive, by the integration

of structured knowledge, human skills to computational models for

fine-grained visual classification, we first present recent saliency de-

tection methods. Afterwards, we introduce current computer vision

methods exploiting semantic visual information and the advantages

of ontologies in representing semantics through structured knowledge;

then, the use of ontologies in cultural heritage is presented too in order

to show their potentialities in disparate domain applications. Finally,

we describe how saliency maps and semantics have been exploited to

perform fine-grained visual classification.

11
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2.1 Saliency Detection

Visual attention in humans can be seen as the integration between a)

an early bottom-up unconscious process where the attention is prin-

cipally guided by some coarse visual stimuli, which can be local (e.g.,

center-surround mechanisms) or global (dependent from the context);

and b) a late top-down process, which biases the observation towards

those regions that consciously attract users’ attention according to a

specific visual task. While the former has been extensively researched

in the computer vision field with a significant number of proposed

saliency detection methods ([16, 17, 18, 19, 20, 21, 22, 23, 24]), top-

down processes have received much less attention ([25, 26, 27, 28]),

mainly because of the greater difficulty to emulate high-level cogni-

tive processes than low-level cues based on orientation, intensity and

color ([5]).

Recently, the rediscovery of convolutional neural networks and

their high performance on visual tasks have led to the development of

deep saliency detection networks that either adopt multi-scale patches

for global/coarser and local/finer features extraction for further

saliency assessment (20, 21, 23, 22, 29, 24, 16, 18, 21, 30, 31, 23, 32, 33)

or learn, in an end-to-end fashion, saliency maps as in [18, 19, 34]. In

particular, the recent work by [19] presents a fully-convolutional CNN

(partly trained from scratch and partly re-using low-level layers from

existing models) for saliency prediction; another fully-convolutional

architecture is the one presented in [18], which processes images at

two different scales and is based on deep neural networks trained for

object recognition; the latter was used as basis for our work as de-

scribed later.
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Recent saliency detection methods have been fed with high level

information in order to include top-down attention processes. In [35],

given the class label as prior, the parameters of a new feedback layer

are learned to optimize the target neuron output by filtering out noisy

signals; in [36] a new backpropagation scheme, “Excitation Backprop”,

based on a probabilistic version of the Winner-Take-All principle, is

introduced to identify task-relevant neurons for weakly-supervised lo-

calization. Our saliency maps differ from the ones computed by those

methods since the only top-down signal introduced in our training is a

class-agnostic classification loss; hence, our maps are able to highlight

those areas which are relevant for classifying generic images.

Given that our idea is to create an end-to-end model where the

computed saliency maps are directly fed into the classification net-

work, the most interesting saliency detection architectures for our

purpose are the fully-convolutional ones, whose output can be seam-

lessly integrated into a larger framework with a cascading classifi-

cation module. Tab. 2.1 summarizes the results of state-of-the-art

fully-convolutional saliency networks on a set of commonly-employed

datasets for saliency detection benchmarking, namely SALICON val-

idation and test sets ([37]), iSUN validation and test sets ([38]) and

MIT300 ([39]).
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2.2 Semantics in Computer Vision

Recently, there have been significant advances in modeling rich se-

mantics using contextual relationships [45, 46, 47, 48, 49] (such as

object-object [50, 46, 48] and object-attribute [51, 52, 53]) applied to

scene classification [54], label propagation [55],object recognition [56]

object detection [57] and zero-shot learning [58]. In [56], the authors

showed that context information is more relevant for object recog-

nition than the intrinsic object representation, especially in cases of

poor image quality. However, visual scenes provide richer semantics

than object-object or object-attribute relationships, which most of the

existing methods do not take into account or do not exploit effectively

as they try to solve the recognition problem by brute force learning.

Nevertheless, one of the limitations to a larger use of high-level

knowledge in computer vision is the lack of structured resources for

exhaustively modeling the semantics of our visual world. Indeed, until

recently, the largest resource of structured visual knowledge is the Im-

ageNet dataset [59], which, however, captures only limited semantic

relations, ignoring, for instance, co-occurrence, dependency, mutual

exclusion. Lately, an attempt to provide a dataset designed tor cog-

nitive tasks is represented by Visual Genome [60], a collection of over

109K images where each image has an average of 35 objects, 26 at-

tributes and 21 pairwise relationships between objects.

Moreover, including high-level knowledge in the learning loop is not

trivial because of the complexity to make machine learning methods

work with heterogeneous information at different abstraction levels.

Recently, graph-structured representations have provided an effective

way to encode semantic visual knowledge into machine learning ap-
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proaches, and as such, have gained a lot of interest to describe seman-

tically visual scenes [61, 62, 63, 12, 64]. For example, [64, 12] learned

to generate graphs from images through Conditional Random Fields

(CRF). Yet, given the high variability of semantic visual descriptions,

it is extremely complex and time-consuming to identify the graph best

fitting a given image, because of the large topology variability that

image grounded graphs may have, beside showing low generalization

capabilities.

To overcome these limitations, we propose to use computational

ontologies for modeling visual world semantics. The two main advan-

tages of computation ontologies over other semantic representations

are:

• Generalization capabilities. By definition, computational

ontologies, written through standard formalisms such as OWL,

can be extended at will and integrated in other ontologies (and

so can ontology instances) and other sources of semantic infor-

mation (e.g., DBpedia, which, for instance, provides structured

description of fruit habitat, useful for classification). This is

done without any specific effort by data curators and without

even the need to move data (since OWL supports web links),

thus making it also a powerful tool for generating distributed

and scalable datasets. Under this perspective, ontologies can be

seen as strategic resources for creating common and standard

visual distributed benchmarks that can keep increasing in size

with low curation costs (this is not the case of ImageNet, for

instance, since only ImageNet people can curate it).
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• Deep domain modeling. Past approaches, such as scene

graphs [64], tried to incorporate knowledge into automated

methods, but they adopted simple semantics, ignoring complex

relations which often occur in our visual world, such as mu-

tual exclusion and inclusion. All these relations can be modeled

through ontologies. Besides, computational ontologies allow for

imposing constraints (e.g., “if the Reinette apple has red over-

colour it cannot have russet”) about real-world object appear-

ance and their semantic relations.

Thus, computational ontologies are able to generalize semantic vi-

sual representations by describing, in an unified and standard frame-

work, different types of properties, such as object attributes, object

co-occurrence, hierarchy, pairwise object relationships, etc.

However, despite their great advantages over other semantic repre-

sentations, computational ontologies have been largely underexploited

in computer vision, except for some sporadic attempts [65], where hu-

man operators had to manually link ontology concepts to low-level

image representations. This turned out to be more complex than ex-

pected and was one of the main reasons why these methods were soon

abandoned.

Besides, another difficulty when dealing with computer vision

problems, specially in the case of fine-grained classification, is the gen-

eration of large and correct visual annotations. This process is made

more complex when visual data should be enriched with semantic and

a priori-knowledge about objects, such as color, shape, related-objects

and their visual properties, etc.. This, especially, holds in specialized

application domains (e.g., fruit variety, bird, medical images, cultural
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heritage, etc.) where high precision is necessary to avoid affecting

the learning process. In such cases, annotations should be provided

by domain experts [14, 66], who are very expensive, and not always

available, resources.

Computational ontologies are able to support computer vision sci-

entists also in this regard, highlighting, once more, the support that

such tools may provide to the research in the field. Indeed, high-level

visual knowledge encoded in ontologies can be exploited to guide/con-

strain the annotation process and to infer visual attributes through

ontology reasoning, hence reducing greatly the knowledge required to

carry out the task. Thus far, only few methods exploiting this idea

have been proposed [67, 68, 69, 70], and were mainly devised for in-

formation retrieval rather than computer vision.

Accordingly, we generate knowledge-enriched visual annotations

on fruit variety images, thus providing a complex benchmark for fine-

grained recognition [71]. There are several benchmarking datasets for

fine-grained classification of birds, stonefly larvae, etc. [7? , 6] but

they mainly contain per-instance segmentations and do to provide any

semantic visual descriptions of objects and their context. The datasets

most similar to ours are the ones for semantic scene labeling [72, 73],

which, despite including context information, no exhaustive semantic

relations are defined.

Ontology instead have found fertile ground in the cultural heritage

because of the need to integrate, enrich, annotate and share the pro-

duced data [74, 75, 76, 77]. Cultural heritage ontologies are often em-

ployed to support the development of high-level software tools for dig-

ital content exploitation. In [78], a web-based virtual museum based

on ontology is proposed where visitors can perform queries and create
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shared information by adding textual annotations. These new gener-

ation of approaches has enabled the conversion of traditional cultural

heritage website into a well-designed and more content-rich one [79],

integrating distributed and heterogeneous resources, thus overcoming

the limitations of systems such as MultimediaN E-Culture project [80],

which, instead, manually performs data enchriment through semantic

web techniques for harvesting and aligning existing vocabularies and

metadata schemas. MultimediaN E-Culture project also developed

a new software, named “ClioPatra”, which allows users to submit

queries based on familiar and simple keywords.

One of the biggest challenge that the information retrieval in the

Cultural Heritage domain has to face is the natural heterogeneity of

data. One of the main attempts to provide a unified access to digital

collections is the “CatchUp” full-text retrieval system [81]. Ontolo-

gies have been often exploited in image retrieval systems to improve

accuracy as they allow for bridging the “semantic gap”, i.e., the gap

between the low-level content-based features and the data interpreta-

tion given by users. In the “eCHASE” project [82] several cultural

heritage institution metadata schemas have been mapped into the

CIDOM/CRM to expose them using the “Search and Retrieve Web

Service” (SRW). Recently the “INCEPTION” project [83] has been

focused on the innovation in 3D modelling of cultural heritage assets,

enriched by semantic information, and their integration in a new H-

BIM. The peculiarity of the system is that users are able to query

the database using keywords and visualize a list of H-BIM models, de-

scription, historic information and the corresponding images, classified

through the application of deep learning techniques.
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2.3 Human-based Visual Classification

Systems

In this section we show how visual classification algorithms have at-

tempted to exploit, as a direct feedback or trying indirectly to emulate

their potentialities, human skills in order to improve their accuracy. In

particular, we present classification methods relying on saliency maps

to identify the correct label that has be assigned to an image; from

this point of view, saliency maps can be considered as a guideline sug-

gesting which areas the algorithms should focus on . Afterwards, we

introduce the fine-grained classification problem along with the issues

related to its solution; in order to overcome those issues researchers

have tried to combine visual features with high-level semantics which

explicitly represent the way humans perceive and reason.

2.3.1 Saliency for Visual Classification

Understanding the processes which are behind task-controlled visual

attention may be of crucial importance to make machines see and

understand the visual world as humans do and to solve complex vi-

sion tasks, such as recognition of multiple objects in cluttered scenes

([84]).

The idea of using saliency for improving classification performance

has gained significant attention from the computer vision community,

coming up with saliency detection models that have been integrated

into visual classification methods. In [85], saliency maps are employed

to weigh features both in the learning and in the representation steps

of a sparse coding process, whereas in [86] CNN-based part detections
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are encoded via Fisher Vectors and the importance of each descriptor

is assigned through a saliency map. [87] extended the recurrent atten-

tion model (RAM) presented in [88] (a model based on a combination

between recurrent neural networks and reinforcement learning to iden-

tify glimpse locations) by training it to detect and classify objects after

identifying a fixed number of glimpses.

A work similar in the spirit to ours is [89], where a low-capacity

network initially scans the input image to locate salient regions using a

gradient entropy with respect to feature vectors; then, a high-capacity

network is applied to the most salient regions and, finally, the two

networks are combined through their top layers in order to classify

the input image. Our objective, however, is to perform end-to-end

training, so that the classification error gradient can directly affect

the saliency generation process.

2.3.2 Semantics in Fine-grained Recognition

The importance of visual world semantics (and of context, especially)

in automated visual recognition has been long acknowledged [90, 50].

As mentioned in the Chapter 1, we apply our classification meth-

ods for fine-grained visual recognition tasks, which particularly de-

mand for a priori-knowledge about objects, their visual appearance

and their context given the high similarity among classes. Indeed,

fine-grained image classification is one of those visual tasks on which

classification approaches, even based on deep-learning, have shown

major difficulties. Most of the first classification methods tried to

identify and learn — using sometimes simple semantics as in [91] —

distributions of visual descriptors [92] and object parts [93, 94], often
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using deformable part models [95] and requiring pose normalization

techniques [93, 96, 95] to align object appearances. Recently, deep

learning has been employed to improve fine-grained classification per-

formance. In [97], deep-learned features, computed on an augmented

(through component-wise power transform) image dataset, are used to

perform recognition, while the authors of [98] embedded descriptors

based on convolutional neural network (CNN) weights (pre-trained

on ImageNet) in the deformable part descriptors (DPD) model; a

bilinear CNN model is introduced in [99] to capture pairwise cor-

relations between the feature channels and represent part-feature in-

teractions. Furthermore, CNNs have been largely exploited to tackle

pose-normalization [100, 101, 102], semantic part detection for fine-

grained recognition [103] or unsupervised part discovery issues [104],

and those methods have sensibly increased the performance on com-

plex fine-grained datasets. Nevertheless, all these approaches are not

able to exploit the semantics of the scene, showing evident difficul-

ties when information other than visual ones has to be employed. An

attempt to exploit rich professional knowledge for fine-grained visual

recognition is proposed in the recent work [105]: their KERL frame-

work organizes knowledge about categories and part-based attributes

in the form of a knowledge graph taken as input by a Gated Graph

Neural Network [106] to learn a representation which is then embed-

ded into the image feature learning to extract attribute-aware features;

while their GGNN implicitly associates specific attributes with feature

maps, we explicitly link objects in a image to the semantic relations

and attributes defined in the ontology for that object.



CHAPTER

THREE

TOP-DOWN SALIENCY DETECTION DRIVEN

BY VISUAL CLASSIFICATION

In this Chapter we present SalClassNet, an end-to-end convolutional

neural networks consting of two modules: a) a saliency detection net-

work which tries to emulate the way humans focus their attention while

performing a classification task and generates saliency maps suitable

to be exploited by b) a classification network in order to improve

recognition accuracy.

We tested the saliency detector of SalClassNet over saliency bench-

marks, where it significantly outperformed existing methods such as

SalNet ([19]) and SALICON ([18]) As for evaluating the performance

of SalClassNet for visual categorization, we tested it on fine-grained

classification tasks over the Stanford Dogs ([107]), the CUB-200-

2011 ([8]), and the Oxford Flower 102 ([6]) datasets, showing that

explicitly providing visual classifiers with saliency leads to improved

23
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performance. As an additional contribution, we release our saliency

dataset containing of about 10,000 maps recorded from multiple users

when performing visual classification on the 120 Stanford Dogs classes.

We focus our attention, both as building blocks and evaluation

baselines, on the SALICON ([18]) and SalNet ([19]) models, thanks to

code availability and their fully-convolutional nature.

3.1 SalClassNet: A CNN model for top-

down saliency detection

Figure 3.1: Architecture of the proposed model – SalClassNet– for

saliency detection guided by a visual classification task. Input images

are processed by a saliency detector, whose output together with input

images are fed to a classification network with 4-channel first-layer

kernels for processing image color and saliency and providing image

classes as output.

The general architecture of our network is shown in Figure 3.1 and

is made up of two cascaded modules: a saliency detector and a visual

classifier, which are jointly trained in a multi-loss framework.
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3.1.1 Top-down saliency detection network

Although we will discuss the details of the employed saliency dataset

and its generation process in Sect. 3.2, it is necessary to introduce some

related information at this stage, which is important to understand the

overall model.

In the dataset generation protocol, human subjects were explic-

itly asked to look at images and to guess their visual classes (e.g.,

dog breeds). Therefore, our experiments aimed to enforce top-down

saliency driven by a specific classification task, rather than bottom-

up saliency. In other words, instead of emphasizing the location of

image regions which are visually interesting per se (which, of course,

may include the target object), our visual attention maps focus on the

location of features needed for identifying the target classes, ignoring

anything else that may be salient but not relevant to the classification

task. Hence, our saliency detector has to be able, given an input im-

age, to produce a map of the most salient image locations useful for

classification purposes.

To accomplish that, we propose a CNN-based saliency detector com-

posed by thirteen convolutional and five max pooling layers taken from

VGG-19 ([108]). The output of the last pooling layer, i.e., 512×10×10

feature maps (for a 3×299×299 input image), is then processed by a

1×1 convolution to compute a saliency score for each “pixel” in the

feature maps of the previous layer, producing a single-channel map.

Finally, in order to generate the input for the subsequent classification

network, the 10×10 saliency maps are upsampled to 299× 299 (which

is the default input size of the next classification module) through

bilinear interpolation.
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As for the size of the output maps, it has to be noted that saliency

is a primitive mechanism, employed by humans to drive the attention

towards objects of interest, which is evoked by coarse visual stimuli

([5]). Thus, increasing the resolution of saliency maps for identifying

finer image details from a visual scene is not necessary, beside intro-

ducing noisy information potentially affecting negatively the classifi-

cation performance (indeed, when we increased the saliency map size,

the saliency accuracy did not improve). Therefore, in spite of the low

spatial resolution of saliency maps, our experiments (see Sect. 3.3)

show that the 10×10 feature maps are able to encode the information

needed to detect salient areas and to drive a classifier with them.

3.1.2 Saliency-based classification network

Our visual classifier is a convolutional neural network which receives

as input a 4-channel RGBS image, combining the RGB image with

the corresponding saliency (S) map, and provides as output the corre-

sponding class. The underlying idea is that the network should employ

those salient regions (as indicated by the input saliency map S) which

are more meaningful for classification purposes.

This network is based on the Inception network ([4]), which com-

prises sixteen convolutional and one fully connected layer followed by a

final softmax layer, with the first-layer convolutional kernels modified

to support the 4-channel input. In particular, the 32 3×3×3 kernels in

the first layer are converted into 32 4×3×3 kernels, whose weights cor-

responding to the RGB channels are taken from a pre-trained version

of Inception network (see next Sect. 3.3), whereas the new weights,

corresponding to the saliency input, are randomly initialized.
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Since the model includes a combination of trained weights (the ones

from the original Inception) and untrained weights (the ones related to

the saliency channel) we set different learning rates in order to speed

up the convergence of untrained weights while not destabilizing the

already learned ones.

3.1.3 Multi-loss saliency-classification training

The networks described in the previous sections are joined together

into a single sequential model and trained using RGB images as in-

put and the corresponding class labels as output. We introduced a

batch normalization module between the saliency detector and the

classifier, to enforce a zero-mean and unitary–standard-deviation dis-

tribution at the classifier’s input. During training, we minimize a

multi-loss objective function given by a linear combination of cross-

entropy classification loss LC, and saliency detection loss LS computed

as the mean square error (MSE) of the intermediate saliency detector’s

output (obtained after the last upsampling layer) with respect to the

ground-truth saliency map for the corresponding input image:

L (y,Y, t,T) = α LC (y, t) + LS (Y,T) (3.1)

where

LC(y, t) = −
n∑

i=1

I(i = t) log(yi) (3.2)

LS(Y,T) =
1

hw

h∑
i=1

w∑
j=1

(Yij − Tij)
2 (3.3)

where LC is the cross-entropy loss computed for the softmax output

vector y and the correct class t, n indicates the number of classes in
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the dataset, LS is the mean square error loss computed on the saliency

detector’s output map Y and the ground-truth heatmap T, h and w

are the size of the heatmap, and I(p) is the indicator function, which

returns 1 if p is true; bold symbols denote vectors (lower case) and

matrices (upper case).

The adopted multi-loss affects the model in several ways. First

of all, backpropagating the classification loss to the saliency detector

forces it to learn saliency features useful for classification. Secondly,

backpropagating the mean square error on the saliency maps ensures

that the saliency detector does not degenerate into identifying generic

image features and become a convolutional layer as any other.

Figure 3.2 shows two output examples of how saliency changes

when using only saliency loss LS to train the saliency detector and

when driving it by the classification loss LC : the saliency is shifted

from generic scene elements to more discriminative features.
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Figure 3.2: From saliency maps including only sensory infor-

mation (bottom-up attention processes) to maps integrating

task-related information (top-down processes). (Top row) Two

example images. (Middle row) Bottom-up saliency maps generated

by our CNN-based saliency detector fine-tuned over the Stanford Dog

dataset using ground-truth heatmaps. (Bottom row) Shift of saliency

guided by the classification task, as resulting from training SalClass-

Net.



30 Chapter 3. Top-Down Saliency Detection Driven by Visual Classification

3.2 Top-down Saliency Dataset

To test our saliency detector, we built a top-down saliency dataset –

SalDogs – consisting of eye-gaze data recorded from multiple human

subjects while observing dog images taken from the Stanford Dogs

dataset ([107]), a collection of 20,580 images of dogs from 120 breeds

(about 170 images per class). From the whole Stanford Dogs dataset,

we used a subset of 9,861 images keeping the original class distribution.

The eye-gaze acquisition protocol involved 12 users, who underwent

breed-classification training sessions (randomly showing dog images

with the related classes), and then were asked to identify the learned

breeds from images. To guide top-down visual attention of partici-

pants, according to psychology research ([109]), images were blurred

with a Gaussian filter whose variance was initially set to 10 and then

gradually reduced by 1 each half second until subjects were able to rec-

ognize their classes or they were completely de-blurred. Users took, on

average, 2.6 seconds to identify dog breeds and 2,763 images were not

identified till the end of the de-blurring process. Eye-gaze gaze were

recorded through a 60-Hz Tobii T60 eye-tracker. Table 3.1 provides

an overview of the SalDogs dataset. To the best of our knowledge,

this is one of the first publicly-available datasets with saliency maps

driven by visual classification tasks, and the first one dealing with a

large number of fine-grained object classes. A dataset similar to ours is

POET ([110]), which, however, does not deal with fine-grained classi-

fication tasks, but with classification at the basic level and with much

fewer classes (10 Pascal VOC classes vs 120 in our case). Table 3.2

reports a comparison, in terms of enforced attention mechanism (e.g.,

tasks accomplished by participants), number of viewers, collected im-
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Our Dataset

Number of images 9,861

Number of classes 120

Avg. number of images per class 82.2

Avg. number of fixation points per image 6.2

Table 3.1: Information on the generated saliency dataset.

ages and acquisition devices, between our dataset and recent saliency

benchmarking datasets. Finally, to test the generalization capabilities

of our saliency detector, we also collected eye gaze data from the same

12 subjects, employing the same data acquisition protocol described

above, on: a) bird images (referred in the following as SalBirds), us-

ing a subset of 400 images taken from CUB-200-2011 dataset ([8]), an

image dataset containing 11,788 images from 200 classes representing

different bird species; and b) flower images (referred as SalFlowers)

by selecting 400 images from Oxford Flowers-102 ([6]), which contains

over 8,000 images from 102 different flower varieties.

3.3 Performance analysis

The performance analysis focuses on assessing the quality of our model

and its comparison to state-of-the-art approaches on two tasks: a) gen-

erating task-driven saliency maps from images; b) fine-grained visual

recognition task.
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Dataset Task Viewers Train Validation Test Tot

SALICON ([37]) Free-viewing Crowd 10,000 5,000 5,000 20,000

iSUN ([38]) Free-viewing Crowd 6,000 926 2,000 8,926

MIT300 ([39]) Free-viewing 39 - - - 300

CAT2000 ([111]) Free-viewing 24 2,000 - 2,000 4,000

FIGRIM ([112]) Memory 15 - - - 2,787

EyeCrowd ([113]) Free-viewing 16 450 - 50 500

OSIE ([114]) Free-viewing 15 500 200 700

PASCAL-S ([115]) Free-viewing 8 - - - 850

ImgSal ([116]) Free-viewing 21 - - - 235

POET ([110]) Basic classification 28 441 - 5,829 6,270

SalDogs Fine-grained classification 12 8,005 928 928

Table 3.2: Comparison between our dataset and others from the state

of the art.

3.3.1 Datasets

The main benchmarking dataset used for the evaluation of both

saliency detection and classification models was SalDogs (9,861 im-

ages with heatmaps), which was split into training set (80%, 8,005

images – SalDogs-train), validation set (10%, 928 images – SalDogs-

val) and test set (10%, 928 images – SalDogs-test).

Specifically for saliency detection, we also employed the POET,

SalBirds and SalFlowers datasets (described in Sect. 3.2) to assess

the generalization capabilities of the models trained on SalDogs.

For visual classification evaluation, we first carried out a compar-

ison of different models on SalDogs, aimed at investigating the con-

tribution of visual saliency to classification. Then, we assessed the

generalization capabilities of SalClassNet on the CUB-200-2011 and

Oxford Flower 102 fine-grained datasets.
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All classification networks (SalClassNet and baseline) were first

pre-trained on a de-duped version of ImageNet, obtained by removing

from ImageNet the 120 classes present in the Stanford Dogs Dataset.

This guarantees fairness between models regardless of pre-training: in-

deed, since the whole Stanford Dogs is included in ImageNet, publicly-

available pre-trained VGG-19 and Inception models would have the

advantage of having been trained on images included in SalDogs-test.

3.3.2 Training details

The saliency detector in SalClassNet consists of a cascade of con-

volutional feature extractors initialized from a pre-trained VGG-19,

followed by a layer (to train from scratch) which maps each location

of the final feature map into a saliency score. An initial pre-training

stage was carried out on OSIE ([114]), as done also in SALICON. This

pre-training employed mini-batch SGD optimization (learning rate:

0.00001, momentum: 0.9, weight decay: 0.0005, batch size: 16) of the

MSE loss between the output and target saliency maps; data augmen-

tation was performed by rescaling each image (and the corresponding

ground-truth heatmap) to 340 pixels on the short side, while keeping

aspect ratio, and randomly extracting five 299×299 crops, plus the

corresponding horizontal flips. After this initial pre-training, the re-

sulting model was fine-tuned on SalDogs-train: the learning rate was

initialized to 0.001 and gradually reduced through the 1/t decay rule,

i.e., at iteration i it was computed as l/(1 + 10−5 · i), with l being

the initial learning rate. During this fine-tuning stage, the same data

augmentation approach described above and the same values for the

other hyperparameters were used.
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The saliency-based classifier module of SalClassNet was initially

pre-trained as a regular Inception network. Due to the inclusion of

Stanford Dogs in ImageNet, we did not employ a publicly-available

pre-trained network, and instead trained an Inception architecture

from scratch on the de-duped version of ImageNet described in the

previous section. We trained the model for 70 epochs, using mini-

batch SGD for optimization, with a learning rate schedule going from

0.01 to 0.0001 over the first 53 epochs, weight decay 0.0005 up to the

30th epoch (and 0 afterwards), momentum 0.9 and batch size 32. Data

augmentation on the input images was performed as described above.

After this pre-training was completed, we modified the first-layer ker-

nels to support RGB color plus saliency input, by adding a dimension

with randomly-initialized weights to the relevant kernel tensors, and

we fine-tuned the model on SalDogs-train for classification, passing as

input, each image with the corresponding ground-truth saliency map.

Since some weights in the model had already been pre-trained and

others had to be trained from scratch, the learning rate was initially

set to 0.05 for the untrained parameters, and to 0.001 for the others.

We used the same procedures for learning rate decay and data aug-

mentation as in the fine-tuning of the saliency detector, and a batch

size of 16.

The final version of the SalClassNet model - which is the one em-

ployed in the following experiments - was obtained by concatenating

the saliency detector and the saliency-based classifier and fine-tuning

it, in an end-to-end fashion, on SalDogs-train. Indeed, up to this point,

the saliency detector had never been provided with an error signal re-

lated to a classification loss, as well as the saliency-based classifier

had never been provided with input maps computed by an automated
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method. Again, the previous procedures for data augmentation and

learning rate decay were employed, with a single initial learning rate

of 0.001. The α value in Eq. 3.1, weighing the classification loss with

respect to the saliency MSE loss, was set to 0.2, since it provided the

best accuracy trade-off (see Figure 3.3).

Figure 3.3: Classification accuracy and MSE w.r.t. α values: 0.2

was chosen as the best trade-off between the two performance metrics.

During the fine-tuning stages of the individual modules and of the

end-to-end model, at the end of each epoch we monitored the classi-

fication accuracy and the saliency MSE loss over SalDogs-val (eval-

uating only the central crop of each rescaled image), and stopped

training when both had not improved for 10 consecutive epochs: in

practice, all models converged in 70-120 epochs. Model selection was

performed by choosing the model for which the best relevant accuracy

measure (MSE loss for the saliency detector, classification accuracy

for the saliency-based classifier and the full SalClassNet model) had

been obtained.
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3.3.3 Saliency detection performance

To evaluate the capabilities of SalClassNet for saliency detection, we

employed the metrics defined by [117] — shuffled area under curve (s-

AUC), normalized scanpath saliency (NSS) and correlation coefficient

(CC) scores — and compared its performance to those achieved by

the SALICON and SalNet models,in their original versions (i.e., as re-

leased, pre-trained on the datasets in Table 2.1) and after fine-tuning

on SalDogs-train.

Table 3.3 reports a quantitative comparison between these approaches

over the SalDogs-test, POET, SalBirds and SalFlowers datasets. It is

possible to notice that SalClassNet is able to generate more accurate

(and generalizes better) top-down saliency maps than existing meth-

ods, which suggests that driving the generation of saliency maps with a

specific goal does lead to better performance than fine-tuning already-

trained models. Figure 3.4 and 3.5 report some output examples of

the tested methods on different input images from, respectively, Sal-

Dogs-test, POET, SalBirds, SalFlowers. Quantitative and qualitative

results show SalClassNet’s capabilities to generalize well the top-down

visual attention process across different datasets.
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Method s-AUC NSS CC

Dataset SalDogs

Human Baseline 0.984 11.195 1

SalNet 0.720 1.839 0.231

SALICON 0.805 2.056 0.261

Fine-tuned SalNet 0.817 4.174 0.432

Fine-tuned SALICON 0.837 3.899 0.428

SalClassNet 0.862 4.239 0.461

Dataset POET

Human Baseline 0.975 5.189 1

SalNet 0.646 1.274 0.342

SALICON 0.723 1.270 0.355

Fine-tuned SalNet 0.660 1.378 0.300

Fine-tuned SALICON 0.695 1.669 0.356

SalClassNet 0.715 1.908 0.387

Dataset SalBirds

Human Baseline 0.743 9.323 1

SalNet 0.642 2.252 0.330

SALICON 0.680 2.247 0.346

Fine-tuned SalNet 0.644 3.504 0.403

Fine-tuned SALICON 0.686 4.252 0.507

SalClassNet 0.708 4.404 0.529

Dataset SalFlowers

Human Baseline 0.975 9.787 1

SalNet 0.606 1.311 0.1973

SALICON 0.653 1.081 0.1803

Fine-tuned SalNet 0.576 0.916 0.136

Fine-tuned SALICON 0.661 1.599 0.234

SalClassNet 0.683 1.675 0.245

Table 3.3: Comparison in terms of shuffled area under curve (s-

AUC), normalized scanpath saliency (NSS) and correlation coefficient

(CC) between the proposed SalClassNet and the baseline models. For

each dataset we report the human baseline, i.e., the scores computed

using the ground truth maps.
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Figure 3.4: Comparison of saliency output maps of dif-

ferent methods. Each row, from left to right, shows an example

image, the corresponding ground-truth saliency map, and the output

maps computed, in order, by SalNet and SALICON, as released, and

fine-tuned over SalDogs-train and the proposed end-to-end SalClass-

Net model. Beside being able to identify those areas which can be useful

for recognition (see first three rows), our method can highlight multiple

salient objects (both dogs in the fourth row), or suppress those objects

which are not salient for the task (see fifth row).
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Figure 3.5: Examples of output saliency maps generated by different

methods on CUB-200-2011 (first two rows) Oxford Flower 102

(third and forth row) and POET (last two rows row) and compared

to SALICON-generated saliency maps. Each row, from left to right,

shows an example image, the corresponding ground-truth saliency map,

and the output maps computed, in order, by SalNet and SALICON,

both as released and fine-tuned over SalDogs-train, and the proposed

end-to-end SalClassNet model. SalClassNet, when compared to SAL-

ICON (the second best model in Table 3.3), shows better capabilities

to filter out image parts which are salient in general but not necessary

for classification.
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3.3.4 Effect of saliency maps on visual classifica-

tion performance

In this section, we investigate if, and to what extent, explicitly pro-

viding saliency maps can contribute to improve classification perfor-

mance. To this end, we first assessed the performance of VGG-19

and Inception over SalDogs when using as input a) only color im-

ages (3-channel models) and b) ground-truth saliency maps plus color

images (4-channel models). In both cases, as mentioned earlier, we

re-trained Inception and VGG-19 from scratch, on the de-duped ver-

sion of ImageNet and then fine-tuned them on SalDogs-train, to force

the 4-channel versions to use saliency information coming from the

upstream module. Indeed, the publicly-available versions of Inception

and VGG had already learned dog breed distributions (trained over

150,000 ImageNet dog images), thus they tended to ignore additional

inputs such as saliency. Furthermore, a comparison with Inception

and VGG-19 pre-trained on the whole ImageNet would have been un-

fair also because SalDogs contains only about 9,000 images (versus

150,000).

We compared the above methods to our SalClassNet, which au-

tomatically generates saliency maps and uses them for classification.

Besides the version of SalClassNet described in Sect. ?? (which is also

used in all the next experiments), we tested a variant of SalClassNet

which employs VGG-19 (suitably modified to account for the saliency

input) as classifier: this model is indicated in the results as “SalClass-

Net (VGG)”.

Table 3.4 shows the achieved mean classification accuracies for all

the tested methods. It is possible to notice that explicitly providing
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Method MCA

VGG (3 channels) 43.4%

VGG (4 channels) + ground truth saliency maps 47.2%

SalClassNet (VGG) 49.0%

Inception (3 channels) 67.1%

Inception (4 channels) + ground truth saliency maps 68.4%

SalClassNet 70.5%

Table 3.4: Comparison in terms of mean classification accuracy on

SalDogs-test between the original Inception and VGG models, pre-

trained on ImageNetDD (ImageNet without the dog image classes) and

fine-tuned on SalDogs-train, their RGBS variants trained on ground-

truth saliency heatmaps and the respective two variants of SalClassNet.

saliency information (both as ground-truth saliency maps and gener-

ated by SalClassNet) to traditional visual classifiers yields improved

performance. Indeed, both VGG and Inception suitably extended to

make use of saliency information and SalClassNet outperformed the

traditional Inception and VGG-19. The lower classification accuracies

of the RGBS versions of Inception and VGG (trained with ground

truth saliency maps) w.r.t. the SalClassNet variants depend likely by

end-to-end training of both saliency and classification networks, which

results in extracting and combining, in a more effective way, saliency

information with visual cues for the final classification.

Furthermore, SalClassNet showed good generalization capabilities

over different datasets, namely, CUB-200-2011 and Oxford Flower 102.

In particular, we employed SalClassNet as a feature extractor for a
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subsequent softmax classifier and compared its performance to those

achieved, on the same datasets, by Inception and VGG-19 (fine-tuned

on SalDogs-train and employed also as feature extractors followed by

a softmax classifier). Results are shown in Table 3.5 and confirm our

previous claim. The better generalization performance of our method

can be explained by a) the fact that the features learned by the clas-

sifiers are not strictly dog-specific, but, more likely, belonging to a

wider pattern of fine details that can be generally interpreted as sig-

nificant features (e.g, eyes, ears, mouth, tail, etc.) for classification,

thus applicable to a variety of domains; b) SalClassNet, building and

improving on the features by Inception, exploits saliency to weigh

better the most distinctive features for classification. Hence, although

SalClassNet has not been trained on the flower and bird datasets, the

generic nature of the learned features and the improved feature fil-

tering gained through saliency led to high accuracy also on those. In

order to demonstrate the effectiveness of SalClassNets kernels on dif-

ferent datasets, we computed the features learned by SalClassNet for

classification over Stanford Dogs, CUB-200-2011 and Oxford Flowers

102. Table 3.6 shows some of these features, extracted at different Sal-

ClassNet depths and visualized by feeding the whole datasets to the

network and identifying the image regions which maximally activate

the neurons of certain feature maps. It can be seen how meaningful

features for dogs turn out to be meaningful for birds and flowers as

well.
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CUB-200-2011 Oxford Flower 102

Method

VGG 47.6% 59.2%

Inception 61.8% 77.8%

SalClassNet 63.2% 79.4%

Table 3.5: Performance obtained by VGG, Inception and SalClass-

Net over, respectively, CUB-200-2011 and Oxford Flower 102

3.4 Discussion

In this Chapter, we propose a deep architecture — SalClassNet —

which generates top-down saliency maps by conditioning, through the

object class supervision, the saliency detection process and, at the

same time, exploits such saliency maps for visual classification. Per-

formance analysis, both in terms of saliency detection and classifi-

cation, showed that SalClassNet identifies regions corresponding to

class-discriminative features, hence emulating top-down saliency, un-

like most of the existing saliency detection methods which produce

bottom-up maps of generic salient visual features. Although we tested

our framework using two specific networks for saliency detection and

visual classification, its architecture and our software implementation

are general and can be used with any fully-convolutional saliency de-

tector or classification network by simply replacing one of the two

subnetworks, respectively, before or after the connecting batch nor-

malization module. As further contribution of this work, we built a

dataset of saliency maps (by means of eye-gaze tracking experiments
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Layer Stanford Dogs CUB-200-2011 Oxford Flower 102

1

5

11

16

Table 3.6: Examples of features employed by SalClassNet for classi-

fication over three different datasets. Each row of images in the tables

shows sample which provide high activations for a certain feature map.

For each of the tested datasets, we show a 3×4 block of images, where

the first column represents the average image computed over the high-

est 50 activations for that dataset; the last three columns show the

three top activations.
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on 12 subjects who were asked to guess dog breeds) for a subset of

the Stanford Dog dataset, creating what is, to the best of our knowl-

edge, the first publicly-available top-down saliency dataset driven by

a fine-grained visual classification task. We hope that our flexible

deep network architecture (all source code is available) together with

our eye-gaze dataset will push the research in the direction of emulat-

ing human visual processing through a deeper understanding of the

higher-level (such as top-down visual attention) processes behind it.

3.5 Publications

• Francesca Murabito, Concetto Spampinato, Simone Palazzo,

Daniela Giordano, Konstantin Pogorelov, and Michael Riegler.

Top-down saliency detection driven by visual classification.

CVIU, 2018.

3.6 Released Materials

The SalDog dataset, containing of about 10,000 maps recorded from

multiple users when performing visual classification on the 120 Stan-

ford Dogs classes, is available at http://perceive.dieei.unict.it/

index-dataset.php?name=Saliency_Dataset.

http://perceive.dieei.unict.it/index-dataset.php?name=Saliency_Dataset
http://perceive.dieei.unict.it/index-dataset.php?name=Saliency_Dataset
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CHAPTER

FOUR

GATHERING AND MODELING

VISUAL WORLD SEMANTICS FOR

FINE-GRAINED IMAGE CLASSIFICATION

In this Chapter we present computational ontologies and show how

they can be employed to both represent structured domain knowledge

and guide the annotation of a fine-grained visual dataset. To this end,

we introduce a generic visual ontology and describe its extension in

two different domain applications: fruit varieties and cultural heritage

buildings. Then, we propose our ontology-based annotation tool and

its extension, CulTO, specifically designed for the cultural heritage

scenario. Finally we present the highly-specialized image dataset

VegImage,built using our ontology-driven tool and that consists of

3,872 images of 24 fruit varieties and enriched with over 60,000

semantic attributes.

47
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4.1 Ontology-based Modeling of

Visual World Semantics

An ontology is a formalism able to provide, for a specific domain,

a common machine-processable vocabulary and a formal agreement

about the meaning of the used terms, which include relevant con-

cepts, their properties, mutual relations and constraints. Similar

to object-oriented programming, basic concepts of a domain cor-

respond to owl:Class, whose expressiveness can be enhanced by

adding attributes (owl:DataProperty) and relations to other owl:Class

(owl:ObjectProperty).

The vocabulary is designed and validated by human users through

axioms expressed in a logic language and the concepts and properties

can be enriched using natural language descriptions1. Thus, an ontol-

ogy provides an abstract description of objects in a specific domain

(e.g., fruit, birds, dogs, cars, etc.), while its instances are well-defined

real-world objects (e.g, apple, gull, beagle, pickup, etc. )

Before describing our generic visual ontology, let us introduce some

terminology. We refer to an owl:Class as an ontology class, and to a

visual class (e.g., fruit, leaf, petiole) as either a target class or a con-

text class. Target classes represent the main object classes we want

to recognize (e.g., Fruit): typically, these are visual objects which

are spatially well-defined, easily-recognizable and possibly not a con-

stituent part of a larger object (e.g., a fruit rather than a peduncle).

Target classes are organized taxonomically and identified in the ontol-

1http://www.w3.org/2005/Incubator/mmsem/XGR-image-annotation/
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ogy by associating them to SKOS 2 concepts. Instead, context classes

are those that either are not classification targets or that are more eas-

ily identified in relation to a target class. Their presence is necessary

to recognize target instances based on the ontology relations between

the two groups.

In order to model generically target/context classes, their relations

and visual appearances, we first design a domain-agnostic ontology

(referred often in this thesis as visual ontology), whose classes can be

easily extended to model specific application domains. Figure 4.1 pro-

vides a visual representation of the developed ontology. The top-level

ontology classes of our visual ontology are PhysicalObject and Physi-

calProperty : specifically, PhysicalObject is a domain-agnostic class and

acts as a base for a hierarchy of target and context classes, which are

defined as subclasses of PhysicalObject (in a fruit dataset, these could

be Fruit, Leaf, Peduncle, etc.); PhysicalProperty, instead, is designed

to represent domain-specific “attributes” of an object and allows us

to provide detailed and structured information on the visual appear-

ance of a PhysicalObject ; examples of such properties include Shape,

Edge and Color. The main relations between classes are physicalOb-

jectIsPartOf and its inverse physicalObjectHasPart, which link two

PhysicalObject subclasses related by an is-part-of or, more generally,

an is-found-with relationship. These two transitive properties allow

to model all the semantic relations among real world objects needed

for visual categorization.

2SKOS is a common data model for linking knowledge organization systems and

is often used to model taxonomies; SKOS Concepts can be hierarchically organized

through the hasNarrower or hasBroader transitive properties. For more informa-

tion see https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html
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Figure 4.1: A VOWL representation of our generic visual ontology:

PhysicalObject and PhysicalProperty are linked through the generic

physicalObjectHasProperty, which can be easily extended to describe

any domain-specific attribute (e.g., physicalObjectHasShape).

4.1.1 Modeling Specific Application Domains

The ontology described in previous section is thought to model generi-

cally visual objects and their relations with the real world. One of the

main strengths of ontologies is the possibility to easily adapt generic

models to very specific domains. Accordingly, we extended our base

ontology to model two domains: fruit variety and cultural heritage

images.
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Fruit ontology. We extend the above generic visual ontology by

adding entities and relations for visually describing the fruit domain,

with the assistance of three expert agronomists, who also supported us

in the generation of correct instances of the considered fruit varieties,

encoded as instances of the defined ontology which embody all the

information we have collected about the classes in our dataset.

Figure 4.2: An excerpt of the domain-specific fruit ontology: links

to generic classes PhysicalObject and PhysicalProperty are shown

on the left-hand side, while on the right-bottom side are links to the

Species and Variety SKOS concepts (which allow us to define the tax-

onomy for fruit variety). High-quality image: zoom-in to see more

details.
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Figure 4.2 shows an excerpt of the ontology’s VOWL (Visual OWL)

representation for the fruit classification scenario: Fruit and Pedun-

cle are defined extending PhysicalObject (dotted lines in Figure 4.2),

while FruitRusset, FruitShape, TreeHabit, PeduncleRelativeInsertion

and PeduncleThickness are subclasses of PhysicalProperty (dotted line

in Figure 4.2). The target class (i.e., Fruit) is linked to the Species

and Variety classes, which are modeled as SKOS concepts to define

species and variety taxonomies. It is important to understand that

these ontology classes are not mapped to visual class labels, but refer

generically to the categories of objects that we want to classify. The

instances of the ontology classes, instead, correspond to the actual vi-

sual class labels: for example, the apple variety Reinette is encoded as

an instance of class Fruit (namely, ReinetteFruit), while the Reinet-

teLeaf leaf is an instance of ontology class Leaf type. The resulting

fruit ontology, thus, encodes expert knowledge on visual appearance

of different fruit varieties and is used as a basis for our semantic-based

classification approach.

Figure 4.3 reports a ontology instance (in XML) describing the

Reinette apple variety; in particular it shows an instance of Fruit

class (subclass of the generic Physical Object) encoding information

about size, stripes, overcolor, color, lenticels, shape and russet for the

variety Reinette; this information represents the a priori knowledge

provided by domain experts that are used by our visual-semantic

classification approach.

In the instance, all object parts (and their visual properties by

exploiting subproperties of the generic physicalObjectHasPart) are

provided.
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Figure 4.3: An instance example of Fruit class encoding information

for Reinette variety.

Cultural Heritage ontology. We design a specific ontology to

model religious historical buildings. The most peculiar elements of

these buildings are defined as Functional Elements, which are rooms

of the construction that absolve a specific function. Crypt, chorus,

presbytery, chapel, transept, nave, apse and sacristy are some exam-

ples. These structures share the same Constructive Elements, such as

stairs, horizontal structures, walls and openings, generally found in

any other different type of building. Other characteristic structures of

churches are Ancillary Elements, e.g., altar, baptismal font and pulpit.

All these elements, designed in the ontology as subclasses of Phys-

icalObject (which encloses e.g., Altar, BlockAltar, Column, Capital,

etc.), are characterized by several PhysicalProperty (e.g., Material).

These relationships are shown as arrows in Figure 4.4, containing a

partial visual representation of the developed ontology, and specify

which class should be considered part of another (e.g., Capital is part

of Column), while blue circles represent classes such as Capital, Shaft,
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ColumnBase (subclasses of PhysicalObject) or Material (subclass of

PhysicalProperty). The developed ontology can be adapted to other

building types by creating different subclasses of PhysicalObject and

Physical Property in order to represent the objects belonging to the

application domain and their attributes.

Figure 4.4: The Visual OWL representation of a subsection of

the developed ontology. In particular, Column, Capital, Shaft and

ColumnBase are defined as subclasses of PhysicalObject and are

linked to each other by relationships in the form of XHasY; the col-

umn material is in turn defined as a subclass of PhysicalProperty.

High-quality image: zoom-in to see more details.
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4.2 The Annotation Tool

We exploited our visual ontology to support the image annotation

phase, in order to guide and constrain the annotation process, min-

imizing expert user intervention. More specifically, we developed an

ontology-driven annotation tool, which guides and constrains the la-

beling process within the knowledge base obtained by extending our

visual ontology (defined in Sect. 4.1 - showing one more time the

flexibility of our designed ontology to be extended at will) with the

concepts describing the annotation process in a specific application do-

main. In particular, the link between user annotations and ontology

entities is modeled through the Annotation class, a subclass of Sam-

ple class employed to associate sample images, showed to users during

the annotation phase, to a Physical Property. Since the Annotation

class is a subclass of Sample one, it derives the properties hasBB (for

“bounding box”) and isInImage, used to specify the location of an an-

notated object in an image identifier. Thus, for each new annotation,

an Annotation instance is automatically created and associated with

the corresponding PhysicalObject subclass instance (e.g., each annota-

tion of a Reinette apple will be implicitly linked to the ontology class

instance shown in Figure 4.3); this allows the tool to infer all relevant

properties encoded into the ontology (e.g., following the example in

Figure 4.3, the Reinette apple properties will be: stripes are absent,

color is green-yellow, etc.) without the need to specify them manually.

Annotator intervention is needed only in cases a property may assume

multiple values (e.g., Russet for Reinette apple), for which, however,

the tool displays image examples (whose paths are encoded in the

ontology in the PhysicalProperty ’s physicalPropertyHasExample prop-
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erty) to simplify the labeling work for non-experts. Figure 4.5 shows

how we extended the main ontology to cope with the visual annotation

process.

Figure 4.5: Extension of our visual ontology - described in Figure 4.1

- to support the annotation phase. Linking the annotations to the main

ontology (which describes the specific application domain) allows us to

infer all the properties of the object being annotated, thus making users

save annotation times.
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The main peculiarity of our annotation tool, unlike other existing

tools [118, 119, 120], is that part of the label assignment responsibility

is moved from the user to the tool itself, through an annotation process

divided in two phases, which differ by the degree of expert knowledge

required and the amount of annotation work to be carried out.

• The first annotation phase (expert phase) consists of freely as-

signing visual class labels to images. This initial task requires

expert knowledge to distinguish between visual classes. In this

phase, the expert needs only to annotate a single object per im-

age (the image gets the class of the annotated object) in order to

provide non-expert users the basis for correctly assigning labels

to all other target or context items. For example, in the fruit

domain, he/she may just draw one bounding box providing the

class for the object therein depicted; in the bird domain, he/she

may just annotate the species of a bird or parts thereof.

• Once annotations have been “bootstrapped” by specifying

the label for a visual object, the second annotation phase

(non-expert phase) consists of annotating all other objects

present in the image. During this process, we assume that

non-expert users are able to identify generic objects in an image

corresponding to a visual class (e.g., a bird’s beak regardless of

bird species a or a generic leaf; in other words, they recognize

the appearance of each subclass of PhysicalObject).
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This annotation step is guided by the tool in four ways:

1. Annotation of further occurrences of target class:

the tool asks non-expert users to locate all other occur-

rences of the target class already annotated by experts (who

annotate only one object per image).

2. Sequential annotation of context classes: let us sup-

pose the expert annotated a ReinetteFruit object (a variety

of apple); the tool queries the ontology for class instances

linked to that object through subproperties of physicalOb-

jectHasPart or physicalObjectIsPartOf. All the retrieved

class instances are valid context classes for the already-

annotated object, and for each of them the tool asks the

user to locate all occurrences in the image.

3. Single-valued attribute inference: single-valued at-

tributes for a given annotation (e.g., “color: red”, “shape:

round”) are encoded in the ontology instance of the corre-

sponding visual class, so the tool automatically infers and

associates them to the annotation, without any user inter-

vention.

4. Multi-valued attribute assignment: if an attribute

may assume multiple values (e.g., the Reinette fruit variety

can have four types of overcolour property, as shown in Fig-

ure 4.3), the tool requires the user select from the possible

choices, inferred from the ontology. In order to support the

user in the process, the tool also provides visual examples

of the possibile values, through the physicalPropertyHas-

Sample property (see previous section).
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All annotations deriving from points 1, 2 and 3 in the above

list are guaranteed to be correct, as long as expert annotations,

ontology design, and ontology instances are correct, since all

inferences (performed through reasoner [121]) necessarily follow

from the initial expert annotations and from known relationships

between ontology entities and their attributes. Multi-valued at-

tributes’ annotation by non-experts, instead, may need a further

validation step by experts.

As an example of the whole annotation procedure for an image, let us

take into consideration Figure 4.6 (top), where an expert user anno-

tated only one sample of ReinetteFruit. During the non-expert anno-

tation phase, the user is prompted by the tool to annotate all other

target class samples and all context class samples (Figure 4.6, bot-

tom), in sequence. In this phase, the non-expert user is not required

to specify visual properties for the annotated bounding boxes, as they

are directly taken from the underlying ontology.
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Figure 4.6: Top: bounding box annotation of a target object. Ex-

perts have to annotate only one target object per image. Experts have

to annotate only one bounding box and specify for it the class of the tar-

get object (in the example, the user annotated one example of Reinette

Apple). Once this annotation has been done, non experts users have to

annotate of other instances of the target object (in the example other

instances of Reinette Apple in the image) as well as context objects

(e.g., leaves, petioles, etc. ) - Bottom. All the non-expert provided

bounding box labels are inferred automatically from expert annotation

(top image) through ontology.
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4.2.1 CulTO

CulTO is an extension of the tool presented in the previous section

specifically designed for the annotation of images depicting cultural

heritage buildings. It provides means to draw a polygon on a specific

object and to link this annotation to an ontology instance in order to

derive all the instance properties (e.g., the kind of Material or their

Shape), already defined in the ontology itself, and the precise object

class, representing the type of the annotated part (e.g., Altar, Column,

etc.). Moreover, the user may add a text description of the current

annotation (e.g., the presumed altar dedication) and select some other

properties predefined in the ontology for each visual annotation (e.g.,

the object visibility) as shown in Figure 4.7, top. Furthermore, the

tool enable the user to tag the position where an object is found, en-

abling a successive post-processing stage. Finally, in order to annotate

unknown objects, it is possible to insert additional instances selecting

the class whose the object belongs to (see Figure 4.7, bottom), allow-

ing the tool to augment dynamically the knowledge about the current

application domain.
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Figure 4.7: Top: The user is prompted with a dialog box where

he/she is able to tag the position with a red dot. Bottom: Once

the user has selected the class Altar and clicked the “New” button, the

dialog box allows the user to add a new instance in the current ontology

and specify all its attributes (e.g., the altar material).
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4.3 VegImage - A Semantic Fruit Image

Dataset

This section describes the fruit image dataset, VegImage highlighting

the role that ontologies had in the annotation process. Indeed, our

claim is that there are cases when relying only on low and middle

level visual features are not enough to perform visual classification.

This especially holds for small and highly-specialized datasets. To

demonstrate this, we built a benchmarking dataset- using the tool

described in the previous Section - VegImage: a collection of 3,872

images, semantically-enriched with information about appearance and

context, of three common fruit species, namely, malus domestica (ap-

ple), prunus avium (cherry) and pyrus communis (pear). For each

fruit species, several fruit varieties were included: 10 for malus do-

mestica, 7 for prunus avium and 7 for pyrus communis. Together

with fruit images, we also generated over 65,000 bounding boxes (de-

picting the different varieties of fruits, leaves, peduncles, etc.) and a

large knowledge base (over 1,000,000 OWL triples) containing high-

level knowledge on context objects and attributes for the considered

fruit varieties.

Dataset collection. The fruit variety images were mainly down-

loaded from Google Images, Flickr, ImageNet and Yahoo Images.

Given the specificity of the task, for some varieties it was extremely

complex to collect a significant number of samples and for this rea-

son, we also downloaded YouTube documentary videos, from which we

manually selected key frames to avoid near duplicates in the dataset.

For each of the 24 fruit varieties (depicted in Figure 4.8, about 500
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images were manually selected to be included in the dataset. Near

duplicates, low-quality images or images depicting multiple fruit vari-

eties or people as main subjects were filtered out. After this screening,

three expert Agronomists manually checked thoroughly all the result-

ing images. Thus, we collected few hundreds images for each fruit

variety.

Dataset annotation. We performed a two-stage annotation phase

using an annotation tool (described in the following) able to exploits

ontologies to support the annotation phase: a) Image labeling: in

this step, the three agronomists annotated each image with a label

decided through consensus among them; b) Bounding box anno-

tation: ten non-expert users were asked to draw bounding boxes (a

distribution over fruit varieties is given in Table 4.1) for objects of both

target (Fruit) and context classes (Peduncle, Leaf and Petiole), and to

disambiguate multi-valued attributes defined in the Fruit Ontology

(e.g., russet for Reinette apple), which were finally double-checked by

the experts, being the only kind of annotations which could be subject

to errors.
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Malus Domestica

#img #bounding boxes

Variety Fruit Peduncle Leaf Petiole Total

Ambrosia 117 1878 1,218 362 144 3,602

Braeburn 83 405 847 118 94 1,464

Cameo 70 410 210 163 30 813

Fuji 181 2,216 837 230 111 3,394

Golden Delicious 324 2,536 1,770 619 257 5,182

Granny Smith 360 825 434 371 93 1,723

Pink Lady 239 1,145 1,004 283 215 2,647

Renetta 242 1,117 719 231 111 2,178

Royal Gala 150 973 538 266 119 1,896

Stark Delicious 411 1,661 1,406 479 142 3,688

Total 2,177 13,166 8,983 3,122 1,316 26,587

Prunus Avium

#img #bounding boxes

Variety Fruit Peduncle Leaf Petiole Total

Bing 67 1,483 551 532 111 2,677

Black Tartarian 45 542 264 329 123 1,258

Burlat 71 1,099 690 564 215 2,568

Ferrovia 77 2,930 388 1,838 151 5,307

Lapins 87 1,678 430 751 178 3,037

Rainer 140 1,854 776 836 383 3,849

Stella 31 595 221 251 106 1,173

Total 518 10,181 3,320 5,101 1,267 19,869

Pyrus Communis

#img #bounding boxes

Variety Fruit Peduncle Leaf Petiole Total

Abate 286 1,686 1,379 718 510 4,293

Anjou 191 1,031 978 486 513 3,008

Conference 181 1,009 747 523 307 2,586

Coscia 166 898 1,087 479 499 2,963

Doyenne du Comice 77 459 278 274 175 1,186

Kaiser 111 520 275 276 99 1,170

Williams 165 2,057 1323 911 526 4,817

Total 1,177 7,760 6,067 3,667 2,629 20,023

Dataset 3,872 31,007 18,370 11,890 5,212 66,479

Table 4.1: Number of images and bounding boxes for each fruit va-

riety. In total, the Fruit Image Dataset contains 3,872 images and

66,479 bounding boxes of fruits, leaves, etc.
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Figure 4.8: Example images from the VegImage dataset. Numbers

in red are number of images per class while in green the number of

bounding boxes.

Comparison to existing datasets for visual categorization. Ta-

ble 4.2 compares the Fruit Image dataset with three popular bench-

marking datasets for fine-grained image classification: Oxford-IIIT Pet

[7], Oxford Flower 102 [6] and Caltech-UCSD Birds (CUB-200-2011)

[8]. Although the Fruit Image dataset contains less categories and

images than Oxford-IIIT Pet, Oxford Flower 102 and CUB-200-2011,

it is more complete in terms of objects per image, parts per object

and attributes per object, besides being the only one enriched with
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a large structured knowledge base. Furthermore, the number of ob-

jects per image O/I = 8.0 in our dataset greatly outnumbers existing

fine-grained datasets. The number of parts per object P/0 is sensi-

bly greater in CUB-200-2011 (12.0) than in ours (1.14) since birds are

more structured objects than fruits. However, our parts per object

refer more to context objects while in CUB-200-2011 are parts of the

objects themselves. Also the number of attributes per object A/O

in CUB-200-2011 is almost three times than ours since it is directly

connected to the object parts.

#C #I I/C O/I P/O A/O

Fine-grained datasets

Oxford-IIIT Pet [7] 37 7,349 198.6 1.0 - -

Oxford Flower 102 [6] 102 8,189 80.3 1.0 - -

CUB-200-2011 [8] 200 11,788 58.9 1.0 12.0 31.5

Fruit Image 24 3,872 161.3 8.0 1.14 11.0

Table 4.2: Comparison between popular visual datasets and our

dataset. Key: #C: number of classes; #I: number of images; I/C:

average number of images per class; O/I: average number of objects

per image; P/O: average number of parts per object; A/O: average

number of attributes per object. For our dataset, the O/I value refers

to the number of target objects, whereas the P/O value counts context

objects as object parts; object attributes are the OWL triples.

To better understand the benefits that our tool and computational

ontologies provided to the annotation phase we assessed: 1) workload

shift from experts to non-experts and 2) non-expert annotation time.

Domain experts manually annotated 3,872 fruit images, while 66,479

bounding boxes, and their attributes, were provided by ten non-expert
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users. Bounding box attributes were inferred automatically by the

OWL reasoner (through deductive inference encoded in Protege3: the

tool we used for ontology development) after the corresponding bound-

ing box class (e.g. Leaf ) and variety (e.g., Cameo) were specified. The

annotations of 3,872 fruit images by the three experts took about 9

days (average of about 1.3 hours per day per expert) for a total of 35

(expert) worker hours, while the annotation of 66,479 bounding boxes

took about 12.5 days (average of 2.5 hours per day per annotator).

In total, annotating the whole image dataset took 349 worker hours:

314 (about 90% of the total) hours provided by non-experts and the

remaining 35 hours by experts.

The average annotation time per bounding box for non-experts

was 17.1 seconds, which is impressive given that the VegImage deals

with a specific and complex application domain, and considering, for

instance, that in COCO [122] (a large-scale dataset for basic image

classification) the annotators spent, on average, about 80 seconds per

bounding box.

As a final note, our ontology-based tool allows to tackle the issue

recently reported in [123], i.e., high-quality annotations on domain-

specific applications should be performed, if not by experts, at least

by citizen scientists, since unskilled workers perform extremely bad.

While this may hold for “traditional” annotation approaches, encoding

and incorporating domain knowledge in a tool able to constrain the

labeling process demonstrated to be a valid alternative, allowing non-

expert annotators to provide high-quality annotations while saving

significantly expensive (expert) resources.

3http://protege.stanford.edu/
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4.4 Discussion

In this Chapter we first introduced computational ontologies as a way

to model high-level visual information about objects, their context

and appearance and showed their generalization capabilities in mod-

eling two different application domains: fruit variety and cultural her-

itage. We then presented a knowledge-driven annotation tool which

exploits specialized domain knowledge to generate semantic annota-

tions, significantly reducing the efforts of domain experts, for classi-

fication problems. The tool was used by three expert agronomists to

provide high-level and coarse annotations and by ten non-expert users

who provided fine-grained annotations without any knowledge on the

application domain. The resulting VegImage dataset contains 3,872

images, over than 60,000 bounding boxes, and over than 1,000,000

OWL triples, representing, to the best of our knowledge, one of the

most comprehensive resources for fine-grained classification and one

the most exhaustive knowledge bases in computer vision. In the next

Chapter, we will describe a machine learning classifier leveraging the

built knowledge base to perform fine-grained recognition.
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2017.

• R Garozzo, F Murabito, C Santagati, C Pino, and C Spamp-

inato. Culto: an ontology-based annotation tool for data cura-

tion in cultural heritage. International Archives of Photogram-

metry, Remote Sensing and Spatial Information Sciences, 2017.

4.6 Released Materials

Our VegImage dataset, images and high-level annotation, is

available for download at http://perceive.dieei.unict.it/

index-dataset.php?name=Fruits_Dataset.

http://perceive.dieei.unict.it/index-dataset.php?name=Fruits_Dataset
http://perceive.dieei.unict.it/index-dataset.php?name=Fruits_Dataset
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FIVE

VISUAL SEMANTICS FOR

FINE-GRAINED VISUAL CLASSIFICATION

This Chapter tackles the problem of building machine learning mod-

els exploiting jointly purely-visual features and high-level structured

knowledge described through a formal ontology. We then present the

results achieved on the VegImage dataset, introduced in the previous

Chapter, and show how our classifier, compared to the state-of-the-

art methods, yields higher accuracy, thus demonstrating that the ex-

ploitation of the semantic information can indeed help support image

recognition.

71
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5.1 Semantic-based Image Classification

As mentioned before our classifier is made of two blocks: a) a

knowledge-based classifier, and b) a standard CNN classifier relying

only on visual features. Our main focus is on describing the former, as

it represents the novel aspect — classification-wise — of this model;

we see later how the predictions from the two classifiers are merged.

Knowledge-based classifier. The underlying idea of our

semantic-based classifier consists of building a Bayesian Network

graph as the one depicted in Figure 5.1, where each node represents

a PhysicalObject or a PhysicalProperty defined in our ontology and

each edge corresponds to an interconnection between nodes in terms of

being-part-of-this-object or being-identified-by-this-property, and per-

forming recognition through inferences over the graph. We opt for

using graphs since they inherently allow to encode ontology relations,

such as co-occurrence (through the graph definition) and mutual ex-

clusion by properly setting the conditional probabilities among graph

nodes, representing ontology entities. In particular, given an ontology

instance O, we built a graph GO(N,E), with N = N1 ∪ N2 (where

N1 describes the set of target and context classes and N2 the set of

visual properties )nodes and E edges. For example, in the fruit classi-

fication task, we have N = 12 (corresponding to the number of circles

depicted in Figure 5.1) given by N1 = 4 main visual classes (Fruit,

Leaf, Petiole, Peduncle) and N2 = 8 class properties defined in the

ontology (e.g., FruitStripes, FruitColor, LeafShape, etc.); we leave out

those properties which cannot be visually identified since they encode

quantitative information about the target class (such as FruitSize).
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Each edge is identified by a matrix containing the conditional prob-

abilities between object classes and visual properties; in particular, be-

ing P the number of possible values that can be assumed by a property

and V the number of object classes (in the case of fruit classification

V is set to 24), it is possible to define a matrix [C]P×V where each

element cij represents the conditional probability

cij = p(v = vj|p = pi) (5.1)

i.e., the probability of the variety vj given the property value pi. In

order to compute these conditional probabilities we exploit the expert

knowledge encoded in the domain ontology; specifically, being fi the

absolute frequency of the property value pi, i.e., the number of its

occurrences in the ontology instances (e.g., considering the property

FruitColor, the absolute frequency of property value Yellow is com-

puted as the number of varieties whose fruit color is Yellow), we set

the conditional probability as follows:

cij =

⎧⎨⎩ 1
fi
, if the variety vj exhibits the property pi.

0, otherwise.
(5.2)

thus, assigning low conditional probabilities to those properties’ val-

ues which cannot be considered distinctive of a specific object class.

Therefore, the structure of this Bayesian Network graph depends only

on the knowledge (classes, relations between classes and their in-

stances) contained in the Fruit ontology; given this graph, a new test

image is classified by performing inferences based on the structure it-

self (in terms of nodes, edges and conditional probabilities) and the

initial evidences computed for each node, which are then propagated

throughout the graph (see Figure 5.1 for an example).
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Fruit
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Figure 5.1: An example of the Bayesian Network graph for the fruit

classification task. Red nodes are visual classes while green ones cor-

respond to visual properties. For simplicity, initial evidences of only

one visual class (Fruit) and two visual properties (FruitStripes and

LeafEdge) are shown.

Formally, our method consists of the following steps:

(a) Compute visual evidences for test images. For each new

test image I, we suppose an uniform distribution of the visual

class labels; hence, for each visual class node (i.e., the red ones

in Figure 5.1), we set the initial evidences to

e =<
1

V
, ...,

1

V
> (5.3)

i.e., an array of 1
V
with dimension V . For visual properties (i.e.,

the green nodes in Figure 5.1) we apply a three-phase approach:

1) first, we employed the object detectors to localize objects
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belonging to a visual class (Fruit, Leaf, Peduncle, etc.); 2) after-

wards, we apply a non-maximum suppression, thus leaving, for

each visual class, only one detected object, corresponding to the

detection with higher likelihood for that class; 3) finally, on the

filtered objects, we run CNN-based pretrained classifiers and use

its features maps to detect classes’ attributes (e.g., color, shape,

etc.; all properties are specified in the ontology).

(b) Perform Belief Propagation Since each image is grounded

to a directed acyclic graph, we could use Conditional Random

Field to assess the marginal probabilities of unobserved variables

as in semantic relation graphs [12] or in scene graphs [64]. This,

however, besides requiring large annotated data, would affect its

generalization capabilities since it would need a new training of

CRF for each scenario, while our approach needs only to train

the detectors (as also in [12, 64]). Thus, we compute class red

labels’ probabilities by performing inferences over the graph.

In particular, each graph can be seen as a Bayesian Network with

N random variables xi defining the joint probability function

p(x1, x2, ...xn) =
N∏
i=1

p(x1)|par(xi)) (5.4)

We compute marginal probability or belief (p(xi) or bi) for the

graph node corresponding to the target class; the result repre-

sents the distribution of visual class labels’ beliefs.

Marginal probabilities are computed through Belief Propagation

(BP) [124], which has been successfully employed to perform

scene understanding based on the use of priors [125].
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Joint visual-semantic classifier. Alongside our knowledge- based

approach, we train a purely-visual classifier. Indeed, in spite of the

above-mentioned limitations of current deep models for fine-grained

recognition, they can still provide necessary information complemen-

tary to the one harnessed from encoded expert knowledge. Therefore,

we compute the visual probability distribution P v
I as the output of a

convolutional neural networks softmax layer.

The final class prediction for test image I is carried out by com-

puting a prediction vector PI as the combination of the semantic prob-

ability distribution P s
I and the visual probability distribution P v

I . In

particular, in order to combine the two distributions, we opt for their

weighted sum; specifically the prediction vector is computed as

PI = OV + α ∗ P s
I (5.5)

where P v
I represents the visual classifier distribution, P s

I the semantic

classifier one and α is parameter which scale the probability marginals

(or beliefs) before their combination with the CNN softmax output.

The resulting PI may not strictly be a probability distribution (as the

sum of the elements can be greater than 1), but we are only interested

in retrieving the maximum value, as that will be the final prediction

for the class c assigned the input image:

c = argmax
i

PI (5.6)

Figure 5.2 shows an example for how the whole classification pro-

cess works. In particular, for each test image I, we run an object

detector to identify, for each visual class, (i.e., Fruit, Leaf, Peduncle

and Petiole) the location with higher probability. Then, on the se-

lected locations, visual properties’ detectors are applied to compute
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the initial evidence (likelihood) for each property; once these evidences

are obtained, they are propagated throughout the Bayesian Network

graph by means of the Belief Propagation and the resulting marginals’

probabilities distribution is combined with its counterpart obtained

from the visual-only classifier in order to estimate the image class for

the test image.
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Figure 5.2: Example of the proposed semantic-based classifier. Top:

semantic classification workflow for test image I. In the example, we

run a Fast R-CNN detector and apply non-maximum suppression inde-

pendently, thus obtaining two locations, one for the visual class Fruit

and another for the visual class Leaf. Then, on each location, the

corresponding properties detectors are applied in order to compute the

properties likelihoods used as initial evidences in the Bayesian Net-

work graph. The application of the Belief Propagation provides the

marginal probabilities distribution over the labels, resulting in a 24-

dimensional vector. Bottom: Finally, we compute the softmax out-

put of the visual-only CNN classifier applied on the entire image and

combine the visual-based class distribution with the semantic one in

order to predict the correct classification output. For clarity, initial

evidences of only one visual class (Fruit) and two visual properties

(FruitStripes and LeafEdge) are shown.
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5.2 Performance Analysis

This section reports the experimental evaluation we carried out to

demonstrate the advantages that structured semantics bring to fine-

grained image classification providing the results achieved by our

method on the VegImage and comparing it to the state of the art.

As shown in Sect. 5.1, our knowledge-based image classification

approach relies on CNN-based object detector to detect instances of

target and context classes and CNN-based classifier for classification

of object visual properties. As object detector, we employed Fast

R-CNN detection model [126]. In particular, we used the configu-

ration based on the 8 pre-trained layers presented in [1], on which

we fine-tuned the two last sibling layers (softmax and bounding

box regressor) in order to detect the categories corresponding to

visual classes (i.e., Fruit, Leaf, Peduncle and Petiole) plus back-

ground. We trained the Fast R-CNN with mini-batches of 2 images

for 30,000 iterations with a learning rate initialized at 0.001 and

reduced by a factor of 10 for the last 10,000 iterations. Training

patches were extracted through selective search: positive samples

were chosen as those having an intersection over union score with

ground truth bounding boxes over 0.5, while the remaining bounding

boxes were used as negative samples. Standard random-flipping

data augmentation and mini-batch (batch size: 128 ROIs, 64 ROIs

sampled for each image) SGD training were employed to train the

model. In Table. 5.1 Selective Search and Fast R-CNN performance

on the VegImage dataset are reported; in particular, for Selective

Search object proposals we computed the ABO metric (Average Best

Overlap per class according to the Pascal Overlap criterion) while
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Classes Selective Search Fast R-CNN

Fruit 0.43 35.4

Leaf 0.40 27.1

Peduncle 0.35 26.3

Petiole 0.33 9.7

Mean 0.38 24.5

Table 5.1: Performance of object proposal and object detection algo-

rithms on the VegImage dataset. Selective Search results are reported

in terms of ABO (Average Best Overlap), whilst the mAP (mean

Average Precision) is used to compute Fast R-CNN performance.

Fast R-CNN object detections are evaluated in terms of mAP (mean

Average Precision). Even tough both Selective Search and Fast

R-CNN algorithms yield low performance on the VegImage dataset,

the integration in our algorithm of the non-maximum suppression,

which leaves only one object for each class, corresponding to the one

with the higher likelihood, allow our classifier to work with detections

characterized by a very high precision.

As classifier to identify visual properties (colors, shapes, etc.),

we employed a pretrained CNN-based classifier (i.e., OverFeat [2]);

in particular we reused the first two convolutional layers from the

pretrained model to extract a 96-dimensional feature vector provided

as input to a neural network, consisting of a fully connected layer

followed by a softmax classifier, fine-tuned on a case-by-case basis to

detect classes’ attributes. In order to train and test these attributes’
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Property #classes Accuracy

FruitColor 13 50.9%

FruitOvercolor 17 55.4%

FruitShape 14 35.6%

FruitLenticels 18 49.4%

FruitStripes 4 83.2%

FruitRusset 10 82%

LeafEdge 6 39.8%

LeafShape 4 44.6%

Table 5.2: Performance of properties’ detectors: for each visual at-

tribute we report the number of properties values (i.e., the dimension

of classifiers’ output) and the detection accuracy.

detectors we relied on the ground-truth bounding boxes and the prop-

erties’ annotations available in the VegImage dataset. Classification

accuracy of each property detector is presented in Table. 5.2, where

#classes represents the number of values a property can assume; in

particular, the recognition of some properties, such as FruitShape,

FruitLenticels, Leaf Edge and LeafShape, represents a task which can

hardly be solved even using deep features.

Semantic-based classifier is combined to visual-based classifier,

which in our case, consisted of DenseNet121 model pre-trained on

ImageNet [4] and fine-tuned on the VegImage dataset. DenseNet

fine-tuning was performed by replacing the softmax layer and training

all but the first two network layers. Random cropping and horizontal



82 Chapter 5. Visual Semantics for Fine-grained Visual Classification

flipping were employed for data augmentation, and mini-batch (batch

size: 16) SGD with momentum for training. Learning rate was set

to 0.005 with a decay of 0.5. Weight decay was set to 0.00005. We

empirically set the parameter α to 0.015.

Given the flexibility of the Bayesian Networks, we evaluated our

classification approach with different configurations; Table. 5.3 shows

the performance achieved removing one node (corresponding to a

visual property or a visual class) at a time in order to identify which

ones contribute the most to the classification accuracy; performance

was compared to the baseline represented by the DenseNet model

fine-tuned on the VegImage dataset. Removing the node related to

the visual class Leaf led to the best performance; this is due to the

low average precision achieved by the Fast R-CNN object detector

on this visual class together with the low accuracy of the detectors

trained to identify the two properties LeafEdge and LeafShape; higher

performance of Leaf properties’ detectors would likely allow to better

exploit this context class in the classification phase.
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Graph Structure Belief Propagation DenseNet + Belief Propagation

All nodes 23.8% 47.9%

All nodes \ FruitColor 20.1% 47.3%

All nodes \ FruitOvercolor 23.5% 47.6%

All nodes \ FruitShape 19.5% 46.7%

All nodes \ FruitLenticels 23.6% 47.1%

All nodes \ FruitStripes 21.4% 47.7%

All nodes \ FruitRusset 23.8% 47.9%

All nodes \ LeafEdge 23.6% 47.8%

All nodes \ LeafShape 23.6% 48%

All nodes \ Leaf 24.6% 48.6%

DenseNet 44.2%

Table 5.3: Performance of the proposed classification approach: each

row corresponds to a different configuration of the Bayesian Network

graph structure. We report the accuracy obtained when using the Belief

Propagation inference only and when beliefs are combined with the fine-

tuned DenseNet model output. Performance reached using only visual

features are represented by the DenseNet accuracy. Best performance

achieved removing the Leaf node from the graph.
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Furthermore, we evaluated how the overall classification per-

formance changed w.r.t the distribution of properties detectors’

likelihoods. In particular we assessed the classification performance

by imposing a uniform misclassification rate on the detectors’ outputs.

Figure 5.3 shows the performance obtained by Belief Propagation

inference over the data simulated at different error values; it can

be noted that a 10% uniform error on visual properties does not

cause a 10% drop of the overall classification accuracy, likewise

when the uniform error is set to 20% or 30% Belief Propagation

achieved a classification accuracy higher than 80% or 70%. Moreover,

when we forced a misclassification of 45 visual properties over 100

(which corresponds more or less to the average error obtained by the

properties’ detectors as reported in Table 5.2), the Belief Propagation

accuracy obtained was around 67%, about 20% higher than the best

result presented in Table 5.3; this gap is due to the error distri-

bution in the VegImage dataset, which, of course, is not uniformly

distributed as supposed in the simulation. Indeed, the classification

of some properties, such as Yellow color or Absent stripes, is much

easier if compared to the classification of property values whose

recognition represents a very complex task even for domain experts

(e.g., GoldenYellow color or SlightlyVisible stripes). Nevertheless,

the performed simulation provides a basis to assess the validity of our

semantic classifier, whose performance are substantially affected by

the visual properties’ detectors and by the bias existing in the dataset.

We finally compared our semantic-based classification approach –

described in Sect.5.1 – to common state-of-the-art fine-grained classi-

fication methods, namely OverFeat [97] GoogLeNet [4], ResNet [127]
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Figure 5.3: In red the classification accuracy obtained by Belief

Propagation inference over the simulated data obtained varying the

rate of the misclassification error imposed to the visual properties’

detectors. For error percentage lower than 50%, Belief Propagation

performance on simulated data are higher than the ones achieved by

the combination of visual classifiers with the marginals computed ap-

plying the properties’ detectors to the real data (green line) or the ones

obtained using visual descriptors only (blue line), as reported in Ta-

ble 5.3.

and DenseNet [128], pre-trained on ImageNet and fine-tuned on

the VegImage dataset. Training settings for Overfeat, ReseNet and
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Learning Visual Descriptors

OverFeat GoogLeNet ResNet DenseNet

26.6% 41.5% 41.1% 44.2%

Exploiting High-Level Knowledge

GoogleNet + BP ResNet + BP DenseNet + BP

— 44.8% 44.5% 48.6%

Table 5.4: Mean Classification Accuracy achieved a) when using

only low and middle-level visual descriptors (top row) and b) when

integrating high-level knowledge (bottom row).

GoogleNet were set the same as DenseNet fine-tuning for integration

with knowledge-based classifier (see above). The performance in

terms of mean classification accuracy is presented in Table 5.4,

which reports results obtained learning visual descriptors only along

with the improved accuracy achieved when integrating high level

knowledge in the classification process; our semantic-based method

yields an average performance increase (with respect to the DenseNet

baseline) of about 4.4%. This provides evidence of our original claim,

i.e., that by adding semantic knowledge it is possible to improve

performance w.r.t. learning visual features only . Indeed, the fruit

dataset describes an application domain where class discrimination

is strongly based on a context dependency between objects, which

needs to be encoded and integrated into the classification methods as

a priori information.



5.3. Discussion 87

5.3 Discussion

In this Chapter we demonstrated that the integration of visual world

semantics into computational models supports greatly computer vision

methods. In particular, we proposed a new classifier able to exploit

jointly semantic high-level knowledge and visual cues. The classifier

was tested on the VegImage dataset, described in Chapter 4 and the

experimental results achieved on the fruit classification task demon-

strates that integrating knowledge-enriched visual annotations out-

performs state-of-the-art fine-grained and deep learning approaches.

Results also suggest that deep-learning show difficulties in tackling

highly-specialized tasks, for which human knowledge in particularly

needed and for which it is not easy to collect large - annotated -

datasets.

5.4 Publications

• Francesca Murabito, Simone Palazzo, Concetto Spampinato,

and Daniela Giordano. Exploiting structured high-level knowl-

edge for domain-specific visual classification. In PAMI, under

(second) review, 2019..
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CHAPTER

SIX

CONCLUSIONS

In this thesis we explored several ways to incorporate human capabil-

ities into automatic models, from the computation of saliency maps

guided by a classification task to the creation of semantic-enriched

datasets to the development of semantic-driven deep neural networks

trained to perform fine-grained visual recognition.

Initially, we introduced the SalClassNet model, an end-to-end con-

volutional neural network which computes saliency maps, by emulat-

ing the way humans shift their attention accordingly to the task to be

performed, and exploits those maps to guide a classification network.

To test this approach, we collected a dataset of eye-gaze maps by ask-

ing several subjects to look at images from the Stanford Dogs dataset,

with the objective of distinguishing dog breeds. Performance analy-

sis on our dataset and other saliency benchmarking datasets showed

that SalClassNet outperforms state-of-the-art saliency detectors, such

as SalNet and SALICON. Finally, we also analyzed the performance

89
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of our model in a fine-grained recognition task and found out that it

yields enhanced classification accuracy compared to GoogleNet and

VGG-19 classifiers. The achieved results, thus, demonstrate that 1)

conditioning saliency detectors with object classes reaches state-of-the-

art performance, and 2) explicitly providing top-down saliency maps

to visual classifiers enhances accuracy.

To further investigate how integrating human skills to computa-

tional models enhance performance we attempted to exploit high-level

visual knowledge for fine-grained visual categorization.

Nevertheless, incorporating high-level knowledge into classic ma-

chine learning methods poses several unexplored challenges from its

extraction and modeling to its effective inclusion into classification

approaches. To address these challenges, we employed computational

ontologies to a) model visual knowledge and b) built a hybrid visual-

semantic classification framework. Our classification method is based

on building a Bayesian Network grap,h whose structure depends on

the knowledge encoded in the ontology, and performing an inference

over the graph, which backs up a standard CNN classifier.

We tested our approach on the fruit variety classification task.

To this end, we built VegImage, a dataset with 3,872 images from

24 different fruit varieties (with only subtle visual appearance differ-

ences), over 60,000 bounding boxes of fruits, leaves, etc. and a large

knowledge base (1 million OWL triples) representing a-priori knowl-

edge about object appearance. Performance analysis showed that our

method improve state-of-the-art purely-visual classifiers, substantiat-

ing our claims.

All the approaches presented demonstrated how the development

of algorithms that emulate the whole complex of perceptive and cog-
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nitive human processes and which are not restricted to the trivial

reproduction of the results through a “black-box” models, such as

convolutional neural networks, can effectively help in achieving higher

performance in several computer vision tasks.
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