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Abstract

Smoothed Particle Hydrodynamics is a Lagrangian mesh-free
method that has been gaining momentum in the field of Computa-
tional Fluid Dynamics. Thanks to its nature, SPH is able to deal
with complex flows and their features, such as non-Newtonian
rheologies, free surface, thermal dependency, phase transition,
large deformations, etc. SPH shows an intrinsically parallel
nature, that allows its execution on high-performance parallel
computing hardware, such as modern Graphics Processing Units
(GPUs), gaining advantages in terms of simulation time. In this
thesis we will work on GPUSPH, an implementation of the SPH
method that runs on GPUs. We will study the simulation of a
very complex fluid: lava. The combination of free surface, natu-
ral topography, phase transition and the formation of structures
such as levees and tunnels makes the modeling and simulation
of lava flows an extremely challenging task for CFD that has an
important impact in numerous fields of engineering and scientific
research. We will see the introduction in GPUSPH of models
and strategies that deal with the features characterizing lava



flows, including the development of a semi-implicit scheme, that
allows to simulate very high-viscosity fluids ensuring robustness
and reducing simulation times. The new implementation will be
tested to verify its correctness and study the accuracy and the
performance achieved.
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Introduction

Engineering, and in general, any scientific field, including funda-
mental and applied research, has taken a huge advantage from
the introduction of numerical simulations, expanding their limits
and horizons and raising their ambition. By means of numerical
simulation, many physical or technical problem that in the past
needed to be solved by hand or using analogical models, with
unsatisfying outcomes, can be solved with the help of a computer,
obtaining better results in a shorter time. Many of the largest
and innovative works, masterpieces of engineering and science,
wouldn’t have been as they are, or even possible, without the
assist given by this tool.

One of the largest branches of numerical simulation is Com-
putational Fluid Dynamics (CFD), that consists of the resolution
of Fluid Dynamics problems by means of computers and suited
algorithms. Since the inception of CFD, numerous ways of taking
a physical problem into a computer and getting a solution have
been developed, generating a large variety of methods for CFD.
Their classification takes into account aspects like the Euerian

17



18 INTRODUCTION

or Lagrangian reference, the use or lack of analytical structures
called meshes, the physical equations employed, the approach
used for their discretization, and so on. The combination of these
properties gives to each method its own properties, and defines
the set of applications for which it is more suited. Recently, a
class of methods based on a Lagrangian, mesh-free approach has
emerged. In particular the Smoothed Particle Hydrodynamics
(SPH) method has found a large number of applications in many
scientific and technological fields, including oceanography, vol-
canology, structural engineering, nuclear physics and medicine.
In SPH the problem is discretized by means of particles that
carry physical information about small volumes of the fluid, and
the evolution of the properties of each particle is determined by
a discretized form of the physical equations: the Navier—Stokes
equations for the motion, thermal equation for the temperature,
and so on. The properties of the fluid at any point in space
is computed by a smoothed average of the properties of the
neighboring particles. Thanks to its nature, SPH easily allows to
model and simulate both simple and complex fluids, simplifying
the treatment of aspects that can be challenging with more tradi-
tional methods: dynamic free surfaces, large deformations, phase
transition, fluid/solid interaction and complex geometries. In
addition, the most common SPH formulations are favorable for
implementation on high-performance parallel computing hard-
ware, such as modern Graphics Processing Units (GPUs), gaining
advantage in terms of another aspect of Numerical Simulations,
the simulation time.

In this thesis we will study the application of the SPH method
to one of the most complex phenomenon in Fluid Dynamics: lava
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flows. Lava is a complex fluid with a generalized Newtonian rhe-
ology that strongly depends on temperature and other physical
and chemical aspects of the flow, which may evolve over time.
The combination of the free surface, the natural topographies
over which it flows, and phenomena such as phase transition
and the consequent formation of levees and tunnels, makes the
modeling and simulation of lava flows an extremely challenging
task for CFD. Studying and simulating lava flows is important in
many practical applications, such as the production of scenarios
for hazard assessment [23, 13] and the planning of risk mitigation
measures, as well as in scientific research to improve our under-
standing of the physical processes governing the dynamics of lava
flow emplacement [18]. For the simulation of lava flows, SPH
presents a number of advantages over traditional mesh based
methods, such as the implicit tracking of the free-surface and of
any internal interface (e.g. solidification fronts) and the lack of
restrictions in the geometry of the fluid and of the containing
structures.

We will start with an explanation of the SPH method and of
the characteristic of lava flows. Then we will introduce GPUSPH,
a simulation engine based on the SPH method that runs on GPUs,
achieving notable simulation performance over naive implementa-
tion of the SPH method. We will extend GPUSPH with methods
that improve the application to lava flows, and validate the imple-
mentation with appropriate tests. In particular we will introduce
a new integration scheme, leading to better performance and
more robust simulation in case of high viscosity. At the end
we will test the final model, simulating some benchmark test
that are common in the field of volcanology, in order to rate the
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accuracy and performance of the simulations.

Although the work is focused to the simulation of lava flows,
the model that has been obtained maintains the identity of a sim-
ulator for general purpose CFD simulation, with the advantage
of being applicable also to those fluids that share their physical
properties with lava.



Chapter 1

Smoothed Particle
Hydrodynamics

One of the most important branches of numerical simulation is
Computational Fluid Dynamics (CFD), a discipline that concerns
the simulation of Fluid Dynamics problems using computers,
covering a very important role since very few problems in this
field can have an analytical solution. Many ways of solving
CFD problems have been introduced over time; we will focus on
Smoothed Particle Hydrodynamics (SPH). To understand the
essence of this method and highlight what makes it different from
the others, we will give an introduction to the world of numerical
simulation and the way of classifying the numerous methods that
it embraces, showing in what context SPH is placed.

21



22 CHAPTER 1. SPH

1.1 Numerical simulation

Numerical simulation constitutes a powerful tool at the basis of
the modern progress in engineering and in almost every scientific
field. Starting from a discrete interpretation of the relevant as-
pects that characterize a physical problem, numerical simulation
allows to find a solution by means of computers, and to get
information on the system or the phenomena involved, according
to the purpose of the study. Before the possibility to perform
numerical simulations, series of approximations and assumptions
were very common in the study of a problem, leading to inaccu-
rate and usually incomplete results, thus limiting the progress of
science and technology. The introduction of computers has then
settled the basis for the development of numerical simulation
methods, impressing a strong momentum to this new field and
to all the fields that benefit from it.

Numerical Simulation allows to make easier design, study
and do preliminary experiments, without the need to perform
expensive tests in the laboratory and on the field.

Numerical simulation covers an essential role in hard design
[10] or test processes, where prototyping or trial and error is
an expensive or dangerous operation. Think for example of the
design of a nuclear plant, of an aircraft or a rocket, involving
a large amount of money and human lives. Figure 1.1 shows
a study performed on the Orion space capsule; On the top is
reported the real setup that has been built to test the impact of
the capsule with the water, and study the effect of the attack
angle; the picture at the bottom shows a numerical simulation of
the same problem, run on a computer with the possibility to sim-
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Figure 1.1: Testing the Orion space capsule. The real experi-
ments (top and center, from the NASA Langley Research Center)
and a numerical simulation (bottom) with the SPH method (proff.
A. Hérault, CNAM, FR, and R. A. Dalrymple, JHU, MD, USA).



24 CHAPTER 1. SPH

ulate numerous cases without building any expensive structure.
Moreover in this last case it is possible to rapidly implement
a change in the design of the capsule and immediately test its
effect, or even to reproduce a failure and study it in absolute
safety.

Numerical simulation also allows the extraction of information
that is normally hidden or difficult to obtain. Examples are the
energy dissipated by a certain chemical reaction, the force exerted
by a fluid onto a body, the stresses on a mechanical structure,
the velocity field of a fluid on an irregular conduit, and so on.

Numerical simulation is also a fundamental pillar of environ-
mental studies, aimed at forecasting the behavior of a natural
system, being it either the climate, a river or an erupting volcano.

1.1.1 Temporal and spatial discretization

When setting a numerical simulation we need to translate the
domain into a discrete description, in order to be processed using
numerical analysis methods. This discretization must be done
both in the time and space domains.

To discretize in time a model describing a dynamical system
a simple solution is to replace the derivatives in the differential
equations with finite differences.

In space, the geometry needs to be divided into discrete
components with techniques that are different for each method.
We obtain then a finite set of elements, to associate to so-called
interpolation nodes, that are used as representative spatial points
to run computations. These nodes usually present a form of
connectivity resulting into a grid, or what is called a mesh.
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1.1.2 Grid based methods

Physical problems can be studied according to two description
frames known as Lagrangian and Eulerian.

e In the Lagrangian frame the observer follows the single
portion of the fluid, as it moves in space and time.

e In the Eulerian the observer focuses on a specific point
through which the system evolves.

The first gives a material description of the problem, and is
commonly used in the so called Finite Element Method (FEM),
while the Eulerian description gives a spatial representation of
the problem, and is typical of so called Finite Difference Methods
(FDM).

These two representation frames originate two families of
grid based methods, respectively Lagrangian and Eulerian.

Lagrangian grids

In Lagrangian grid based methods the grid (or mesh) is fixed to
the simulated body and follows it during the whole simulation,
adapting to all its deformations. In case of complex geometries
the grid can be irregular, being more concentrated in the regions
of higher distortion to better follow the curvatures. Since these
grids are attached to specific parts of the simulated system, they
can be used to impose boundary conditions on the surface or
any front of a given fluid.
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The code to run simulations that involve Lagrangian grids
are usually simple and give quite accurate results, in fact this
kind of methods has widespread usage.

However, there are difficulties when dealing with very dis-
torted geometries and large deformations of the simulated system,
like explosion, fragmentations, turbulence etc. Tracking this kind
of phenomenon with a mesh is intrinsically difficult and needs
the mesh to be rebuilt to better adapt to the strong ongoing
deformations. This kind of methods is therefore preferred when
the deformations to be simulated are contained.

Eulerian grids

In Eulerian grid based methods the mesh grid is fixed in space
and the simulated system moves through it. Fluxes through cells
are evaluated to describe the evolution of the physical quantities.

Here a large deformation does not cause any problem, al-
though other issues still arise. For example, it is difficult to track
the properties of a chosen volume of fluid; moreover, everything
is discretized by means of fixed cells, by which it is difficult to
treat complex geometries, resulting in poor tracking of the free
surfaces and other interfaces. Another issue is related to the
computational load, since Eulerian methods require a grid that
discretizes the whole domain where the fluid can go.

Limits of grid based methods

To summarize all the drawbacks of grid-based methods, they need
a complex grid that must be built in relation to the complexity
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of the simulation domain. Adaptive grids for complex geometries
are sometimes hard to be built, both in terms of complexity
and computational cost, and sometimes even more than all
the other aspects of the method. The problem of the grid
construction is even worse in case of strong deformations of
the system, very common in fluids, where some re-meshing
procedure can be required; this gives advantage in the result
but constitutes an annoying and expensive process that could
need to be repeated numerous times during a simulation. It is
thus apparent that there methods are not suited to deal with
problems involving rapid and strong deformations, like impacts
or explosions. Moreover, it is easy to realize that they are not
appropriate for intrinsically discrete problems, like astrophysical
systems, atoms, molecules and so on.

1.1.3 Mesh-free methods

Mesh-free represent a more innovative class of methods that are
very promising, expecially in the field of CFD. The idea behind
mesh-free methods is to find accurate and stable numerical
solution for integral equations or PDEs, with all kind of possible
boundary conditions and without using any mesh that provides
connectivity to the interpolation nodes, thus overcoming all the
issues deriving form the use of such structures, as mentioned
above [59].

A large variety of mesh free method have been introduced for
the simulation of both solids and fluids. Among these, SPH has
been invented in 1977 for astrophysical purposes. Since then, it
is currently being developed into several variants that are also
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embedded in many commercial codes. Other popular mesh-free
methods are for example the Diffusive Element Method (DEM),
based on a moving Least Square Method (LSM); starting from
SPH, another method has been developed, called Reproducing
Kernel Particle Method (RKPM), able to improve the accuracy
of SPH especially in proximity of boundaries. Refer to [59] for a
more complete and detailed discussion on mesh-free methods.
A sub-class of mesh-free methods is constituted by Mesh-
free Particle Methods, that use a finite set of particles to
represent the state of the system and to record its movement.
Examples are Molecular Dynamics (MD) introduced in 1957,
DEM and SPH. In the following we will focus on the latter.

1.2 The Smoothed Particle Hydrody-
namics method

The Smoothed Particle Hydrodynamic method discretizes the
simulation domain by means of particles, each representative of a
small part of the simulated volume, of which carries information
on the physical properties, acting as interpolation nodes. All
the particles are free, and move according to the governing
conservation equations.

SPH was invented in 1977 by Gingold and Monagan [34],
and independently by Lucy [60] to solve astronomical problems
in the three-dimensional open space. The collective motion of
the astronomical bodies evolved similarly to that of a fluid, so
the development of the method was based on the equations
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of the classical Newtonian hydrodynamics. More recently, the
SPH method was thus applied to the solution of fluid Dynamic
problems. Other methods for CFD were already existing in
a rather well developed state, but they had the drawback of
relying on mesh structures, thus suffering of all the disadvantages
discussed in 1.1.2. The research of an alternative method, able
to face all these difficulties, has determined the adoption of the
SPH method in CFD.

At the basis of SPH is the SPH interpolation, that is the
way of representing a continuity between the particles, even if
they are not constrained to any fixed structure, like a mesh. It
relies on a kernel estimation technique. At any point of the
domain, the value of a field can be reconstructed interpolating
from the neighboring particles. This interpolation is done in a
Smoothed fashion, using a weighting function, that is intended
as a smoothed approximation of the Dirac’s Delta distribution
in its role of sampling function. This weighing function is called
Smoothing kernel.

1.2.1 Properties of SPH and applications

After this brief introduction to the concepts of SPH and the
position that this method takes in the wide set of methods for
numerical simulation, it is possible to describe more into detail
the principal characteristics and advantages of SPH, [66]

e Pure advection is treated exactly. For any characteristic
the particles are given, once the velocity is specified, the
transport of that characteristic by the particle system is
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exact.

When simulating more than one material, each described by
its own set of particles, the treatment of interface problem
is often trivial, as they are implicitly tracked by the region
occupied by the particles representing each fluid. Following
this concept, the problem of free surface is trivial as well.

As a particle method it bridges the gap between the con-
tinuum and fragmentation in a natural way, constituting
the best current method for the study of brittle fracture
and subsequent fragmentation in damaged solids [5, 6].

SPH can manage adaptive resolution, that can depend on
position and time. This makes the method very attrac-
tive in astrophysics and in the study of many geophysical
problems.

SPH has the computational advantage that the compu-
tation is only where the matter is, with a consequent
reduction in storage and calculation.

As for molecular dynamics, with which SPH share a lot of
similarities, it is often possible to include complex physics
easily [94].

In many of its formulations, SPH has the benefit of being
completely parallelizable, being quite suitable for imple-
mentation on massively parallel hardware, such as modern
Graphics Processing Units [41].
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1.3 SPH discretization of fields

Here we introduce how it is possible to reconstruct the value of
a field at any point of the domain, using the SPH interpolation.
This is based on the concept of integral representation of a
function [66, 59]: consider a field f defined on a domain Q. By
definition of Dirac’s delta distribution ¢, the value assumed by
f at any location X € Q) can be expressed, with typical abuse of
notation, as

f(x) = /Qf(x)5(x—>‘<) dx. (1.1)

Consider now a family of functions W (-, h) (smoothing kernels),
parametrized by a positive parameter h (smoothing length) which
approximate Dirac’s delta, i.e. such that

/ W(x—x%x,h)dx=1 (1.2)
Q
and

%%W(x—x, h)=4(x—Xx) (1.3)

where the limit is to be taken in the sense of distributions.
By substituting the smoothing kernel into (1.1) we get an
initial approximation of f(X) in the form

f(x) = /Qf(x)W(x —%,h) dx (1.4)

We can further approximate the integral with a summation over
a finite set of points (particles) at positions Xi,...,Xq,..., XN
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with volume V,, = my/pq, where m,, is the particle mass, that
is fixed, and p,, is the particle density [9]. Then:

N
F®) =) f(%a)W (X0 — X, h)Va (1.5)
a=1

where the summation is extended to all particles. To reduce com-
putational complexity, we can additionally choose the smoothing
kernels so that they have compact support, which effectively re-
stricts the summations to the particles in a small neighborhood
of X.

From equations (1.4) and (1.5), we observe that the SPH
approximation has two main sources of error

1. approximation of the Dirac’s delta with the smoothing
kernels;

2. discretization of the domain by means of a finite set of
particles.

The first approximation vanishes as h — 0, the second error is
controlled by the average inter-particle spacing Ap and vanishes
for Ap — 0. Additionally, Ap must tend to zero faster than h
to ensure consistency for the method [96]. In practical applica-
tions, the ratio h/Ap is held constant [84] typically in the range
[1.3,1.5].



1.4. FIRST ORDER SPH SPATIAL DERIVATIVE 33

1.4 First order SPH spatial derivative

The SPH field discretization can be used to reconstruct a field
at any point given its values on a set of particles, but the same
principle can also be used to discretize spatial gradients. To this
end, we will assume further that the smoothing kernels W have
radial symmetry, so that they only depend on r = |x — X|, i.e.
we assume that W = W(r, h).

Consider the vector field constituted by Vf(x). We can
approximate its value at any given point by convolution with a
smoothing kernel, similarly to (1.4), obtaining

/V FE)W(x —x|,h) dx (1.6)

Applying Green’s theorem gives us

/f W(x —x|,h)n d¥ +
—/Qf(x)VxW(\X—)_d,h) dx (1.7)

where ¥ = 0 is the boundary of the domain and n its normal.
Given the compact support for W, the first integral in (1.7) is
zero if X is far from the boundary; additionally, by symmetry of
W, we have VW (|x — X|,h) = =VxW(|x — x|, h), so that the
discretized version can be written as

N
R (%) VAW (%0 = X[ h)Va. (1.8)
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This expression allows us to compute (an approximation of) the
gradient of the field f without having its analytical expression,
relying instead on the gradient of the smoothing kernel.

When applied to a particle 5, the equation takes the form:

N
Vixg) x> [(%a)VWasVa (1.9)

where Wy = W (|xo — x|, h). This can be symmetrized (thus
helping preserve conservation properties of the analytical equa-
tions) by subtracting the gradient of the function identically
equal to f(xp), obtaining:

N
Vi(xg) =~ ZfaBVBWaBVa (1.10)

where fo3 = f(xa) — f(x3). Finally, we observe that due to the
symmetry of W, its gradient can be written as:

Xag OW(r,h)

VWag =

o o (1.11)

r=[Xag|

where x,3 = X, — xg. It is therefore convenient to choose a
kernel such that

10W
Fo) =

has an analytical expression, and given Fog = F (|xqag]|), we can
write VBWaB = XagFaﬁ.

(1.12)
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1.5 Second order SPH spatial deriva-
tive

An immediate way to obtain an SPH discretization of second
order derivatives is to iterate two consecutive times the procedure
that gives the discretization of the first order derivative, explained
in section 1.4. However, the discretization obtained in this way
has been shown to be very noisy and sensitive to particles disorder
[11]. An alternative approach has been presented by [11] and
[65] and gives an approximation of the second order derivative
using only the first derivative of the kernel. In the following
we derive it for a field f, defined in 2, and, following [50], we
consider the specific case where €2 has dimension three.

To begin, let us consider a Taylor series approximation of
f(xq) around x4 = xg,

f(Xa) = f(x5) + Vf|  (Xa —xp)+
Xg
82
+ %3xsgxk (Xa o Xﬁ)s(Xa - Xﬂ)k + O(Xa - Xﬂ)g (113)

xg
We neglect the terms of third and higher order and we multiply
by

xpa VW (X50)

Xpal?

(1.14)

where Xgo = X —xp and Wao = W(x, — xg), and we integrate
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over all 2. We note that for the first order term we have

/xﬁaMdi"xa =0 (1.15)

1Xga|?

thanks to the spherical symmetry of the kernel, and for the
second order term

X3a)s(X8a kMd3xa = Ok 1.16
B B
Eventually, we obtain

v?

~ 2/ f ‘Xﬁ )XﬂavBW/gad Xa (117)

To obtain the SPH discretization we replace the integral with a
sum over o and we substitute dx, with the SPH discrete form
Mq /P, Obtaining:

V2 ~ QZ Mo f'B o f X80 VWaa (1.18)

where fz = f(xg) and f, = f(x4). An important property of
this expression is to be zero when f is constant.

In case we are dealing with a second order derivative expressed
in the form V- (QV f), where Q may show a spatial variation, it
is not difficult to show [11] that

_2/ [Q,@ +Qa][fa - fﬁ]

X0 |?

VA(QVf) ~ XﬂaV5Wﬂad3Xa (1.19)
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and then, taking the associate SPH discretization, we get

%[Qﬁ +Qoz][fa - fﬁ]

Pa Xga?

(V-@QV)) ~ Y

[e3%

XgaV[gWga. (1.20)

Recalling (1.12), (1.20) can be finally rewritten as

(V- Qv ~Y %[Qﬁ + Qallfa — folFpa.  (121)

[e%

In some sense this expression is the SPH discretization of a
finite difference derivative.

1.6 Smoothing kernels

At the basis of the SPH method there is problem of approximate
a function starting form a set of scattered points and without
using a predefined grid of points [59]. This is accomplished in an
integral way [58], by means of smoothing kernel functions. We
have seen how smoothing kernels are used to interpolate over
particles in 1.3. The choice of a smoothing kernel function deeply
affects the results of the simulation since it gives the pattern and
consistency of the function approximation.

The conditions that Smoothing Kernel functions must obey
are [59)]:

1. The smoothing kernel function must be normalized over
its support domain, e.g

/ W{(r,h)dz =1 (1.22)
Q
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. It should be defined on a compact support, i.e.

W(r,h) =0 forr > kh (1.23)

where k specifies how the kernel is spread.

. It must be positive

W(r,h) >0 (1.24)

. It should be monotonically decreasing with the increase of

distance away from the particle

. It should approximate the Dirac’s Delta function as h — 0

approaches zero

lim W (r, h) = 3(r, h) (1.25)

. It should be an even function

. It should be sufficiently smooth

Any function that satisfies these conditions can be used as

smoothing kernel. Some functions have been found and are
used as standard smoothing kernels in SPH. Here we give the
expression for the two smoothing kernel that have been used in
the work presented in this thesis.
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1.6.1 Gaussian kernel

The Gaussian kernel is a quite smooth function, as well as its
higher order derivatives. It is very stable and accurate, especially
in case of disordered particles.

We define a cutoff radius §, generally § > 3

W(q) = Cvl[/d (e‘q2 - 65) (1.26)
F(q) = —Cide’f (1.27)

where Fis introduced in (1.12), with 0 < ¢ < § and e5 = 6_52,
and the normalization constants are

Cw,2 = mh? (1 —es(1 + 6?)) (1.28)

Cws = Th? (ﬁErf(a) — 2655(3 + 252)) (1.29)
where Erf(-) is the error function,

Cra= h2% (1.30)

The radius of the kernel specifies how large is the region
where the neighboring particles are considered when computing
the summations that we have seen in 1.3 and 1.4. Of course
the interpolation is improved as this area is increased, but this
affects sensibly the computational time, since the number of
particles to iterate over increases. Gaussian kernel gives good
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results in terms of quality of the interpolation, but its radius,
usually § = 3, usually results in a quite heavy computational
load.

1.6.2 Wendland Kernel

Wendland smoothing kernel is a radius two function, then leading

to a lighter computational load with respect of Gaussian function.
The representation of the Wendland kernel is quite easy: [87],

defined as W (r, h) = W(r/h) and F(r,h) = F(r/h) with

W(g)=Cw(2¢+1)(1—¢q/2) 0<qg<2 (1.31)

F(q) = Cr(q—2)° (1.32)

where, working in three dimensions, Cy = 21/167h? and
Cr = 5Cw/(8h?).

1.7 Running the SPH method

A SPH simulation basically relies on an Initialization phase and
then on two fundamental processes that alternate iteratively:
Force computation and Integration. Though their meaning could
be immediate to understand, here follows a brief description of
these two processes, in order to define their content for a clearer
reference in the following of this work.
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1. The initialization phase creates the set of particles accord-
ing to a geometrical description of the domain and other
aspects, like the adopted boundary model, assigning to
each particle the initial values for the state variables.

2. The computation of the forces consists on computing the
derivatives of the sate variables of the system, for example
the acceleration, the density derivative, the temperature
derivative, and so on. Practically, it is accomplished com-
puting the expression of the governing equations, after
having been discretized according to the SPH method. As
an example, in section 2 is shown a set of discretized gov-
erning equations used in fluid dynamics. The computation
of the forces then takes into account all the aspects relative
to boundary conditions, interactions, and some possible
forms of controls, that are aimed at acting on the behavior
of the system. In this phase, for each particle are performed
several iterations over other particles of the domain, as
required by most of aspects that have a role in the compu-
tation ( For example the SPH discretization of the spatial
derivatives, equations (1.10) and (1.21), and the dummy
boundary conditions, equations (2.31) and (2.32)).

3. The integration phase always follows the computation of
the forces, and consists of the application of an integration
algorithm to compute the values of the state variables from
their derivatives, obtained in the forces computation phase.

While the initialization phase is executes only once at the
beginning of the simulation, the remaining two phases iteratively
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alternates as long as the simulation evolves.



Chapter 2

SPH and
Computational Fluid
Dynamics

Computational Fluid Dynamics (CFD) is the branch of numer-
ical analysis aimed at solving problems of Fluid Dynamics by
means of computer. Recalling our introduction done in 1.1, CFD
embraces all the numerical simulations involving fluids. We have
seen that SPH presents all the characteristics that make it suited
to work with fluids, and in fact, it nowadays represent a very
powerful and promising method in the field of CFD. Here we will
use the basic concept given in chapter 1 about the SPH method
to see how it can be applied to the field of Fluid Dynamics.

43
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2.1 Fluid governing equations

The governing equations of a model describe how some state
variables vary in relation to the value of some other quantities.
At the base of the SPH method there are the following two
equations of conservation:

e conservation of mass
e conservation of momentum

then other equations can be added in order to study other
physical quantities, for example the energy conservation or the
thermal model. In the following we introduce the governing
equations that have been used for the simulations that will be
discussed in this thesis.

2.1.1 Mass continuity equation

Mass continuity without a source can be described by the equa-
tion
Dp

2L v 2.1
o= PVu (2.1)

where p is the density, u the velocity and D/ Dt the total deriva-
tive (sometimes also called the Lagrangian or material derivative),

i.e. the operator:

D 0
E—&—Fu-v (2.2)
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From equation (2.1), we can deduce that if the flow is incom-
pressible (i.e. if density does not change, Dp/Dt = 0), then we
must have

V-u=0. (2.3)

2.1.2 Momentum conservation equations

The conservation of momentum is expressed by the Momentum
Navier—Stokes equation. The latter is a particular form of the
Cauchy Momentum equation:

Du
" Di
o is the Cauchy stress tensor and G any external force.

=V.o0+G (2.4)

oc=1—PI (2.5)
where P is the mechanical pressure, that is intended as P =
—é’I‘f(U)7 and 7 is a zero—trace tensor called shear stress tensor.
Equation (2.4) can then be rewritten as

Du

The viscous constitutive equation

The equations introduced so far are insufficient to mathematically
study the problem of the motion of a fluid. To make the problem
solvable we need a constitutive relation that links the kinematic
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state of the fluid to its stress state. This relation depends on
the nature of the fluid, and is described by means of constitutive
equations.

Compressible fluids Let us consider the linear stress consti-
tutive equation, that links the strain rate to the shear stress as
follows:

T=MV - -u)I+2uy (2.7)

The two scalars A and p are the Lamé parameters, called bulk
viscosity and dynamic viscosity, respectively. The strain rate, 7,
can be expressed as a function of the velocity gradient, i.e.

i = % [Vu+ (Vu)'] (2.8)
and thus the 2.7 may be rewritten as
=MV -u)l+p[Vu+ (Vu)T] (2.9)
The trace of the stress tensor in three dimensions is
tr(r) = (BA+2u)V-u (2.10)

Decomposing the stress tensor into its isotropic and deviatoric
parts, we get

r= (3 20) wten (vas (v - S0 )

Since 7 is a zero trace tensor, we make the likely assumption
of A = —2/3u, that in the (2.10) makes the second member equal
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to zero. This can be done since we are not dealing with sound
waves and shock waves.

The (2.11) then becomes the linear stress constitutive equa-
tion, used in hydraulics for compressible fluids

u(ewr oY)

If we assume p constant in space, and, considering the iden-
tities
V- (Vu) = V*u (2.13)

and
V- (Vu)l' =v(V - u), (2.14)

we substitute (2.12) in (2.6),we can write the Navier-Stokes
momentum equation for compressible fluids:

D 1
pﬁltl = —VP+uV?u+ V(- u) + G (2.15)

Incompressible flow

The discussion above about compressible fluids can be repeated
for the case of incompressible fluid, using the incompressibility
condition (2.3). Applying the latter to (2.15), we obtain the
incompressible Navier-Stokes momentum equation, i.e.

Du

- __vypP 2 2.1
T VP +uViu+ G (2.16)
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Non homogeneous viscosity In case the viscosity can vari-
ate over the space, when using the constitutive equation (2.12) in
the Navier-Stokes equation (2.4), the viscosity coefficient cannot
be moved outside the divergence operator to obtain the Laplacian
operator in (2.16). A more suited form of the incompressible
Navier-Stokes equation is

p% =—-VP+V. - (pVu)+G (2.17)
This expression includes an approximated form of the viscous
term. In fact, when developing the Navier-Stokes equation the
(2.14) cannot be used. As a consequence, the application of the
incompressibility condition (2.3) leaves a residual part, coming
from (Vu)?". This creates an error that can be neglected when the
stresses on the transversal direction of the flow can be neglected,
that is the case of quiet flows, like lava flows.

Generalized Newtonian fluids

A Newtonian fluid is characterized by a direct proportionality
between the shear stress 7 and the strain rate 7§, and the ratio
is the dynamic viscosity p, which may depend on local physical
and chemical properties of the fluid (such as the temperature,
density, composition), but not on the shear stress or strain rate
themselves. A fluid where the relationship between stress and
strain rate is not linear is known as non-Newtonian fluid, and
many fluids of great interest in industrial applications as well as
geophysics are indeed non-Newtonian.
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Among non-Newtonian fluids, there is a large subset of fluids
(called generalized Newtonian fluids), for which it is still possible
to use the same form of the Navier—Stokes equations, provided
that the constant p is replaced by an effective viscosity function

Heft = Meff(ﬁ) such that 7 = Meﬁ(y)’y'
For our model we consider the Herschel-Bulkley rheology, a

generalized Newtonian rheology characterized by a yield strength
To, a power law exponent n and a consistency index k such that
’3/ =0 <— |T| < 719, and
IT| =710+ Kk |¥]" (2.18)
otherwise. As special cases of the Herschel-Bulkley rheology we
obtain (see figure 2.1)
e Newtonian fluids for 7o = 0,n =1 (in which case k is the

viscosity);

e power-law fluids for 79 = 0,7 # 1 (called dilatant if n > 1
and pseudo-plastic if n < 1);

e Bingham fluids for 79 # 0,n = 1.

For an Herschel-Bulkley fluid, the effective viscosity can be
written [95] as

. T Cin—
Heff = ,Ueff(’Y) = W0| +k |7‘n ' (2'19)

for || > 10 and with |y = /(¥ : %)/2,

YA =+ vy + Ve 2002, V2 ) (2.20)
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shear stress

shear rate

Figure 2.1: Example trends of the main rheological laws.

In common applications, the discontinuity in the stress/strain
relationship when the stress is equal to the yeld strenght causes
instabilities, then some regularized versions of the caonstitutive
law are often used. One of the most common regularized law is
proposed by [95], and will be introduced in 6.1.
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2.1.3 Thermal equation

Finally, the thermal evolution is described by the heat equation

pcp?rf = V(kVT) (2.21)
where T' is the temperature, c, the specific heat at constant
pressure, and k the thermal conductivity. We model thermal
radiation as described in [8], and phase transition following [8, 42,
67]. The latter is limited to the thermal effects (and particularly
the constant temperature during phase transition): the dynamics
of solid particles is currently the same as for fluid particles,
and the aggregation of solid particles into larger bodies is not
modeled.

2.2 Closure of the equations

Equations (2.1) and (2.17), obtained for incompressible fluid,
constitute and open system, that need to be closed by specifying
a way to determine the pressure. There are usually two ways of
closing them, leading to two different SPH formulations, namely,
Implicit Incompressible SPH (IISPH) and Weakly compressible
SPH (WCSPH).

2.2.1 Incompressible SPH

The incompressible SPH comes from the discretization of the
incompressible Navier-Stokes equations, closed by means of the
Pressure Poisson equation.
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For the sake of simplicity let us consider the case of uniform
viscosity. The Pressure Poisson equation can be obtained starting
from (2.16) and taking the divergence of both member, thus
obtaining:

D
v ?‘; =V (-VP+uV2u+G) (2.22)
If we focus on the left hand side of this equality, we can write

Du ou
V~DtV~<at+(u~V)u> _
:%(V~u)+V(u-V)U:V(u-V)u (2.23)

where (2.3) has been used. Analogously, for the right hand side
we write

V- (~=VP+uV?u+G) =
=-V?P+uV3i(V-u)+V-G=-V’P+V -G (2.24)

Eventually, equating the final form of (2.23) and (2.24) and
opportunely rearranging, we get the Poisson equation

VPP =V-[G - (u-V)uy] (2.25)

The closed set of equations obtained in this way constitute
non homogeneous linear system that then needs to be solved in
an implicit fashion. For this reason, the method is also known
as Implicit Incompressible SPH, IISPH.
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2.2.2 Weakly Compressible SPH: WCSPH

Equations (2.16) and (2.17) are obtained under the assumption
of incompressibility, and can be used to model the dynamic of
an incompressible fluid if treated as discussed in 2.2.1, where
the set of governing equations is closed by means of a Poisson
equation.

An alternative approach consists of using a state equation
instead of the Poisson equation, so that the pressure can be
obtained directly from the density. An example of state equation
is the Cole’s [17, 4] law:

_ 2P0 P ¢
P(p)_cgz <(p0> -1 (2.26)

where pg is the at-rest density, £ is the polytropic constant and c¢g
is the speed of sound, that is commonly used to model compress-
ible gases. It can be seen that the speed of sound constitutes an
important connection between the density and the pressure. A
larger value of ¢y makes the fluid more incompressible. A regime
of weak-compressibility is achieved if ¢y is at least an order of
magnitude higher than the maximum velocity experienced during
the flow [66].
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2.3 SPH Discretization

We can apply the SPH discretization to the continuity equation
(2.1), obtaining

D
Pﬁ Zmaua[ngWag (2.27)

For the momentum ((2.16) or (2.17)) and thermal (2.21)
equations, we additionally need a discretization for the Laplacian,
for which we follow [11], [69] and [16]. The momentum equation
then takes the form:

Du§ Pa Pﬁ
—_— == — 4+ — | FapMmaXap +
Y <pa p%> et

2pa
Jrz K ﬁFQBmauagnLg (2.28)

where fi4 is the harmonic mean of p, and ug, and g = G/p,
while the thermal equation becomes:

DTy _ L Y- Rablad FapTap B F.s (2.29)
Dt Cp S Paps

where ko8 is the harmonic mean of ko and rg.

2.4 Kinematic boundary conditions

The role of SPH simulations is to solve physical problems by
handling the corresponding Partial Differential Equations. This
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description of the problem requires some boundary conditions
to be known in order to find a unique solution; this consists to
assign the value of the state variables of the system over the
boundary of the domain. In this section we are going to see
some boundary conditions that are typical in the field of CFD,
then next section will treat their implementation in an SPH
context. We will start from the mechanical boundary conditions,
i.e. those assigning a value to the velocity and the pressure, then
we will discuss those relative to the thermal model.

2.4.1 Free-slip and no slip condition

From a mechanical point of view, at the interfaces between fluid
and either walls and ground we impose a no-slip condition; this
is obtained prescribing normal and tangential velocity along the
analytical boundary as

un(t) =0
) — o (2.30)

where v, is any physical sliding velocity of the wall (in our
examples, we will always have v,, = 0).

The opposite behavior can be obtained with a free slip con-
dition. Conceptually, it means that the fluid is free to slip over
the boundary without being held by the wall. More technically,
this condition ensures a null tangential shear stress along the
boundary.



o6 CHAPTER 2. SPH AND CFD

SPH implementation

The SPH implementation of the mechanical boundary conditions
that we have seen above has been done in several ways, giving
as result a variety of boundary models, each different from the
others for their behavior and geometrical implementation. Here,
we are going to introduce only two boundary models, the ones
that have been used in the work reported in this thesis, that are
Dynamic [21] and Dummy [1] boundary models. In both models,
solid boundaries are discretized some layers of particles, as many
as necessary to cover a full influence radius of the smoothing
kernel, rounding up. For example, for a smoothing kernel of
radius 2 and a smoothing factor of 1.3, three layers of particles
are necessary.

Dynamic Boundary model With dynamic boundaries, the
boundary particles have a prescribed velocity, and their pressure
evolves according to the standard continuity equation to better
enforce the no-penetration condition.

A known issue that affects the dynamic boundary model is
that the evolution of the density is essentially controlled by the
motion of the fluid above it, which introduces some spurious
effects near wet/dry zones. In particular, the transition from a
dry to wet states leads to an increase in density that tends to ‘lift’
the fluid from the boundary, and conversely, fluid impinging on a
wall and subsequently flowing away leads to a decrease in density
that can reduce the stability of the simulation. This has implica-
tions both in the implementation of open boundaries, as shown
momentarily, and in the accuracy of the results, particularly for
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more viscous fluids.

Another drawback of dummy boundary is constituted by fluid
penetration, that can occur when the fluid rapidly approaches
the boundary.

Dummy Boundary With dummy boundaries, the velocity
of the boundary particles, is obtained by adding to the wall
velocity u,,, the opposite of the Shepard-averaged velocity of the
neighboring fluid

Z uaWaB

acF

> Was

acF

ug =uy — (2.31)

(where F represents the set of fluid particles) while the density
is computed to achieve a pressure that matches the Shepard-
averaged pressure of the neighboring fluid

Pﬁ _ aEF aEF ) (232)

> Waa

aEF

2.4.2 Periodic boundary conditions

Periodic boundary conditions are used to emulate infinitely ex-
tended domains. The actual implemented domain constitutes
the base unit of a periodic domain, and is usually called unit
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cell. GPUSPH allows to assign the periodicity to each spatial
dimension, individually, allowing to set a uni-, bi- or three- dimen-
sional periodicity. When a particle crosses a periodic boundary
it disappears and reappears on the opposite side of the unit cell,
maintaining the same dynamical and thermal state.

In GPUSPH, the periodicity is acted by shifting the particle
by the unit cell size every time it crosses the boundary. Having
periodic boundary also implies that the neighbors search is
performed also on the cells lying on the opposite face of the
domain.

2.4.3 Open boundaries

Open boundaries (OB) allow us to extend the simulation do-
main to a virtual region that is not implemented, but that can
“exchange” matter and information with the actual implemented
environment. For example, if we want to model a filling tank,
we don’t need to include in the simulation domain the reservoir
where the fluid is coming from, but we can model just the inlet
and create the new fluid as it flows inside the domain, assigning
a velocity that emulates that of the real problem. Analogously,
if we want to model a sink. OB can be useful if our experiment
interests only a part of the whole fluid body and we need to sim-
ulate just that portion; for example, something that is floating in
the ocean: we model a cube of water and we recreate the motion
of the sea waves or any tide. Behind this apparent working prin-
ciple there are other aspects to consider, that is the continuity
between the internal simulated domain and the external virtual
domain. To recreate this continuity, in addition to model the
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flow of mass across open boundary, one should also care about
transmission of information, i.e. the waves propagation. This
is what makes a boundary actually open: the information that
reaches an open boundary needs to propagate through it and
leave the domain. To achieve this, appropriate conditions for the
velocity and pressure must be set, ensuring that the boundary is
absorbing the mass and wave.

At a (kinematic) open boundary it is possible to impose
either the velocity, or the pressure. The velocity is generally
prescribed when it’s necessary to impose a given flow rate, most
frequently at the inlet. Conversely, pressure is most frequently
prescribed at the outlet, where the fluid is free to flow out
of the domain according to its own developed velocity field.
In both cases, the missing information (pressure for the inlet,
velocity for the outlet) is computed by the use of appropriate
Generalized Riemann Invariants that are computed from the
prescribed boundary conditions and the extrapolated information
from the inside of the domain, to avoid spurious reflections.

SPH implementation

Since the management of open boundary conditions is an essen-
tially Eulerian method, implementing it in a Lagrangian context
requires the adoption of quite sophisticated tools [56, 62, 28].
We applied the approach proposed by [28], rearranged for the
3D case and for our boundary models, that relies on the Gener-
alized Riemann Invariants (GRI) and using characteristic waves
to model the discontinuity between the interior (the fluid) and
exterior (the inlet and the virtual domain) state.
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The inlet is modelled as a three-dimensional buffer of particles
obtained extruding the inlet two-dimensional surface. These
buffer particles move according to the imposed velocities. When
fluid particles leave the inlet, a new particle is generated at
the other end, keeping the buffer full. The depth of the buffer
depends on the boundary model. When using dummy boundaries,
the inlet depth is chosen to match the thickness of solid walls.
However, in the dynamic boundary case this choice leads to
large decreases in density for the boundary surrounding the
inlet, since they observe fluid flowing away without additional
incoming fluid. To avoid this effect, the depth of the inlet is
doubled in the dynamic boundary case.

The GRI correction is then applied. In the following we
consider only the case with fixed velocity, that is what we will
use in this thesis. The dual problem, with fixed density, is
described in [28]. The GRI will therefore be used to calculate
the external state pressure from the internal state. However the
type of discontinuity needs to be defined. Let us call u, ¢q+ the
component of the inlet fixed velocity in the direction normal
to the inlet surface; similarly, wu, ;n¢ is the component in the
direction normal to the inlet surface, of the fluid velocity in the
internal domain. We classify the discontinuity in

o shock wave, if Uy ezt > Unp,int; in this case we impose the
density from the pressure evaluated using the Rankine-
Hugoniot relationships:

Pert - Pint + pintun,int (Un,int - Un,e:vt) (233)
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e expansion wave, if Uy, cpt < Un int; then the corresponding
Riemann invariant needs to be used:

Un,ext — w(pezt) = Un, int — ¢(Pmt) (234)
with

—1

) = ;fol <:})(2) (2.35)

To probe the internal state and compute u;,; and p;nt, we
do an interpolation of the velocity in the region near to the inlet.
We set a grid of marker particles attached to the inlet, having
the same spacing as the domain discretization, and we perform
a Shepard interpolation of the velocity and pressure of their
neighboring fluid particles, just like in the dummy boundary
case (equations (2.31) and (2.32)). The computed values for
velocity and pressure are then extrapolated from the marker
particles to the fluid particles in the inlet itself.

Hydrostatic compensation

The simulation of volcanic eruptions requires to use of vertical
inlet conditions; this frequently leads to the formation of a high
column of fluid on top of the inlet[91]. The constant pressure
due to this column must be supported by the inlet, to prevent
the particles from sinking back into the inlet. Applying the
conditions seen so far, the continuity is only between the internal
state and the inner layer of the buffer. The pressure is then
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Figure 2.2: Section of a vertical inlet injecting a viscous fluid
in an empty region. The rectangular box delimitates the buffer
region.

projected over the buffer thickness. We need to correct this con-
dition creating a continuity in the trend of hydrostatic pressure
field. This is done adding an hydrostatic term, Py(d) = pgd,
with g the modulus of the gravity vector and the d the depth
of the particle with respect to the inlet region, considered along
the direction of the gravity vector.

2.5 Thermal boundary conditions

In section 2.4 we have seen the mechanical boundary conditions
followed by their implementations in the SPH context. Since
the main structure for the boundaries is usually defined when
implementing the mechanical conditions, in this part we will
see the boundary conditions and their implementation in the
boundary model with the geometrical structure prescribed by
the dynamic or dummy models (see 2.4.1).
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2.5.1 Thermal source

The thermal source is one of the conceptually simplest thermal
boundary conditions; let us indicate the boundary region with S,
chosen a temperature T for the source, a thermal source ensures
that

T(x,t)=Ts VxeS,VieR (2.36)

and leaves free any heat exchange.

This boundary condition is implemented by fixing the tem-
perature of the boundary particles to T, i.e. their temperature
is not integrated, and allowing heat exchange between fluid
and boundary particles according to the heat diffusion equation
(2.21).

2.5.2 Adiabatic boundaries

Adiabatic boundary conditions are obtained when

VT -n=0 (2.37)

with n the unit vector normal to the boundary region.

To implement this condition on SPH let us recall the dis-
cretization of the gradient of a field, expressed by equation (1.10)
and let us apply it to the temperature field. If we denote by 5 a
particle belonging to an adiabatic boundary, xs its position and
T its temperature, and using (1.12), we can write

VI(xp) = Y (To —Tp)(Xa —Xp) -0 FopVa (2.38)

(e
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where a denotes a fluid particle, x, its position and T, its
temperature. Applying (2.37) and extracting T we obtain

T, = YoaTa(xa —xp) -n FugV,
Za(xa — X@) ‘n FaBVa

that is the temperature to be applied to the boundary particle
(B to have an adiabatic boundary condition.

(2.39)

2.5.3 Thermal open boundaries: the sponge
layer

For the thermal model, we use absorbing boundary conditions,
implemented using the sponge layer approach: the boundary is
assumed to have a sufficiently large thickness H,, through which
heat propagates using the standard heat equation. Given a one-
dimensional reference system with the origin on the boundary
interface and oriented along the inwards normal n, the conditions
for the temperature T'(n,t) (with n the wall depth coordinate,
and ¢t time) can be described analytically as

7(0,0) = Ty,

(0,0) (2.40)
T(*Hsv t) = ﬂu

where T, is the initial physical temperature of the wall [40].

Absorbing boundary conditions are achieved when the CFL-like

condition:
R tend

w 2
pwcé ) Hs

4

<1 (2.41)



2.6. STABILITY CONDITIONS FOR WCSPH 65

is satisfied, with t.,4 the maximum time reached in the simula-
tion, K, the thermal conductivity of the wall, p,, its density and
c,(f”) its specific heat at constant pressure. For the examples we
show in this paper, we use for the wall the same parameters that
we use for the fluid, and the thickness required by the dynamic
boundary model is also sufficient to implement the absorbing

conditions for the temperature.

2.6 Stability conditions for WCSPH

With a fully explicit integration scheme, CFL-like stability condi-
tions on the time step are necessary. In the general case, separate
conditions emerge from the acceleration magnitude, the sound
speed, the viscous terms and the thermal equation, so that, for
each particle 3, we must have ([64, 68, 69] and references within):

h h h? h?
Aty <mind Oy [—— Cot, 05280 0 LB L (9.49)
lagll” “cs s KB

where cg is the sound speed at density pg and the Cy,Cy, Cs, Cy
are stability constants. In GPUSPH we use C; = Cs = 0.3,C3 =
0.125 and Cy = 0.1. The maximum time-step for the whole
system is then the minimum over all particles, At = ming Atg.

Informally, the conditions ensure that information propagates
by an influence radius faster than a particle covering the same
distance. More specifically, the first two conditions refer to
the propagation of forces and pressure waves, while the other
two conditions are related to diffusion of viscous and thermal
changes.
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Von Neumann stability analysis The stability condition on
the viscous term can be derived from a Von Neumann stability
analysis of the diffusion equation. Let us call u]' the exact
solution of the difference equation, and u]' the computed solution,
then we can write

ul =uy + &y (2.43)

where £ indicates the error at time step n and point . We can
show that, since ;' satisfies - by definition - the equation, then
the errors £}’ are also solution of the equation. To demonstrate
this, if we indicate by N the linear equation, we have that
N(u?) =0 and N(a?) = 0. Therefore, by the definition of error
we can write:

N@u?)=N(@}+&)=N(@})+NEY) =NEH) =0 (2.44)

(2

Hence, the errors &7 satisfy the equation as well as the numerical
solution.

We want to study the condition within the error is bounded.
If we assume that the analytical solution is bounded, then,
according to (2.43) any unbounded behavior of the error will be
reflected on the numerical solution. This implies that we can
study indistinctly the errors &}' or the numerical solution «'. For
simplicity, we choose the second option.

Let us consider the spatial Fourier series decomposition of the
signal u’, i.e. let us write it as a linear combination of sinusoidal
functions of the space, with different spatial frequencies, that we

write as
N

up =y vrel® (2.45)
j=—N
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where I = /—1 indicated the imaginary unit coefficient, and
® = jm/n is a spatial phase.

Considering the hypothesis of linearity, we can study the
boundedness of the signal u}' studying that of a single generic
harmonic:

yreli® (2.46)
where V" is a value constant in the space and variable over time
with n.

The Von Neumann stability requires that the amplitude of
V™ does not diverge over time, then if we define an amplification
factor as

Vn+1
G = 2.47
— (2.47)
we want to proof that for any ® we have
Gl <1 (2.48)

Stability analysis of the diffusion equation Let us con-
sider the diffusion equation written as

ou 0%u
— =a— 2.49
ot~ Yo% (2:49)
and let us apply a central discretization,
u?—i_l — u? 1 n n n
A7 =ai (“i+1 —2u + Ui—1) (2.50)

Let us suppose to integrate this equation using a forward
Euler integrator, obtaining;:

n n « n n n
u; +1 _ ul + N (uiH —2u + ui_l) (2.51)
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According to what said above, we can do perform study con-
sidering the generic harmonic (2.46) instead of the signal itself,
thus having

yrtlli® _ynlie | aAtV" (el(i+1)<l> _9eli® | 61(i71)<1>)

Ax?
(2.52)
that leads to
yntl alt
— 14 82t e -1 _ o 9.
v + R (@ Fe ) (2.53)

recalling (2.47) and some trigonometric rules, we can write

P
G =1+ 4fsin® <2) (2.54)
where § = zﬁﬁ. Applying (2.48) we get as solution g < 1/2,
then Ag?
1 Az
At < - —— 2.
T2 « (2:55)

This result comes form the assumption that SPH can be
considered a central discretization; this is true only if particles are
perfectly ordinate and we use the Grenier formulation [35, 36, 37].
In fact, the value of At is taken smaller than the limit value
expressed by (2.55), also to take into account this approximation.
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Lava flows

Lava flows are the outpouring of molten or partially molten rock
during a volcanic eruption. Close to the eruptive vent, lava is a
fluid at temperatures ranging from 920 K to 1470 K. Depending
on its chemical composition, temperature, effusion rate, viscosity,
and on the topography, lava can flow to great distances (up to
several tens of kilometers) at greatly varying speed (from a few
meters to several tens of kilometers per hour) before cooling and
solidifying.

As introduced, lava is a fluid showing a variety of complex
behaviors, from the generalized Newtonian rheology to the phase
transition and the consequent formation of structures like lev-
ees and tunnels, making its modeling and understanding an
extremely challenging task.

69
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Figure 3.1: Effusive eruption on Mount Etna. Image from INGV.

3.1 Lava flows characteristics

Lava flows are the result of volcanic eruptions. Not all eruptions
are the same, according to the presence and the violence of
explosions, and other factors, like the dispersion of volcanic
material, they can be classified in order of growing explosivity as
Hawaiian, Strombolian, sub-Plinian, Plinian and ultra-Plinian.
All these types of eruptions fall then into two major families,
that distinguish between effusive and explosive. Lava flows are
the main product of effusive eruption, and usually the main
aspect of interest in presence of this kind of volcanism.
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3.1.1 Effusive eruptions

We call effusive all the eruptions characterized by a low explo-
sivity that produce mainly (see figure 3.1) fluid magma, which
after being erupted takes the name of lava, that flows along the
flanks of the volcano, mainly driven by gravity [78]. Effusive
eruptions differ from explosive eruptions, where the magma is
violently fragmented and rapidly expelled from the volcano.

Lava from an effusive eruption is usually characterized by
78]

e low content of volatile substances
e high temperature: 1000 — 1200°C
e 3 viscosity that can vary over many orders of magnitude.

The flow of the lava along the volcanic surface is controlled
by several factors, like gravity, the viscosity, the total erupted
volume,the slope of the field and the topography in general.
According to [85], the main factor affecting the length of a lava
flow is the effusion rate, while the viscosity mainly affects the
thickness of the flow.

Effusive eruptions are not all the same. According to the
type of lava they are constituted by, they can vary in behavior
and type of emplacement, forming either a smooth or a very
fragmented surface. In fact, effusive eruptions can be classified
in:

a) Basaltic eruptions constitute the majority of effusive erup-
tions. They are characterized by basaltic lavas, i.e. lava with
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a low content of silica. According to the composition and
eruption conditions, of basaltic eruptions can originate three
types of lavas:

1. Pahoehoe are very fluid lava flows that form a very
smooth or at most undulating surface, with lobes of some
centimeters high. The viscosity of pahoehoe lava decreases
over the section of the flow, and the wrinkles on the surface
are created by the movement of the underlying very fluid
lava that keeps moving. These lava are particularly sub-
jected to the formation of lava tubes, that are formed when
the flow surface solidifies or the top of the lateral levees
merges. This tube structures creates a tunnel for th lava,
that, subjected to a very small loss of heat, maintains its
fluidity and can travel over very long distances, covering
even many tens of kilometers. At the point where the lava
coming from a tube is released in the environment, one
talks of ephemeral vent.

2. Aa flows show a very fragmented surface, formed by sharp
blocks that can reach dimensions in the order of 1 m. With
respect to pahoehoe, this kind of lavas are less fluid, either
due to a different chemical constitution, or due to the lower
temperature. It happens that some lavas are very fluid
close to the vent, assuming pahoehoe characteristics, and
become aa over distance. Aa lavas are hardly subjected
to the formation of lava tubes.

3. Pillow are produced by basaltic underwater eruptions.
They form round blocks which dimensions can vary from
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few centimeters to few meters and are mainly localized in
correspondence of mid-oceanic ridges.

b) Silicic eruptions Silicic lavas are very viscous and commonly
generate explosive eruptions, but they can also come out as
effusive eruptions, when the magma rises slowly through the
conduit. Silicic lavas usually form big block-shaped structures
called domes.

Hawaiian volcanos are typically characterized by effusive
activity, that mainly creates pahoehoe flows.

Italy, and more precisely Sicily, owns the biggest basaltic
active volcano in the world, Mount Etna, which is monitored and
studied by the Osservatorio Etneo of INGV. The lavas of Etna
are not very fluid, usually forming aa flows. Some pahoehoe
emplacements can be found in proximity of vents or ephemeral
vents.

3.1.2 Hazard posed by lava flows and risk mit-
igation

The hazard posed by a volcanic eruption is the probability that
a given area is affected by the volcanic event. Speaking of lava
flows, the possibility to have different forms of eruptions, as
introduced in 3.1.1, lead to a very complex process of hazard
assessment. Think for example of lava flows that can be subjected
to the formation of lava tubes [29]; in these cases the liquid lava
can travel far away from the original vent and come out at a
certain distance from an ephemeral vent, inundating a zone that
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was apparently not involved in the volcanic event. Crucial to lava
flow hazard assessment is the timely forecasting of flow paths
[13, 14, 23], flow advance rates, and final flow morphologies. The
behavior of lava flows is mainly controlled by the topography, but
also by a number of parameters such as effusion rate, rheology,
heat loss, viscosity, velocity, and flow morphology, all of which
are interconnected [85] [38]. Each of these parameters does not
impact the lava emplacement in the same way; moreover the
magnitude of their effect varies with the distance from the vent
and also with the timescale of observations [12]. The use of
models and simulators is of crucial importance to handle all
of these conditions and information, and obtain very accurate
estimations of the flow behavior. This requires also very frequent
and accurate data on the eruptive activity, a task particularly
suited for modern satellite remote sensing [81, 32, 30].

The effect that a volcanic event can have on the society is
quantified by means of the volcanic risk. It can be defined as
the product

Risk = Value - Vulnerability - Hazard (3.1)

where the Value is the number of human lives or the value of
the goods that could be lost in the case of volcanic event, and
the Vulnerability is the percentage of human lives or goods that
are in risk condition during the volcanic eruption. Also in this
case, the possibility to run accurate simulations can be helpful,
constituting a tool to plan a risk mitigation at engineering level.
In fact, the study the of the interaction between a lava flow and
a urban area or, more specifically, with a building, can guide the



3.2. PHYSICAL PROPERTIES OF LAVA 75

design process in order to minimize the vulnerability of the area
and the structures.

3.2 Physical properties of lava

Liquid lava is a high temperature natural substance that consti-
tutes an heterogeneous system, mainly containing liquid phase,
that is generally composed by silica, a mineral solid phase and
a gaseous phase. The percentages of the three phases depend
the chemical composition or environmental parameters. Because
of this complex nature, the state and behavior of lava can then
strongly change after a variation of quantities like temperature,
pressure, mechanical stress and so on. In the following we are
going to describe some of these physical properties of lava flows.

3.2.1 Temperature dependence of lava and
cooling mechanisms

The strongest thermal effect that lava commonly experiences is
the phase transition to liquid to solid and vice versa. Magma and
molten lava usually crystallize at a temperature ranging between
700 and 1250°C. Above these temperatures lava is completely
liquid, while below these temperatures it becomes solid rock. The
actual crystallization interval varies with some properties of the
lava; the minimum and maximum crystallization temperatures
are in fact higher for basic lavas. The presence of fluids decreases
these two temperatures while for the lavas subjected to the
lithostatic pressure the crystallization temperature is higher.
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The cooling process of a lava flow occurs primarily at the
surface. Here, two phenomena are mainly involved: thermal
radiation and air convection. A smaller amount of heat is instead
dissipated by diffusion through the ground. Thanks to surface
dissipation, lava flows cool down very quickly at the initial phase
when the lava is still liquid. As solid surface starts to appear,
it acts as thermal shielding, insulating the liquid interior that
then takes more time to cool down. In case of a thick flow, it
can take even tens of years for the whole amount of lava to reach
the ambient temperature.

3.2.2 Viscosity of lava

Knowing the viscosity of lava is not a simple task. Due to the ex-
treme condition where lava flows develop (very high temperature,
dangerous atmosphere, etc..) in most of the cases the viscosity
of lava is not directly measurable, and, in any case, not through
the whole volume of fluid. Moreover, the viscosity depends on
numerous parameters and conditions of the fluid itself and is
therefore continuously changing, over space and time.

As lava is a commonly known viscous fluid, its viscosity is a
fundamental parameter to be known for a good study, modelliza-
tion or even simulation of this fluid. A good model should then
be able to reproduce the dependence of the physical properties
of the flow on the viscosity of the lava. In the follow we discuss
some of the main correlations.

A first, basic, contribution to the viscosity of lava is its
composition. We have seen, while distinguishing between acid
and basic lavas, that the silicate content plays an important
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role, increasing the viscosity of the system. After silicate, the
major chemical contribution to the viscosity of lava comes from
its content of volatile substances; firstly, water. In a silicatic
composition, the silica forms tetrahedral groups that tend to
give solidity to the fluid, resulting giving a positive contribution
to the fluid viscosity. When water is added to the lava, the
tetrahedral structure breaks, allowing the silica to bond with
oxygen, giving a negative contribution to the viscosity, that
thus decreases. This process is known as depolymerization, and
affects mainly acid lavas, that have a larger silica content. The
dependence of the viscosity on the water content is also linked
to the temperature of the lava, becoming almost irrelevant at
high temperatures.

Another quantity that deeply alters the viscosity of the lava
is its temperature. We don’t go into detail from a chemical or
physical point of view, but we mention that viscosity decreases
as the temperature increases, and this occurs in a different way
from lava to lava.

In addition, the non homogeneous nature of the lava, the
presence of internal polymeric structures, and many other aspects,
make lava a Non-Newtonian fluid. In fact, the viscosity of lava
varies with the applied mechanical stress, and the way in which
the viscosity varies due to the stress specifies the rheology of
the fluid. We have already introduced some non Newtonian
rheologies in 2.1.2; although the rheology of lava is still being
investigated, the Bingham model commonly the main candidate.
Some times, the rheological properties of the lava are neglected,
and the fluid is modelled as Newtonian, an assumption that
becomes more realistic when the lava is very hot.
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We limit our discussion on the viscosity of lava to these
quantities, since are those that we explicitly consider in our
models. Of course, many other factors contribute to the viscosity
of lava, that, as we mentioned, is one of the most complex aspects
of this fluid.



Chapter 4

Numerical simulation
of lava flows

Lava flow modeling is important both in the scientific field, to
improve our knowledge on the fluid itself, and in many practical
applications, such as the simulation of potential hazard scenar-
ios and the planning of risk mitigation measures. In fact, the
growing urbanization around volcanic edifices also increases the
potential risks and costs that volcanic flows represent, leading to
an increasing demand for faster and more accurate predictions
of flow extent, both in terms of space and time. Mathematical
modeling and computer simulations can play an essential role
in improving our understanding of the lava flow patterns, its
morphology, and thermal evolution [24, 30].

79
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The complex nature of the fluid, aspects such as free surface
and irregular topographies, and phenomena like phase transi-
tion and the consequent formation of levees and tunnels make
simulation of lava flows an extremely challenging task for Com-
putational Fluid Dynamics (CFD). As a result, various computer
codes have been developed to predict lava flow footprints and
emplacement dynamics. Codes differ in their physical implemen-
tations, numerical accuracy, and computational efficiency.

Generally, a numerical code for simulation of lava flows must
consider [18]:

e Topography or slope

e Eruptive input conditions: volume effusion rate, vent ge-
ometry and effusion temperature

e Thermal boundary condition at the top and the bottom of
the flow.

e Physical properties of the lava: density, thermal conduc-
tivity, rheology.

In the modeling of lava flow hazards [13, 22, 23, 44], common
approaches to the simulation of lava flows start by reducing the
complexity with a number of different strategies, such as reduced
dimensionality [27], simplified thermal or dynamic models, or the
use of stochastic approaches with little or no physical modeling
[19]. These simplifications allow easier implementations and
higher performance, and while the results may still be useful
for real-time forecasting [14], risk mitigation [79] and the pro-
duction of long-term scenarios [22], they are inadequate for a
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more thorough study of the behavior of the fluid and the laws
underlying its rheology, which require the detailed modeling of
the full three-dimensional flow and its rheological aspects.

Here we will give a description of the main methods that are
currently adopted for the simulation of lava flows, following a
scheme introduced adopted by [18].

4.1 Channelled models

Channelled models introduces a strong simplification in the
problem dimensionality, reducing it to a 1D problem. The
fluids are confined and the flow advances only in one direction,
downslope. In contrast to the simplified emplacement model,
channelled methods can manage a quite complex thermal model,
and consider aspects like the crystallization rate, and rheology
models. The velocity of the flow down the channel depends on
the channel dimensions [80] and on the rheology of the lava.

The main code that implements 1D channelled lava is FLOW-
GO [38], [39], that models finite amounts of moving lava that
is contained between stagnant levees and has no mechanically
continuous roof (see figure 4.1). The top of the moving lava
therefore represents a free surface open to the atmosphere, but
its sides and bottom are in contact with levee walls and the
emplaced flow base.

From a thermal point of view it models the heat lost by radi-
ation and convection at the surface and conduction at the base.
The rheology is computed from its crystal- and temperature-
dependence. The flow along the channel is stopped when the
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Figure 4.1: Scheme of the channelled flow model used in
FLOWGO. Image taken from [38]

lava cools down and its rheological properties equal that of a
solid.

This kind of models are very fast to run as they do not involve
calculating the fluid motion. However, important limitations
arise from the assumption of one-dimensionality forcing the local
channel width to directly correlate with ground slope.
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Figure 4.2: The 2006 eruption on Etna, simulated with
MAGFLOW. The colors from red to yellow indicate the thickness
of the simulated lava flow, while the blue line tracks the contour
of the real emplacement. Image taken from [83].

4.2 Cellular Automata

The cellular automata (CA) approach is one of the most pop-
ular used to model lava flow emplacement, with codes such
as MAGFLOW [82, 24, 15, 44, 32], SCIARA [20] and FLOW-
FRONT [88].

Using Cellular Automata, the computational domain is dis-
cretized by means of a 2D grid of cells. Each cell is characterized
by properties such as altitude, lava height and temperature, and
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lava flow advance, and cooling is described through the evolution
of cell properties. The flow of lava from one cell to another
depends on the low density and on the slope, constituted by
the difference of altitude between two adjacent cells. The first
implementations of CA used a plastic rheology model to stop the
flow, modern codes model instead the solidification by means of
a solidus temperature. Figure 4.2 shows a simulation obtained
using the MAGFLOW simulator.

Cellular automata models are fast to run; however, as any 2D
model, their main drawback is the absence of a detailed vertical
description of the lava flow, which is important in coupling
surface and basal heat losses to the bulk rheology evolution, or
to model the formation of phenomena like lava tubes.

4.3 Depth-averaged models

Depth-averaged methods reduce the spatial dimensionality of
the problem using the shallow-water equation (SWE). Assuming
that the horizontal horizontal length scale is much greater than
the vertical one, SWE neglect the vertical component of the flow
assuming homogeneous properties throughout the section.

Several rheology models can be implemented, from Newtonian
to Bingham model, even though the assumption of a constant
viscosity value along the vertical profile limits the feedback of
rheology into flow dynamics.

Depth-averaged codes for volcanological applications include
the model developed by G. Macedonio [61], the VOLCFLOW
code [53, 54] and the implementation made in RHEOLEF [3].
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Neglecting the variations along the flow depth results on a simpli-
fication of the problem with a consequent reduction of simulation
times.

4.4 Nuclear based models

The name of this model comes from its first development in
the field of nuclear plants. In such context, the code is used to
simulate and optimize the spreading phase of melted substance in
case of nuclear reactor meltdown. These codes are an evolution
of the cellular automata (4.2) method where the third dimension
is added, discretizing the height of each cell into several vertical
cells. An example of application to simulation of lava is the code
LavaSIM [74].

In nuclear based model, the mass, momentum and energy
conservation are resolved for this 3D system, thus allowing the
reproduction of complex emplacement features related to solidi-
fication, such as lava lobes or tubes. The limit on simulating a
lava flow is in the free surface, that has not been modelled yet.

4.5 Generic 3D Computational Fluid
Dynamics codes

Studying the advance of a fluid is an interest job in many fields,
beside volcanology. Examples are Nuclear Engineering, Civil
Engineering and metallurgy. To supply these needs, a lot of
tools for CFD have been created in the past, ranging from com-
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mercial software packages to community-driven or government
supported open-source libraries. Despite the final product the
original design of the methods shared the same aim with vol-
canology, the adoption of such libraries and packages to use
for lava flow is not straightforward, and can require additional
capabilities and models, such as crystallization, variable effusion
rates, complex rheology and the strong temperature dependence
of physical properties. Here, we discuss very common CFD
packages, one open-source and one commercial, usually applied
to the simulation of lava flows.

4.5.1 OpenFOAM

OpenFOAM is the acronym of Open Field Operation And
Manipulation (http://www.openfoam.com) [49]. It is a finite-
volume-method-based open-source software package produced
by OpenCFD Ltd. OpenFOAM solves problem of continuum-
mechanics, including CFD problems. Among the latter, Open-
FOAM can deal with complex fluids, chemical reactions, tur-
bulence, heat transfer and so on. The code is fully parallelized
using OpenMPI, and has straightforward interfaces with external
meshing, and pre- and post-processing tools.

Beside the use of already embedded packages, OpenFOAM
gives the users the possibility to add new equations, solvers and
applications, a functionality that can be exploited to add specific
feature of lava.
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4.5.2 Flow3D

Flow3D is a commercial software produced and distributed by
Flow Science Inc. It finds application mainly in engineering and
is particularly focused to the field of the Computational Fluid
Dynamics.

Flow3D is based on the Volume-of-Fluid algorithms, com-
bined with Level Sets to obtain interface tracking feature. This
last characteristic makes it suited for the simulation of free
surface flows, as lava flows are.

The two main downsides of Flow3D are its slowness and its
high price.

4.6 Mesh-free methods

All of the methods that have been introduced so far in this
chapter rely on meshes. The main differences between mesh
based and mesh-less methods has already been introduced in 1.1,
then here we limit our discussion to the introduction of some
mesh-free methods and their known implementations.

The two major mesh-free approaches are Smoothed Particles
Hydrodynamics, SPH [42], and the Lattice Boltzmann methods,
LBM [72, 73]. While the SPH relies on the Navier Stokes
equations, LBM uses the Discretized Boltzmann equations. So
far, only SPH has been applied to the study of lava flows, in its
implementation called GPUSPH, that is one of the main objects
of the work discussed in this thesis. For each of these methods,
additional terms such as the Boltzmann discretization for the
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LBM or kernel size limitation for the SPH inherently generate
numerical diffusion, and require careful benchmarking [18].



Chapter 5

The GPUSPH particle

engine

The standard weakly-compressible SPH formulation has the
benefit of being completely parallelizable, and is therefore quite
apt for execution on massively parallel hardware such as modern
Graphics Processing Units. GPUSPH is an implementation of
WCSPH running on GPUs, offering the advantages of the method
at reasonable performance.

89
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5.1 Parallelizability of the WCSPH
method

So far, the SPH method has been discussed in terms of the
advantages that it offers when applied to some classes of problems,
showing a lot of interesting aspects. An important factor that
becomes fundamental in applicative contexts is the execution
time of the algorithms. A simulation usually involves thousands
or even millions of particles, each requiring some time consuming
operations; think for example of the iteration over the neighbors
during the forces computation. It is therefore essential to manage
all these processes, and relative data, in a clever way. A simple
approach, employing a computer to perform all computations in a
serial fashion, would in fact lead to unsustainable computational
times, that for complex simulations would range in the order of
months, or even years.

One of the most important aspects of the WCSPH method,
introduced in 2.2.2, is the use of a state equation to close the
system, instead of a Poisson equation. This gives a great ad-
vantage during the integration process (see section 1.7), making
each particles independent from the others. In fact, the pressure
of any particle can be directly obtained from its density, during
the force computation, without the need to solve any system of
equations and leaving the momentum and continuity equations
uncorrelated; therefore, the problem can be solved using only
direct methods.

Some interaction among the particles necessarily occurs in the
computation of the forces, during the iterations over the neigh-
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bors, but in any case, this process can be independent for each
particle, that only needs to access the information of its neigh-
bors.

It is then clear that all the particles can be processed by
independent threads, running in parallel the same operations
at the same time. For this reason WCSPH is considered ex-
tremely parallelizable, a characteristic that allows it to be run
on specific hardware, leading to a strong reduction of simulation
times. Beyond the use of multi-processor computers, that would
anyway give a notable contribution to the performance of the
computation, we have Graphic Processing Units (GPUs), a class
of hardware designed to do right this job.

5.2 General-Purpose computing
on Graphic Processing Units
(GPGPU)

Designed to work on digital images, constituted of millions of
pixels, GPUs are able deal with large sets of elements, executing
the same operation simultaneously a huge number of them. This
kind of paradigm, that sees GPUs employed in other fields than
graphics, is called General Purpose Computing on Graphical
Processing Units (GPGPU), and is nowadays supported by dif-
ferent programming models, like standards such as OpenCL [55]
or proprietary solutions such as NVIDIA CUDA [70].
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5.2.1 Stream processing

Modern GPUs are designed around the stream processing para-
digm, a simplified model for shared-memory parallel program-
ming that sacrifices inter-unit communication in favor of higher
efficiency and scalability. At an abstract level, stream process-
ing is defined by a sequence of instructions, constituting a so
called computational kernel, to be executed on each element of
an input data stream to produce an output data stream, un-
der the assumption that each input element can be processed
independently from the others (and thus in parallel).

Computational kernels

A computational kernel is similar to a standard function in
classic imperative programming languages; at run time, as many
instances of the function will be executed as necessary to cover
the whole input data stream. Such instances are called work-
items, and may be dispatched in concurrent batches, running in
parallel as far as the hardware allows, and the programmer is
generally given very little control, if any at all, on the dispatch
itself, other than being able to specify how many instances
are needed in total. This choice allows the same kernel to be
executed on the same data stream, adapting naturally to the
characteristics of the underlying hardware, and is one of the
main characteristics of stream processing.

For example, if the hardware can run 1,000 concurrent work-
items, but the input stream consists of 2,000, 000 total elements,
the hardware may batch 1,000 work-items for execution at once,
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and then dispatch another 1,000 when the first batch completes
execution. This continues until the entire input stream has been
processed, executing 2, 000 total batches. For the same workloads,
more powerful hardware able to run 100,000 concurrent work-
items may be able to complete sooner by issuing 20 total batches,
in a manner completely transparent to the programmer.

This programming model fits very well the simpler workload
needed in many steps of image rendering rendering process for
which GPUs are designed. However, the more sophisticated
requirements of general-purpose programming have led to the
extension of the stream processing paradigm to provide program-
mers with finer control on the work-item dispatch as well as the
possibility for efficient data sharing between work-items under
appropriate conditions.

A modern stream processing device (typically a GPU, but
may also be a multi-core CPU with vector units, a dedicated
accelerator like Intel’s Xeon Phi, or a special-design FPGA) is
composed of one or more compute units (each being a CPU
core, a GPU multiprocessor, etc) equipped with one or more
processing elements (a SIMD lane on CPU, a single stream pro-
cessor on GPU, etc), which are the hardware components that
process the individual work-items during a kernel execution. The
programming model of these devices, as OpenCL or NVIDIA
CUDA, mentioned above, exposes the underlying hardware struc-
ture by allowing the programmer to specify the granularity at
which work-items should be dispatched: each work-group is a
collection of work-items that are guaranteed to run on a single
compute unit; work-items within the same work-group can share
data efficiently through dedicated (often on-chip) memory, and
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can synchronize with each other, ensuring correct instruction
ordering. Tuning work-group size and the way work-items in the
same work-group access data can have a significant impact on
performance.

The GPU multiprocessors are further characterized by an
additional level of work-item grouping at the hardware level, as
the work-items running on a single multiprocessor are not inde-
pendent from each other: instead, a single instruction pointer
is shared by a fixed-width group of work-items, known as the
warp on NVIDIA GPUs, or wavefront on AMD GPUs, corre-
sponding in a very general sense to the vector width of SIMD
instructions on modern CPUs. The subgroup structure of kernel
execution influences performance in a number of ways. The most
obvious way is that the size of a work-group should always be
a multiple of the subgroup size: a non-integer subgroup would
be fully dispatched anyway, but partially masked, leading to
lower hardware usage. Additional aspects where the subgroup
partitioning can influence performance are branch divergence
and coalesced memory access.

Branch divergence occurs when work-items belonging to the
same subgroup need to take different execution paths at a given
conditional. Since the subgroup proceeds in lockstep for all
intents and purposes, in such a situation the hardware must
mask the work-items not satisfying either branch, execute one
side of the branch, the invert the mask and execute the other
side of the branch: the total runtime cost is then the sum of
the runtimes of each branch. If the work-items taking different
execution paths belong to separate subgroups, this cost is not
incurred, because separate subgroups can execute concurrently
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on different code paths, leading to an overall runtime cost equal
to that of the longer branch.

Coalescence in memory access is achieved when the controller
of a GPU can provide data for the entire subgroup with a
single memory transaction. Ensuring that this happens is one
of the primary aspects of an efficient GPU implementations,
and can usually be achieved that data in memory is laid out so
that subgroups access memory that is consecutive and properly
aligned.

5.2.2 Stream processing and particle systems

Stream processing is a natural fit for the implementation of
particle systems, since the vast majority of algorithms that rely
on particle systems are embarrassingly parallel in nature, with
the behavior of each particle determined independently, thus
providing a natural map between particles and work-items for
most kernels. This allows naive implementations of particle
systems to be developed very quickly, often resulting in massive
performance gains over trivial serial implementations running on
single-core CPUs. Such implementations will however generally
fail at leveraging the full computational power of GPUs, except
in the simplest of cases. Any moderately sophisticated algorithm
will frequently require a violation of the natural mapping of
particles to stream elements (and thus work-items), either in
terms of data structure and access, or in terms of implementation
logic, to be able to achieve the optimal performance on any given
hardware.
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5.2.3 Limitations in the use of GPUs

Programmable GPUs have brought forth a revolution in com-
puting, making certain forms of large-scale parallel computing
accessible to the masses. Many applications have seen significant
benefit from a transition to the GPU as supporting hardware, and
in response vendors have improved GPU architectures, making
it easier to achieve better performance with less implementation
effort. When choosing the GPU as preferential target platform,
however, developers must take into consideration the fact that
not all users may have high-end professional GPUs, and while the
stream computing paradigm is largely sufficient in compensating
for the difference in computational power, there are at least two
significant aspects that must be explicitly handled. Memory
amount is one of these issues: consumer GPUs typically only
have a fraction of the total amount of RAM offered in professional
or compute-dedicated devices: while the latter may feature up to
16 GB of RAM, low-end devices may have 1/4th or even 1/8th
of that. Moreover, even the amount of memory available on
high-end devices may be insufficient to handle larger problems.
Software should therefore be designed to allow distribution of
computation across multiple devices.

Another limitation of GPUs is constituted by the numerical
precision. Being designed for computer graphics, GPUs typically
focus on single-precision (32-bit) floating-point operations, and
double-precision (64-bit) may be either not supported at all, or
supported at a much lower execution rate (as low as 1:32) than
single-precision, which may remove the computational advantage
of using GPUs in the first place. This can be true even on
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high-end GPUs, as was infamously the case for the Maxwell-
class Tesla GPUs from NVIDIA. Designing the software around
the use of single-precision can therefore allow supporting higher
performance across a wider class of devices, but it may require
particular care in the handling of essential state variables in
particle systems.

5.2.4 Reductions

Not all the processes that need to be done on a large amount
elements are embarrassingly parallel. Reductions, for example,
are operations that obtain a single value from the values of all
the elements (for example, the minimum of all elements, or their
sum).

While the naive approach to reductions is intrinsically se-
quential, parallel reductions are possible, by processing multiple
elements with a single work-items, storing intermediate results,
and then similarly processing these intermediate results until a
single final result is obtained.

GPU architectures provide features that allow much faster
implementation of parallel reductions, such as the shared memory
that allows fast data exchange between work-items in the same
work-group. An efficient parallel reduction on GPU can then be
implemented in two passes, with the first pass producing a single
result per work-group, and the second pass further reducing the
partial results of the first pass. By using a “sliding window’
approach, it is possible to choose the launch configuration for
the first pass so that it is just enough to saturate the device,
while minimizing the number of work-groups: this is achieved

)
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by having each work-item process multiple elements, by moving
forward in the vector of source elements by the size of the launch
grid itself, until the source elements have been exhausted.

In our applications, reductions are useful for the computation
of the maximum allowed time-step, as discussed in section 2.6,
and the computation of the vector norms in the computation of
the CG used for the semi-implicit formulation (section 5.3.5).

5.3 GPUSPH

GPUSPH is the first implementation of WCSPH to fully run on
GPUs [41], created at the TecnoLab of the Istituto Nazionale
di Geofisica e Vulcanologia (INGV) in Catania. It is able to
run three-dimensional SPH simulations, disposing of several
embedded models for boundary, viscosity, integrators, SPH for-
mulations and so on. In order to better handle the computational
needs of lava flow simulations, GPUSPH has been extended to
distribute computations across multiple GPUs [75], even across
separate nodes in a cluster [76]. Exploiting the massively parallel
nature of the hardware, it runs two orders of magnitude faster
than a standard CPU implementation, which has allowed the
application of GPUSPH to a number of practical fields ranging
from oceanography [86] to industrial applications [10].

5.3.1 Structure of GPUSPH

The basis of the GPUSPH particle engine lay on the three
fundamental steps of a SPH simulation, introduced in section
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1.7: Initialization, forces computation and integration. Plus,
GPUSPH includes additional steps and processes, that are needed
for service routines or to optimize the simulation in terms of
quality of the result or performance.

As for any code implementing a GPGPU program, the struc-
ture of GPUSPH has a main net division in host and device parts,
relative to what is run on the CPU or the GPU, respectively.

The host part manages the initialization step and the launch
of the kernels that, running on the device, will actuate the forces
computation, the integration and any operation that has to be
run in parallel fashion. Moreover, the host also manages the
writing of the data on the the disc.

Main kernels

Going deeper into detail on force computation and integration,
we can describe the main kernels that are involved [75]; we can
refer to the main kernels as

e Build Neighbor list: this kernel for each particle builds a
list of the neighbors;

e Forces: for each particle computes the interaction with the
neighbors and its maximum allowed At (section 5.3.5);

e minimum Scan: selects the minimum At among the max-
ima provided by each particle;

e Euler: for each particle update the state variables integrat-
ing over the selected dt.
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Figure 5.1: Scheme of the GPUSPH particle engine. Image taken
from [75].

Multi-GPU management

In addition to the parallelism given by graphic cards, GPUSPH
exploits a second level of parallelism, coming from the possibility
to run a simulation on multiple devices, that in case of very large
particle systems can be an essential condition to run a simulation.
This may in fact be necessary simply due to the limited resources
available on a single GPU: high-end GPUs currently have at
most 16 GB of RAM, which may limit the particle system size
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to a few tens of millions, depending on the complexity of the
system. Even for smaller systems, however, distribution over
multiple GPUs can provide a performance boost, provided each
of the devices involved is saturated, since otherwise the overhead
involved in distributing the particle system will be higher than
the benefits offered by the higher computational capacity.

To support this functionality, GPUSPH uses CPU threads, or-
ganized as shown in figure 5.1. Here, the sheet in blue represents
the main thread, that launches all the functions executed by the
CPU and coordinates the work of GPUs. The sheets in red are
other CPU threads, each relative to a GPU, that we call Workers.
Under request from the main thread, each worker launches the
proper kernels on its corresponding device. A system fo barrier
depicted in purple, articulates the communication between the
master thread and the workers, ensuring the synchronization
among the latter ones.

In this context we don’t go more in detail in the management
of a multi-device simulation, that can be found in [75].

5.3.2 Neighbors list construction

We introduced in 1.7 that the neighbors of a particle are accessed
multiple times during an iteration. Searching the neighbor of
each particles over the whole domain is a very expensive process,
that with a naive form can be a O(N) approach; it is then
convenient to prepare a neighbors list once and then iterate it
at any point of the iteration. To reduce the order of complexity
of the neighbor search, an efficient strategy comes from the
partitioning of the domain in cells. Given a neighbors search
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Figure 5.2: Example of partitioned 2D domain. Neighbors are
sought in the blue and pink cells. Image taken from [75].

radius r, we can subdivide the domain with a regular grid where
the stepping in each direction is no less than r. This guarantees
that the neighbors for any particle in any given cell can only be
found at most in the adjacent cells in each of the cardinal and
diagonal directions, as depicted in figure 5.2

5.3.3 Numerical precision

As introduced in 5.2.3, one drawback coming from the use of
GPUs is the numerical precision, that usually is limited to single
precision. The effect of this limitation can be mitigated by
adopting particular strategies as we discuss in the following.
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Relative density

As discussed in [43], naive implementations of WCSPH are
affected by numerical precision issues; these are more evident
when using single precision floating-point values, which is often
preferred on GPUs for performance reasons, and a number of
strategies can be employed to reduce the impact of precision
issues. In particular, for the density it is preferable to use the
relative density difference

p=(p/po—1) (5.1)

as particle property, with pg being the fluid reference density,
rather than the absolute density p. The continuity equation can
then be rewritten as

Dj -

Lo _Pyg.q (5.2)
Dt Po

Cell relative coordinates

In SPH, as in any particle method, the actual particle position
in the global reference system is almost never needed as such.
Instead, we need the relative distance of the given particle to
its neighbors [43]: the (global) particle position is therefore only
used to be subtracted from the (global) particle position of the
neighbor. Although this subtraction is done between numbers of
similar magnitude, the lower precision in the representation of the
(global) positions far from the origin leads to corresponding lower
precision in the relative distance as well. This becomes a serious
problem in case of simulation domain with high aspect ratio; in
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fact the need to resolve small differences over the short side, goes
in conflict with the need to represent big values over the long side.
An approach to reach uniform precision throughout the domain is
to exploit the cell grid, introduced in the neighbors search in 5.3.2,
as auxiliary data structure for the particle positions. Instead
of storing the particle position in the global reference system,
we store the particle position as a combination of the (integer)
coordinate of the cell the particle is located in, and a (single-
precision) floating-point value representing the particle position
relative to the cell center. In each direction, the position is thus
expressed by a pair (i, f), with ¢ spanning the range of cell indices,
and f is a single-precision value, such that —0.5d < f < 0.5d,
where d is the length of the cell side. With this strategy, the
relative position from the neighboring particles is easily computed
as the difference between the floating-point values, eventually
corrected by an amount equal to the cell side in the case of
neighbors which are not in the same cell as the particle itself.
Absolute positions are only used outside the SPH algorithm, in
two places. The first place is during the initialization phase:
this is done using absolute positions, computed by the host
in double precision, and then translated into coordinates (4, f)
before uploading them to the device. Secondly, absolute positions
are used when storing the simulation results: in this case absolute
positions are reconstructed, in double precision, on the host, from
(i, f) coordinates.
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Double single-precision for temperature

The integration of temperature becomes another delicate topic
when dealing with a finite precision. In application to very hot
fluids, small variations of the temperature could be neglected
during the integration process. This phenomenon becomes more
important as te time step is taken smaller. This is the case
of lava flow: the high viscosity of the fluid, or a high speed of
sound in the case of implicit integration, can determine a very
small time step, easily reaching the order of 1078 s; considering
that the temperature can range in the order of 103, we get
that almost any derivative of the temperature is lost during the
integration process. This problem cannot be overcame using
a relative quantity, as done for the density 5.3.3, since the
temperature can simultaneously assume very different values
over the simulation domain. On the other side, working with
double precision variables on device can drastically degrade
the performance, as said in 5.2.3. A solution to run double
precision integrations without using double precision variables,
is to use two single precision variables to store and integrate
the quantity. The two variables, let’s say x; and xp, store the
integer and decimal parts of the value x, and their content is
added every time the complete value is needed. The integrations
are then performed on zp, and the gained variation is reported
to the integer part every time the magnitude of xp reaches one.
If one knows the highest value that can be assumed by z, in
case the extension guaranteed by x; in this context exceeds the
requirements, the numerical precision can be furtherer improved
by shifting the separation point between z; and xp to lower
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orders of magnitude, instead of using the unity.

Kahan summation

Another issue due to the finite precision appears when summing
up several small quantities to a larger one. This is the case of
the Shepard interpolation, for example, used in for the dummy
boundary model (equations (2.31) and (2.32)) or, even more
importantly, in the summations needed to build the matrix for
the semi-implicit formulation, as we will see in section 5.3.5. Here,
all contribution from the neighbors are summed up, in some
cases starting from an already non-zero initial value, and while
the partial sum grows in module, the less significant contribution
from the incoming addends is lost. A solution to achieve a
better accuracy is the adoption of a compensated algorithm, like
Kahan summation [52], where a secondary variable is used to
store the unrepresentable reminder in summation operations.

Result: s

s=0;

c=0;

for : < 0 to n do

y = x[i] -1;

=s+y;
(t-8)-y;

t
¢
S

+

end
Algorithm 1: Kahan summation
For the computation of sum s, the Kahan algorithm applied in
single precision performs numerically as well as a summation done
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in double precision, followed by a rounding to single precision of
the final result.

5.3.4 Density diffusion: the Molteni and Co-
lagrossi approach

Very often, SPH simulations are affected by the development of
instabilities as well as the presence of high frequencies numerical
noise on the pressure field. A typical way to face this problem is
to add an artificial viscosity [66], but sometimes this approach
is not sufficient. Instead, the addition of a diffusive term in the
continuity equation (2.1) can avoid these drawbacks giving more
reliable results [63]. An example of diffusive term proposed by
[63] is

Dp =£heo Y tap - VWapdVa (5.3)
where
ug Xa — Xp
w3 =2 — — 5.4
Vap (ua ) |xa—xm2+5hh2 (5.4)
with ¢, = 0.01

5.3.5 Integrator

The integrator the part of the code that accomplish the integra-
tion step, discussed in 1.7. We refer to a particular sequence
of operations that implement an integrator as the integration
scheme. After a discussion on the way of determining the time



108 CHAPTER 5. THE GPUSPH PARTICLE ENGINE

step, we will see the two integration schemes that are imple-
mented in GPUSPH, one fully explicit and a semi-implicit one,
where only the viscous forces are integrated implicitly.

Time step

The time step is fixed in order to satisfy the stability conditions
discussed in 2.6. In most inviscid or low-viscosity flows, the
dominant time-stepping condition is the one given by the sound
speed. However, for highly viscous flows the viscous term takes
over; since this term is quadratic in A, while the sound speed term
is linear, we can compute the resolution at which the viscous
term becomes dominant, given by

h<h*=c 2 (5.5)
Ppecs
where C,. = Cy/C5. From a different perspective, at a given
resolution there is a critical viscosity beyond which the viscous
CFL term becomes dominant:

« _ ppcgh

R S (5.6)

Explicit integration scheme

One of the main advantages of WCSPH is that the acceleration,
density derivative, thermal change etc can be computed and
integrated independently for each particle. When combined
with an explicit time-stepping scheme, this leads to a natural
parallelization of the method, where the derivatives for each
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particle are computed independently in parallel, and the new
position, velocity, density, etc are then integrated independently
in parallel. Explicit integration schemes are therefore well-suited
and often preferred in implementations of the SPH method.

GPUSPH uses a fully explicit predictor—corrector time inte-
gration scheme which can be described with the following four
steps:

1. compute acceleration, density derivative and temperature
derivative at instant n:

a) a® = a(x(™, um, pm) 7m0
b) 5™ = p(x™, u™, pm) 7)),
¢) T = F(x™ u®, ) 7)),

with x the position, u the velocity, p the density, T the
temperature, and p the dynamic viscosity;

2. compute half-step intermediate positions, velocities, density
and temperature:

a) x(m) = x(m) 4 u(n)%,
b) ul™) =ul 4 a(")%7
¢) plm) = plm 4 p'(n)%7

d) T = 7m) 4 T(n)%,

3. compute corrected acceleration, density derivative and tem-
perature derivative

a) a(m) — a(x(n*)’ u(n*)7p(n*)’T(n*)’N(n*))’
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b) p*) = p(x() u*) plnx) ey
¢) T = T(x(1%) a*) plnx) ey
4. compute new positions, velocities, densities and temperatures:
x(m D) = x(m) 4 (u(™) 4 a(”*)%)At,
ulmt) = y() 4 () A,
p D) = p(n) 4 Hm) A,
T(+1) — () 1 Pnx) At

a

b
c

)
)
)
d) T

In this integration scheme, there are three steps in which
the acceleration is integrated: step 2b, to obtain the velocity
at the intermediate step, step 4a to obtain the velocity for the
trapezoidal rule, and step 4b to obtain the final velocity.

This second order explicit integrator in characterized by a
very light and parallelizable structure, that implemented on
GPUs leads to very fast execution times.

Semi-implicit integration scheme

One main drawback of the explicit integration scheme is the
dependence of the time step (5.3.5) on the stability conditions
that we saw in 2.6. This becomes a problem when dealing with
very high viscosity fluids, where the time step can drop to the
order of 107 s or even below, leading to very long simulation
times and issues of numerical resolution that can prevent the
simulation to run at all. A semi implicit integration scheme
[90, 93], where the viscous contribution is integrated implicitly,
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allows the neglect of the stability condition on the viscosity and
overcomes the issues related to it.

While a fully implicit scheme would allow the use of an even
larger time step, its use with the WCSPH formulation would
lead to non-linear systems with most equations of state; an
incompressible formulation would be better suited for a fully
implicit scheme, which however have other limitations, such
as difficulties imposing the appropriate boundary conditions
on the free surface [48]. Our choice to only treat the viscous
term implicitly aims at avoiding these issues and produce a sim-
pler approach, particularly in combination with the appropriate
boundary model.

To introduce the semi-implicit scheme, we will at first look at
each of the acceleration integration phases as if it were a simple
Forward Euler integration step, to show how implicitation is
achieved. We will then present the full semi-implicit predictor/
corrector scheme, that maintains second order accuracy in time.

We can write the Navier—Stokes equation ((2.16) or (2.17))
in the abbreviated form:

%‘::prrvarg (5.7)
where f,,, f, stand respectively for the pressure and viscous
forces per unit mass, and g represents the external forces (per
unit mass). The same expression can be also used to write the
discretized form of the momentum equation (2.28), with f,, f,
and g being the SPH discretization of the various contributions.

The acceleration for a single particle is thus a = 2% and

Dt >’
using the superscript to denote the time step, the velocity at
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step n 4 1 is obtained, using the Euler’s integration method, as
u™ ) = u™ 4 aMAL (5.8)

From equation (2.28), the viscous term can be written in a
compact form as

£, = kapFap(ug — u,) (5.9)

with k.5 = Zuap M, and where we write the relative velocity in
B PapPp

full form (rather than the common SPH shorthand notation) for
reasons that will be apparent momentarily.

Therefore, from (5.7), (5.8) and (5.9), the temporal evolution
of the particle velocity can be obtained as

) (5.10)
= u(ﬂn) + At(fp + g) + At (Z kaﬁFaB(u,(BL) - u&n)))

Equation (5.10) constitutes an explicit integration of the velocity,
since the new velocity can be computed directly from the previous
velocity. We introduce our semi-implicit integration scheme by
computing the viscous part of (5.10) using the new velocity
instead of the previous one, obtaining:

n+1 n n+tl n
ug +1) _ u(ﬁ )+At(fp+g)+At (Z kaﬂFaﬁ(ug +1) _ u(" )

(5.11)
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and, after collecting the new velocities on the left hand side and
reordering, we get:

=ul’ + At(fp +g). (5.12)

This can be written in vector form as a set of three linear
systems, one for each of the space dimensions:

Av, =b,,
Av, =b,, (5.13)
Av, =Db,
where
ve = ult ) = (Y ) () I (5. 14)

with N the number of particles,

b:r = uggn) + At(fxp + gz) -
= (W Wl DT+ AL(fy, + g.), (5.15)

and analogously for v,, b, and v.,b..

The viscous term matrix A is the same for the three systems
and, under the hypotheses of compact support, its entries for a
fluid particle are

agg =1 — AtZkagFag (5.16)
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for the diagonal terms, with the summation extended to all
neighbors, and

= {O, if a is not a neighbor of 3 , (5.17)

At kogFop, if ais a neighbor of S.

for the off-diagonal terms.

The matrix rows corresponding to a boundary particle will
have agg = 1, and aqnp = 0 for @ # (. Since the velocity of
boundary particles is imposed a priori from outside the linear
system resolution, their contribution to the fluid particles can
be kept in the right hand side of the system. The matrix is
then symmetric if kog is symmetric, i.e. if m, does not depend
on «, which is the case for example if there is only a single
fluid, and all discrete particles have the same mass. Multi-fluid
simulations are thus not considered in this discussion. Moreover,
for the current application, boundaries are always considered
not moving (i.e. with zero velocity) so their contributions can
be removed even from the known terms.

Linear system solvability We can show that, under the as-
sumption that the smoothing kernel is monotonically decreasing
in 7 (which is the case for all the choices of kernels typically
employed in SPH), the coefficient matrix in our linear systems
is diagonally dominant,

lagsl > > laagl. (5.18)

a#p
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To prove this, observe that with a monotonically decreasing
kernel, we have F(-) < 0. Moreover, since the density, mass
and dynamic viscosity of each particle are positive, we have
kop > 0, so that k5 Fsp is negative by construction, and |aqg| =
—aqp for a # 5. Additionally, F' is identically zero outside the
compact support, so that the right-hand side of (5.18) equals
the summation in the right-hand side of (5.16).

We thus have that

lagsl = aps =1+ > laasl > Y laasl, (5.19)
B a8

which proves the diagonal dominance of the matrix. Indeed, we
additionally know that the diagonal elements are exactly one
more than the sum of the absolute values of the off-diagonal
elements. This is also true for boundary particles, for which the
off-diagonal elements are zero.

We thus have a symmetric, diagonally dominant coefficient
matrix in our linear systems, sufficient conditions for the solvabil-
ity of the system. Since the order of the matrix is equal to the
number of particles, which may be in the millions in practical ap-
plications, a numerical resolution method is generally necessary.
Our choice is to use the Conjugate Gradient CG method [45],
which is guaranteed to converge thanks again to the symmetry
and diagonal dominance of the coefficient matrix.
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5.3.6 Implementation of the semi-implicit
scheme in GPUSPH

The predictor—corrector scheme in GPUSPH can be adapted to
a semi-implicit scheme in the following way:

1. compute the inviscid acceleration a, i.e. the acceleration
evaluated without considering the viscous term, at instant n,
and the density and temperature derivative as done in section
5.3.5 for the explicit scheme:

a) a = ax u™, p) 7))
b) pm) = p(x(n) ul™, pm, T(n))
¢) T = T(x(™ ™ pr) 7™)

2. compute half-step intermediate positions, velocities, densities
and temperatures:

a) solve the three systems

At

AWy = g 4 g2
> 2’

where A(m) is the viscous term matrix built using positions
and denmtles at step n and a time-step of At/2;
b) X(n*) = X(n) _|_ u(n)%7
¢) plm) = pm) 4 p(n)%
d) T =M 4 () At

20

)
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3. compute corrected inviscid accelerations, density and temper-
ature derivatives

a) ) — a(x(Mm) w0 pme) i)y
b) p) = px(m) ulm), plnn) ),
¢) T — P(xm) w0 pme) Ty,

4. compute new positions, velocities, densities and temperatures:

a) compute the new velocity solving:
Axumt) =™ g Ay
where A%, is the viscous term matrix computed using

positions and densities at step nx and a time-step of At;

b) compute the new position using the trapezoidal rule
x(nt1) — x(n) T (u(”) T u(”+1))At/2.

¢) pr D) = pm) 4 s AL,
d) T+ = () 4 ) A,

Notice that the position update is done after the final velocity
update, unlike in the explicit case. This is particularly important
in the corrector step: in the explicit case the position uses a
dedicated velocity integration (point 4a, section 5.3.5), the cost
of which is very low; for the implicit case this would require an
additional resolution of the linear system, and the result would
not be the same as using the trapezoidal rule.



118 CHAPTER 5. THE GPUSPH PARTICLE ENGINE

Computational issues

To solve each of the linear systems that occur during the inte-
gration time-step, we use the CG method. Some of the issues
related to this aspect are discussed in what follows.

Memory consumption Due to the iterative nature of the
method, it would be convenient to store both the coefficient
matrix A and the right-hand sides of each of the three systems.
However, the memory consumption of the matrix, even consider-
ing its sparseness, is of order N x M, where N is the number of
particles and M the maximum number of neighbors per particle,
which depends on the diameter of the compact support of the
kernel. (A full neighborhood would have to be allocated for each
particle, even though individual particles may have less neighbors
than the maximum, because this makes memory accesses much
faster on GPU.)

With a typical kernel radius of 2 and a smoothing factor
of 1.33, we have M = 128, which would require 512 additional
bytes per particle to store single-precision floating-point coef-
ficients. This would reduce the maximum number of particles
in a simulation on a single device to less than half of what is
currently possible.

Therefore, in GPUSPH we only precompute the right-hand
side of each linear system. Since the matrix only appears in
matrix/vector products, we compute its coefficients dynamically
for each needed product. This has a higher computational cost,
as each coefficient needs to be generated repeatedly during a
resolution, but it allows us to run simulations with many more
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particles even on lower-end GPUs.

With the semi-implicit scheme we lose the benefit of embar-
rassingly parallel integration, but since this is replaced by linear
algebra operations (dot products and matrix/vector products),
we can still benefit from the parallel computational power of
GPUs. Hence, GPUSPH implements the entire CG on GPU.

Stopping criteria for the conjugate gradient method As
known from the literature, in exact arithmetic the Conjugate
Gradient (CG) method converges to the exact solution in at
most N iterations, N being the order of the system.

In most practical applications of SPH, N would be in the
orders of millions or more, and computations are done in floating-
point, potentially even single-precision, therefore it is necessary
to establish a numerical stopping condition.

Since our aim is to solve Ax; = b, we can consider the
solution reached numerically when Axj is numerically indistin-
guishable from by, i.e. ||bx — Axg|| < ||bk|lers where ejs is the
machine epsilon (the special case of null by, is handled separately
by setting xj to the null vector as well). We observe that the
computational cost of checking the condition is low, since the
residual ry = by — Axy is computed as part of the CG algorithm.

More in detail, three stopping conditions are employed:

1. the norm of the residual drops below the threshold specified
above;

2. the number of iterations, k, becomes larger than a given
limit (we use for this work kpax = 200 iterations, but a
different value can be chosen at any time);
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3. the residual norm stops decreasing. In this case we store
the last solution until the convergent trend is restored or
conditions 1 or 2 apply.

and the CG is interrupted as soon as any of the three conditions
is satisfied. While condition 1 ensures that the requested level
of approximation has been reached, conditions 2 and 3 stop the
CG execution, leaving a residual bigger than ry. In this case,
the GPUSPH user is notified of the event and informed of the
final value of the residual. Any improvement of the result can
be sought acting on kp,qq-

For each CG execution we need to solve three linear systems,
one for each spatial dimension; these are solved simultaneously
(thus reducing the cost of the dynamic computation of the coef-
ficient matrix), and the halting condition must be satisfied for
each dimension on the same iteration.

Conjugate gradient initial conditions The CG method is
an iterative solver, and choosing the appropriate starting point
can significantly reduce the number of iterations needed for
convergence.

Considering that between two integration steps the configu-
ration in the particles velocity undergoes only small variations,
we take as initial condition the velocity at the previous integra-
tion step. This is particularly efficient for stationary or nearly
stationary flows.

For the correction step, another option is to use an interme-
diate velocity between the previous and predicted one. Our tests
indicate that this choice is often a good one, leading to faster
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convergence, but this is not always the case. Further analysis
is required so that the best starting condition can be chosen
programmatically.

Semi-implicit scheme and time step When using our semi-
implicit integration scheme, we can disregard the stability condi-
tion for the viscosity, even when in (5.5) h < h*, which allows
us to use much larger time-steps for high viscosity/very fine res-
olutions. However, the increase in the time-step is offset by the
much higher computational cost of the single time-step. In this
sense, computationally, the semi-implicit scheme only becomes
convenient when h is at least an order of magnitude smaller than
the critical value (or conversely the viscosity is at least an order
of magnitude larger than the critical viscosity).

5.3.7 Dynamic boundaries and density inte-
gration

Using dynamic boundary conditions the density of boundary
particles evolves as described in section 2.4.1. In the explicit
integration scheme the derivative of the density is computed
using the velocity at step n. Highlighting the time-step, we can
then write (2.27) as

(n)
Pg (n)
Dt = ga mauaﬂvﬁwa[g (5.20)

In our experiments, with the increase in time step allowed by
the implicit scheme, this formula for the density derivative leads
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(a) Density derivative evaluated using the u(™ ve-
locity: some boundary particles undergo a strong
pressure drop that causes excessive attraction of fluid
particles, leading to instability of the simulation.
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(b) Density derivative evaluated using the u(™*) ve-
locity: the decrease in boundary density is mitigated
and the fluid particles attraction is weaker.

Figure 5.3: Upper view of a portion of the crucible opening
(sliced): using u™) rather than u(™ helps avoiding density issues
due to Dynamic boundaries. Boundary particles are colored by
pressure while fluid particles are colored in magenta. Arrows
indicate particles velocity.
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to instabilities, as the boundary fails to react sufficiently to the
approaching fluid (Fig. 5.3a).

To solve this, we compute the density derivative from the
value of the velocity used to integrate the position, i.e. u(™) on
the predictor step, (u™ +u™*+1)/2 in the corrector step, which
leads to improved density evolution and a more correct response
from the boundary (Fig. 5.3b).

This choice is made in analogy with summation density, a
method sometimes used in SPH to compute density without
resorting to integration of the mass continuity equation. Indeed,
applying (1.5) to the density, we have that p can be computed
25 9 = 30 M Wap.

While this expression is not of practical use in free-surface
problems, since it underestimates the density near the free sur-
face, it implies that the density can be derived from the geometric
distribution of the particles (and their mass). Using the same
velocity to integrate the position and to compute the density
derivative preserves this consistency when using the mass conti-
nuity equation.

5.3.8 Semi-implicit scheme for Dummy
boundaries

When using dummy boundary conditions, the velocity of the
boundary particles is given by the condition:

Za WC’BUCV

Uz =2V —
¢ g ZaWaﬁ
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where V is the prescribed wall velocity, and the summations
are extended only to fluid particles (i.e. boundary particles do
no interact with other boundary particles). We can rewrite the
condition as

to better highlight the diagonal term of the matrix (3°_, Wag)
and the off-diagonal terms W,3U,.

Hence, the linear system AU = B has a A matrix which is
still symmetric, and while it is still diagonally dominant, the
condition [Agg| > 3" |Aqag| is only satisfied by the equality in
the rows corresponding to the boundary particles.

However, the matrix is weakly chained diagonally dominant,
since for every row where only the equality holds, which corre-
sponds to a boundary particle, any off-diagonal element chains
with a row which is diagonally dominants, since boundary parti-
cles only have fluid particles as neighbors, and the fluid particles
have diagonally dominant rows.

Solving the linear system

One major issue coming from the use of the dummy boundary
model is that the matrix A is not symmetric. This prevents
the Conjugate Gradient algorithm to be used for the resolution
of the linear system. As an alternative, the Stabilized Biconju-
gate Gradient Method (BCGSTAB) has been used, introducing
two major issues, one related to the simulation time, since the
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BCGSTAB involves much more computations than CG, and
another to the accuracy. In fact, we have found the BCGSTAB
to be very sensitive to the numerical precision. Because of the
finite precision, any numerical solver can improve the estimated
solution up to a certain accuracy; after that point, any other
iteration will not be able to further reduce the residual. Despite
the residual descent is faster for the BCGSTAB, it stalls several
orders before than the CG. We have also seen that the passing
from double to single precision, the BCGSTAB has the higher
loss of performance. We experienced in some cases that the
residual left was too big, introducing spurious behaviors in the
simulation, like the missed integration of small forces. Since in
GPUs we always work in single precision, this method needs
to be revised in its implementation or substituted with some
others. A next candidate that is currently under examination is
the Jacobi method.
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Chapter 6

GPUSPH and lava
flows

Lava flows are complex fluids showing a number of behavior that
are not common to other flows. Looking at the properties of
the SPH method, that we have discussed in section 1.2.1, and
at the characteristics of lava flows, discussed in chapter 3, we
can conclude that SPH can be considered the best method to be
used for the simulation of this kind of phenomenon. The SPH
method itself constitutes only the basis for the simulation of
lava flows, to get a more complete model, other characteristic
of lava and lava flows need to be taken into account. In this
chapter we will see the implementation in GPUSPH of several
models interpreting some characteristics or behaviors of lava

127
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flows. To prove the correct implementation we will show some
simulations reproducing systems which behavior is intuitive or
already known.

6.1 Non-Newtonian rheologies

To investigate and test the rheology of lava, GPUSPH has been
equipped with the Herscher-Bulkley (HB) rheological model,
able to reproduce the main generalized Newtonian rheologies.
Because of stability purposes, the HB model is not directly
adopted in GPUSPH due to its discontinuity. We rather use the
regularized model proposed by [95], expressed as

—e—mY

) . 1
fapp () = poe™” + 70 5 (6.1)

Here, pg is the limiting viscosity, measured in Pa s and ¢; and
m are model parameters, measured in seconds. The value of m
should be large enough to guarantee a large, but finite, apparent
viscosity at vanishing shear rates, the limit being g +m7y. The
value of t; on the other hand determines whether the fluid is
shear thinning (¢; > 0) or shear thickening (t; < 0).

When using Non-Newtonian rheology in GPUSPH, each par-
ticle is assigned its viscosity, that is computed using 6.1. The
strain rate 4 is obtained from the velocity fields, using the
equation (2.8). The gradients of the three velocity components,
involved in the (2.8), are evaluated iterating over the neighboring
particles according to the SPH discretization of gradients, given
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by equation (1.10). The value |7 is finally achieved as the second
invariant of 4, as defined by equation (2.20).

For avoiding divisions by zero, before evaluating the (6.1) a
threshold is applied to |¥|, limiting it to a minimum positive
value. By default we use ||, , =104

min

6.2 Temperature dependent viscosity

We have seen 3.2.1 that one of the main parameters that de-
termines the behavior of a lava flow is the viscosity. For any
fluid, the viscosity depends on the temperature, and this de-
pendence is very important when studying lava flows, since the
temperatures involved span very large intervals. GPUSPH has
then been equipped with a model of temperature dependent
viscosities. When setting the problem we can define a law that
links the kinematic viscosity of a particle to its temperature.
Additionally, in case of non-Newtonian fluids, also the other
rheological parameters, like the yield strength, have been given
a dependence on the the temperature. The law of dependence
can be defined independently in the problem.

6.2.1 The Rayleigh-Bénard problem

We test the interaction of the thermal and mechanical models by
simulating a thermal convection. We consider a box containing
the fluid, with adiabatic walls, a heated bottom plate and a
cooled top plate. As effect of the heating, the fluids gets in
motion causing the inception of a Rayleigh-Bénard convective
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(a) Rayleigh-Bénard convective (b) Rayleigh-Bénard convection
cell. with temperature dependent viscos-
ity.

Figure 6.1: Rayleigh-Bénard convection cells. Particles are
colored by temperature. Arrows represent particles’ velocities.

cell.

The bottom plate is at temperature 7, = 100 K and the top
plate at T; = 0 K.

For the thermal dependence we use the law

v=e 017 (6.2)

The kinematic viscosity at temperature T = T}, is v, = 1m?/s
while at temperature T = T} is v; ~ 4.57°m?/s.

Figure 6.1 show comparison between a convective cell with
temperature independent viscosity (figure 6.1a) and with the
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thermal dependence described above in [51], that alters the
behavior of the convective cell as shown in figure 6.1b.

6.3 Thermal surface dissipation

Surface thermal dissipation plays an essential role in the cooling
process of a lava flow and then on its emplacement.

Thermal dissipation is modeled both at the contact with the
ground, using equation (3) and on the free surface. The latter
occurs according to two phenomena:

1. Thermal radiation: according to Stefan-Boltzmann law,
we express the radiated heat per unit surface as:

DT _ Kpke
Dt mep
with Kp the Stefan-Boltzmann constant, x the thermal
conductivity, € the emissivity, m the mass, ¢, the specific
heat at constant pressure and T, the ambient temperature.

(T - 1,) (6.3)

2. Air convection We do not model air particles, but we
account the heat lost due to air convection by means of a
convection coefficient , according to the following law, per
unit surface:

DT n

—=—0T-T 6.4

Br = (T T.) (6.4)
where 7 is a convection coefficient, measured in W/(m?K),
m is the mass, and T, the ambient temperature.
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Figure 6.2: Free surface detection: particle a belongs to the
surface, while particle b belongs to the interior of the flow.

To detect the particles that belong to the free surface [42, 8]
for every particle a we consider the cone C, with vertical axis
and vertex on particle «; let 6 be the angular aperture of the
cone, then

e If C, does not contain any other particles, then the particle
a belongs to the free surface (Figure 6.2, particle a)

e If C,, does contain other particles, then the particle o does
not belong to the free surface (Figure 6.2, particle b)
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6.3.1 Free surface estimation

Once the free surface particles are detected, in order to apply
the models for thermal dissipation ((6.3) and (6.4)) we need to
compute their surface. We tried two main approaches, a first
geometrical one, where the particle surface is consider to be a
square with the average inter-particle spacing (Ap) as particle
side. But dealing with flows that usually evolve towards under-
resolved conditions, as spreading flows, we would underestimate
the surface in the regions where the simulation becomes more
rarefied (i.e. where we have a thin flow). To face this problem
we compute the particle surface using the numerical volume [47].

- 1
Za Waﬁ

with W the smoothing kernel, and considering a spherical particle
volume and a circular particle surface.

Vs (6.5)

6.4 Simulating a setup for lava exper-
iments

The ability to reproduce the conditions that can be found in a
real context involving a lava flow, sets the basis for a study aimed
at understanding the properties of lava and lava flows. Figure
6.3a shows the pouring of molten lava onsloping ground, a typical
set-up used to test the rheological properties of lava in analogical
experiments. The simulation reproduces setup composed by a
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rotating crucible and a channel with semicircular section, used
in a real experiment [26], partially shown in picture 6.3b.

The simulation of the rotating crucible is controlled by means
od the ODE (Open Dynamic Engine) [71], and it is possible to
be assigned of a well defined angular velocity trend, in order
accurately reproduce any real experiment.

The fluid has been simulated with realistic lava parameters,
the dynamical viscosity of the lava depends on the tempera-
ture following the Vogel- Fulcher-Tammann equation [18], with
coefficients determined experimentally [H. Dietterich, private
communication]

5500
T —610°
The density is p = 2350kg/m3. The thermal model has the same
parameters adopted in 7.4.

108,10 (fteap) = 5.94 + (6.6)

6.4.1 Interaction with structures and moving
bodies

A possible study case could be the interaction of a lava flow
with a structure. A fixed structure can be obtained by using the
classical boundary implementation, while improved simulation
quality in order to give more realistic reaction of the obstacle,
can be obtained using the ODE library [71], already embedded
in GPUSPH.

Here we run a numerical simulation to analyze the distribu-
tion of the force exerted by the lava onto a structure. Figure 6.4
shows a simulation of the force exerted onto a wall, an analysis
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(a) The setup simulated with GPUSPH

(b) a top view of the flow obtained with the real
setup (courtesy of H. Diettrich, USGS)

Figure 6.3: Setup for the study of the rheological properties of
lava.
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Spatial acceleration Magnitude
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Figure 6.4: Lava flow interacting with a wall. The colors repre-
sent the force per unit mass [m?/s] exerted by individual particles.
Passing through the particle surface and density it is possible to
visualize also the exerted pressure.

that would be very difficult to perform practically. By building
a realistic model of the wall, it is possible to relate the entity
of the volcanic event to any damage impressed to the structure.
This kind of study ican be useful in design phase to reduce the
vulnerability of the structure as a strategy to reduce volcanic
risk, discussed in 3.1.2. Figure 6.5 shows the breaking down of
the wall, subsequent the action of the lava flow. One new aspect
remarked by this simulation is that simulating with SPH is not
just matter of studying the kinematic of particles, but we are
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(a) First stage: the lava flow reaches the wall and starts gathering behind it.

(b) Second stage: the force exerted by the lava destroys the wall. The
dynamic of the individual bricks is modelled by means of the ODE library.

Figure 6.5: Simulation of a lava flow breaking a wall down. Only
the colors of the lava are indicative of the temperature.
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also modelling dynamical of the interactions.

6.5 Multi-fluid simulation

The classical SPH formulation introduced in 1 presents a number
of issues when directly applied to multi-fluid problems. Large
density ratios and large variations in mass distribution can in-
troduce significant numerical instabilities, especially near the
interface between multiple fluids. A solution to this issue is to
move from a density-based formulation to one based on volumes
[7]. Different approaches are possible, here we are going to use
the formulation proposed by Grenier [35, 36, 37].

Let us call w the actual particle volume, the Continuioty equa-
tion is written in terms of the Jacobian J = % = % where
p° and w? indicate the initial values of the particle density and
volume, respectively.

The continuity equation (2.1) is rewritten as

DlogJ
Dt
which is discretized with the Shepard-corrected divergence

=V-u (6.7)

DlogJ 1

B - D (un —up) - VaWag (6.8)

where ¢ is defined as

o(z) = Wap. (6.9)
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The density p, of a particle is computed as a smoothed mass
M divided by the particle volume, where M is computed with a
Shepard-corrected kernel limited to the particles belonging to
the same fluid:

ZkeKﬁ mi Wk
Yreky Wk

where K is the set of indices of particles having the same fluid
type as particle 8. If all particles belonging to the same fluid have
the same mass, the smoothing can be skipped as it’s algebraically
equal to the particle mass mg.

For the momentum equation, the pressure contribution is
then given by

Mg = (6.10)

- — Z ( - a) Vs Wags (6.11)

while the viscous force is given by

1 2uppa (11
— . Hole < + ) Vs Wap Faglias (6.12)
pPg T Mt Ha \OB  Oa

6.5.1 Simulation of a lava lamp

Figure 6.6 illustrates a multi-fluid problem based on a lava-
lamp: two fluids with opposite conditions in terms of density,
rheology and thermal expansion coefficient are contained within
an adiabatic box with heated bottom and cooled top. The
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red fluid has density p; = 2kg/m?, Bingham rheology with
790 = 0.001 Pa, consistency index depending on the temperature
as k(T) = exp(—2T) and thermal expansion coefficient o; =
0.6 K™!, while the blue one has p2 = lkg/m?® , Newtonian
rheology with kinematic viscosity v = 1m?/s and ag = 0.1 K1
At a resolution of 33 particles per meter, about 30,800 particles
are involved with a time-step in the order of 10~* s, and using a
single Maxwell Titan X GPU the obtained time-ratio is 1:10.

6.6 Phase transition

Phase transitions are modelled only from a thermal point of
view [67] and [8], [42], and in particular we consider the constant
temperature during phase transition. The dynamics of solid
particles is currently the same as for fluid particles, and the
aggregation of solid particles into larger bodies is not modelled.

Each particle carries an additional property, g, representing
the fraction of latent heat gained/lost during phase transition:
hence, ¢ = 1 for solid particles; and ¢ = 0 for liquid particles.
During integration of the heat equation, if the estimated new
temperature, T} of particle S drops below the solidification
temperature, Ts, while ¢ < 1, then we compute the new latent
heat fraction as ¢* = g + ¢,5(Ts — T5)/L, modelling latent heat
loss; if ¢* > 1, we set

Ts =Ts — L(¢* —1)/¢, and ¢ = 1, marking the end of the
phase transition; otherwise we set T3 = T and ¢ = ¢* , and the
particle represents a section of fluid that is in phase transition.
In all other cases, temperature evolves normally following the
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Figure 6.6: Qualitative simulation of a lava lamp. Particles are
colored by fluid.
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discretized heat equation. Since the phase-change temperature
for lava cannot be defined explicitly, the solidus temperature is
used for Ts instead. The described approach for phase transition
illustrates an important benefit of Lagrangian mesh- less methods
such as SPH compared to Eulerian and mesh-based methods.
Indeed, in contrast to the other methods where explicit front
tracking and evolution models are needed, solidification fronts
form and evolve naturally in SPH, and they are implicitly defined
by the particles for which 0 < ¢ < 1.

6.6.1 Simulation of lava-water interaction

Interaction between lava and water is a common phenomenon.
Figure 6.7 illustrates a simple case of a lava flow reaching a water
basin. We are modelling the thermal behavior of the lava and the
water, the formed cooled down and the latter heated up during
the interaction. We are linking the thermal model to the me-
chanical one, by considering a temperature dependent viscosity;
in this preliminary tests, simulations have been conducted with
a viscosity that is 10 times lower than the experimental viscosity
(6.6), due to computational constraints. In this case, the sharp
decrease in temperature caused by the contact with water results
in a different emplacement compared to the lava flow behavior
in absence of water. Thermally modelling the solidification helps
to obtain realistic variations of temperature during the phase
transition.
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(a) A setup for the simulation of lava-water
interaction.

(b) Comparison of the lava-water interaction
and the dry emplacement.

Figure 6.7: Simulating lava-water interaction with GPUSPH.
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Chapter 7

Results and
conclusions

In this chapter we will see the results obtained by the development
of the SPH method, and more specifically of the GPUSPH
simulation engine, that has been described so far in this work.
As first we are going to analyze the benefits introduced by
the newly implemented semi-implicit integration scheme, either
in terms of robustness of the simulation results and in terms
of simulation times. Then we will validate the thermal and
mechanical models, reproducing some known experiments, and
we will compare the results with the reference ones, studying
their variations in relation to the main simulation parameters.

145
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7.1 Testing the semi-implicit integra-
tor

We are going to see the application of the semi-implicit integra-
tion scheme to the simulation of a lava flow that involves realistic
parameters.

We have preliminary validated the new formulation with the
classical plane Poiseuille flow in three dimensions, comparing the
results obtained with the semi-implicit formulation presented
here to those obtained with the explicit integration, expecting
little difference in the behavior of the fluid.

The setup is with a channel, periodic in the X and Y directions
and 1m thick in the Z direction. A driving force is applied in the
X direction, with acceleration magnitude g = 0.05m/s%. The
fluid is Newtonian with constant viscosity and at-rest density
po = 1000 kg/m?. The inter-particle distance in the initial setup
is such that 32 particles fit in the Z direction.

With a kinematic viscosity of v = 1m?/s, the Reynolds
number is Re = 6.25 - 1073. The time step in this case in
controlled by the sound speed of the fluid, so the semi-implicit
and explicit formulations use the same time-step (At = 1.407 -
10~%s). The relative error in the velocity profile of the semi-
implicit solution to the explicit solution has norms L., = 1.078 -
1075, Ly = 2.573-107% and Ly = 2.204 - 10~°. Due to both
methods using the same time-step, the explicit integration is
about 5 times faster than the semi-implicit one.

With a higher kinematic viscosity (v = 100m?/s), resulting
in a Reynolds number Re = 6.25-1077, the time-step is controlled
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by the viscous term (At = 2.159 - 107° s) in the explicit case.
The relative error in the velocity profile in this case has norm
Lo = 1.088-107°, L; = 4.686 - 10~* and Lo = 6.983 - 107Y.
Thanks to the larger time-step, the semi-implicit formulation
ends up being about 10 times faster than the explicit formulation.

We observe that in the higher viscosity example the difference
in the velocity profile is slightly higher, but in both cases the
results are essentially the same, validating the correctness of the
formulation. For a more thorough analysis of both run-times
and emplacement, we then study the effectiveness in employing
our method when dealing with lava flows.

7.1.1 Problem description

The geometry of the problem is depicted in figure 7.1. The
simulated domain size is 80 cm x 123 ¢cm X 55 c¢m, and it is
discretized using Ap = 0.008 m; the number of particles involved
is 100,923.

Since the maximum fluid velocity is low, the sound speed is
evaluated from the hydrostatic condition, by taking the maximum
free-fall speed: cg = 20v/2hmaxg, that is the speed achieved at
the ground by a body falling from a height Ay, .y, multiplied by 20
to ensure a weakly compressible state. Rounding the maximum
height to hpax = 2 m and using a gravity acceleration magnitude
g = 9.81, we get cg = 204/4g ~ 125.28 m/s.

The lava is modeled following the experiments reported in [26],
using a Newtonian fluid with a temperature dependent viscosity
coefficient, that for temperature greater than 610K is given by
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Figure 7.1: Simulation setup: a perforated crucible pouring lava
onto a plane inclined of 13.25°. Particles are colored by their
identification number.
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the law (H. Dietterich, USGS, personal communication):

5500 >

—_— 1
T —-610 (7.1)

w=10exp <—5.94 +

and has a density p = 2,350kg/m3. The initial temperature of
lava and of the crucible is Ty = 1323 K, leading to a kinematic
viscosity vy, = 0.0252m?/s while the ground temperature is
T = 298K; to use the same viscosity law of the lava, we
bound the viscosity level range to 7" > 1,111 K in order to avoid
unnecessarily high viscosities. The importance of having an
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upper bound on the viscosity will be discussed in section 7.1.2.
The law we use to describe the useful change of viscosity is then

The maximum kinematic viscosity we can obtain is thus vy, =
46.45 m?/s.

The simulated lava has thermal conductivity £ = 1 W/(m-K),
heat capacity ¢, = 1,600J/(kg - K) and thermal emissivity e =
0.96. Lava solidification is modeled using solidus temperature
Ts = 1,000K and latent heat L = 2.9 -10° J/kg.

7.1.2 Simulation results

With the given choices of viscosity, density, speed of sound and
average inter-particle spacing, we can compute the critical h and
w for the dominance of the viscous stability condition over the
sound-speed stability condition. We have then A* ~ 0.9m and
p* =~ 1,276 Pa - s, corresponding to v* ~ 0.54m?/s.

We are therefore about two orders of magnitude below the
maximum smoothing length, and two orders of magnitude above
the least viscosity for which the viscous stability condition be-
comes dominant. As we discuss the results in terms of emplace-
ment and performance, we shall see how this justifies the use of
the semi-implicit scheme over the explicit integration.

Performance comparison A comparison of the runtime for
the explicit versus the semi-implicit integration schemes is shown
in figure 7.2. All simulations were run on the same hardware,
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Figure 7.2: Comparison of simulation speed with the explicit
and semi-implicit integration scheme
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(a) Lava flow simulated with the explicit solver.

Temperature (k)
2.980e+02 554 810 1067 1.323e+03
MHHH\[HHHH\‘HH\

HH

(b) Lava flow simulated with the semi-implicit solver.

Figure 7.3: Comparison of simulated lava emplacements with
the explicit and semi-implicit integration schemes at t = 2 s.
Pictures show a portion of the lateral view.
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(a) Lava flow simulated with the explicit solver.

4 Temperature (k)
: 1.323e+03

066.8

810.5

H\H"HHHHLHH'\H

554.25

2.980e+02

06 -05
X Axis (m)

(b) Lava flow simulated with the semi-implicit solver.

Figure 7.4: Comparison of simulated lava emplacements with
the explicit and semi-implicit integration schemes at ¢ = 13 s.
Pictures show a top view of the simulation domain.
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with the computations running on an NVIDIA Titan X GPU
(Maxwell architecture).

We can observe that with the explicit scheme, the ratio of
runtime to simulated time is piecewise constant: in the earliest
moments, before the lava touches the floor, the time-stepping
is dominated by the sound-speed condition (At = 2.5-107°
s); when the lava starts interacting with the floor at ¢t = 0.1s,
the viscous condition (At = 3.05- 1077 s) becomes dominant
(figure 7.2a) and the runtime ratio then remains constant for the
rest of the simulation, but much more unfavorable: around 75s
of run-time later, this allows the semi-implicit scheme to take
over.

In the semi-implicit case, the viscous condition for the time-
step is absent, so that the sound-speed time-step is used through-
out the simulation. Although the time-step is constant and given
by the sound speed condition, we can however observe that in
the very initial phase the ratio of runtime to simulated time
progressively decreases due to the CG taking more iterations
to converge. The reason for this is to be found in the diagonal
dominance of the coefficient matrix becoming less significant.

Indeed, we recall from (5.16) and (5.17) that the diagonal
dominance is due to the diagonal element being one more than
the sum of the off-diagonal elements. As the viscosity grows
larger, the off-diagonal elements grow larger in absolute value,
and so does their sum, reducing the dominance of the diagonal.
The value of particles viscosity is not the only factor affecting
the matrix conditioning, but also the amount of particles with
high viscosity, i.e. the number of rows in the matrix where the
diagonal dominance condition is weaker. This explains the initial
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rapid loss of performance: as the amount of lava touching the
cold ground increases, the change in the matrix conditioning is
sufficient to require more iterations from the CG algorithm.

In raw numbers, once a steady state on the simulation speed
is reached, the explicit formulation simulates 1s in about 12, 326
s (nearly three and a half hours) while the semi-implicit formu-
lation simulates 1 s in 1,124 s (about 19 minutes). The gain in
simulation time is therefore a factor of about 11.

Figures 7.3a and 7.3b show a lateral view of the emplacement
of the lava at ¢t = 2.5 s, respectively for the explicit and semi-
implicit formulations. Differences can be observed both in the
slightly further distance reached by the explicit solver (less than
Ap) and in the total thickness.

The discrepancy in the simulated emplacement between the
explicit and semi-implicit scheme is still very limited, although
it grows over time, as shown in a comparison between Fig-
ures 7.4a versus 7.4b, which further highlights the higher number
of artifacts in the explicit emplacement (banding of the particle
positions in the central part, thinning in the outer rims).

While the difference in total extension can be at least partially
explained by the use of a different velocity in the computation
of the acceleration (previous versus current step), the artifacts
clearly visible in the explicit case are the result of stronger
numerical errors, caused by the smaller time-step. Indeed, a lower
At increases numerical errors through at least two independent
aspects:

e when At is very close to machine epsilon, a larger part of
the time derivative fails to be taken into account during
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Figure 7.5: Simulation performance for three values of maximum
kinematic viscosity: low = 46.45m?/s, medium = 81.93m?/s
and high = 67,259m?/s.

integration, leading to larger rounding errors per time-step;

e a lower At requires a higher number of iterations per
simulated time, leading to a further amplification of the
numerical error.

Influence of maximum viscosity on performance The
bound on the maximum viscosity over temperature, introduced
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in Section 7.1.1, is selected so as to allow the simulation to run
with the original explicit scheme; indeed, the small time step
required by higher viscosities could lead to unreasonably long
simulation times or even to the impossibility to run calculations
at all due to the adopted numerical precision.

With the explicit scheme, in the case of a dominant vis-
cous stability condition, the run-time to simulated time ratio
is inversely proportional to the value of the viscosity, since the
computational time per time-step is constant and the time-step is
inversely proportional. By contrast, in the semi-implicit scheme
the time-step is independent from the viscosity, but the compu-
tational time of the individual time-step depends on how fast the
linear system can be solved, and as explained in Section 7.1.2,
higher viscosities lead to a higher condition number for the
matrix and thus a slower convergence.

Using the semi-implicit scheme we can afford higher viscosity
values and thus a better realization of the actual viscous model.
We remark that, while the value reached by the viscosity does
not impact the value of the time-step in the semi-implicit scheme,
it does affect performance, as shown in figure 7.5, which plots
the performance curves for three simulations using three levels of
maximum Vviscosity: Vg, = 46.45 m2/s, Vmedium = 81.93 m2/s
and vp;n = 67,258.9m? /s, obtained using as threshold tem-
peratures respectively Tj, = 1, 111K, Thiedium = 1100 K and
Thigh = 999 K. The latter is chosen according to the value of the
solidification temperature, to assign the maximum viscosity to
solid lava particles. Overall, in our experiments, doubling the
viscosity gives a decrease in simulation speed of about 20%, while
the high viscosity case, which introduces a viscosity which is
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three orders of magnitude larger, shows a loss of performance of
less than 75%. For the latter case it is worth noticing that using
an explicit scheme, the time step dictated by the viscous stability
condition would be in the order of 10710 s, that, while repre-
sentable, would be impossible to handle in single precision. The
adoption of a higher numerical precision (e.g. double-precision)
would lead to unacceptable losses in performance, due to most
GPUs having a very low rate of execution of double-precision
instructions (as low as 1:32 compared to single-precision ones).
Alternative approaches to improve accuracy and precision with-
out such a dramatic loss in performance would be advisable
instead [43]. The relationship between computational time and
viscosity, as observed in figure 7.5, is thus sublinear, but it should
be noted that the ratio is not fixed, since it actually depends on
the number of particles with a high viscosity, that also affects
the condition number of the matrix and then the convergence
speed.

Influence of residual threshold on performance and em-
placement The choice of the threshold on the residual, de-
scribed in 5.3.6, ensures that we reach always the best numerical
approximation of the system solution independently of the simu-
lated problem and of the magnitude of the forces acting on the
particles.

A larger threshold would allow halting the CG method in
fewer iterations, and thus lead to faster runtimes, at the cost of
the accuracy of the result. In some applications, this may be
considered an acceptable loss to achieve better performances.
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Figure 7.6: Simulation performance for two different residual
thresholds.

Figure 7.6 shows the simulation performance obtained using
a more relaxed stopping condition for the residual vector norm,
i.e. 7. = N -epr, where N is the number of particles. As we
can see, we have a gain in simulation speed of about four times,
therefore 1s is simulated in around 287 s. Overall, this simulation
is about 43 times faster than the explicit formulation.

We can observe that the performance plot in the relaxed case
presents an unusual acceleration at around 10s of simulated times.
This corresponds to the flow entering a quasi-stationary phase



7.1. TESTING THE SEMI-IMPLICIT INTEGRATOR 159

corresponding to the nearly complete emplacement. The small
change required between two consecutive steps, i.e. the small
modulus of the acting forces, together with the less stringent
condition, result into a smaller required number of CG iterations.
The reversed trend around 40 s of simulated time is due to the
lava overflowing the emplacement pad and thus changing velocity
again.

Figure 7.7 shows the difference in emplacement. The lower
emplacement length reached with the less stringent condition
testifies the missed forces contribution during the integration
process. It should be noted that in this example the difference
in emplacement is still small (within one Ap) and could be
considered acceptable in many applications.

Influence of resolution on performance Varying the spa-
tial resolution affects the simulation performances in multiple
ways. Since the time-step is controlled by the ratio of the reso-
lution to the sound speed, the number of time-steps increases
linearly with the decrease in resolution. On the other hand,
since our model is three-dimensional, the number of particles
—and thus the order of the linear systems to solve in the implicit
scheme— is proportional to the cube of the resolution, which
affects the condition number of the coefficient matrix as well as
the number of iterations needed to solve the systems.

Figure 7.8 shows the simulation performance for three res-
olution levels: Ap; = 0.008 m, Aps = 0.004 m and Aps =
0.002 m, where the involved number of particles is respectively
100,923, 495,658 and 2, 781, 568, using a maximum viscosity of
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(a) Lava flow extension using the optimal residual threshold.
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(b) Lava flow extension using the 7 threshold.

Figure 7.7: Comparison of simulated lava emplacements with
two different residual threshold. The less stringent condition of
figure 7.7b gives a shorter flow.



7.1. TESTING THE SEMI-IMPLICIT INTEGRATOR 161

dp = 0.002m ——
dp = 0.004m ——
dp = 0.008m
@,
[0}
£
3 2
=
>
E
(7]
0 : ‘ I
0 2000 4000 6000 8000 10000

simulation time [s]

Figure 7.8: Simulation performance for three different resolu-
tions.

46.45 m?/s.

We remark that in this example the number of particles
increases by a factor that is significantly smaller than the ex-
pected 8 for each resolution halving. This is explained by the
fact that a significant number of particles are used to model the
boundary of the domain, and the number of boundary particles
increases with the square of the resolution. The overall particle
scaling in our case is thus significantly lower than the expected
third power, and closer to a factor of 5 for the first halving, and
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a factor of nearly 6 for the second one.

In terms of simulation speed, we observe a dramatic decrease,
going from a simulated time to run-time ratio of 1 : 1,124 for
the semi-implicit case at the coarser resolution, to a ratio of
1: 5,700 after halving the resolution, and 1 : 116,000 at the
finest resolution.

While the performance decreases by a factor of 100 after
reducing the resolution by 1/4th, the semi-implicit scheme still
allows the simulation to continue. This is not the case for the
explicit one, where the viscosity-dominated time-step drops to
1078 s, making it impossible to run the simulation in single
precision.

7.2 Validation of the thermal and me-
chanical model

The SPH discretization, as any numerical method, introduces
some errors that lead to a discrepancy between the simulation
results and the exact solutions. Such discrepancy can be re-
duced acting on the parameters of the SPH discretization, and
mainly, adopting finer resolutions. In this section we will validate
GPUSPH analyzing [92] the results of the simulation in terms
of convergence with respect to only the discretization fineness.
Some results in the literature have shown that only acting on
the discretization step leads to a saturation of the error [96],
but due to the small range of Ap that we are going to span in
this work, we can neglect such aspects and consider a fixed ratio
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h/Ap, as introduced in 1.3. We will use h/Ap = 1.33.

7.2.1 Test cases

The validation process will be conduced by simulating some
benchmark test cases, from classical analytical experiments, such
as the Plane Poiseuille flow, to more complex semi-analytical
and experimental tests, more focused on the field of lava flows.

In some cases we will see the same experiment simulated two
times adopting different strategies to model a feature, like for
example a constant fluid inlet. This will set the basis to discuss
the relevance of determined choices during the simulation set up.

7.2.2 Newtonian plane Poiseuille

A fundamental validation of the mechanical model of GPUSPH
is performed against a classical benchmark test case, the Plane
Poiseuille flow, constituted by a fluid flowing between to infinitely
extended parallel planes.

The fluid adopted has a Newtonian rheology with density
p = 1Kg/m? and dynamic viscosity u = 0.1 Pa s. The two
planes are separated by a distance H = 1 m and the driving
force is F' = 0.05 N.

After a transient period, the Poiseuille flow exhibits a sta-
tionary regime, and the validation can be done according to the
velocity profile of this steady state flow.

The domain is developed in three dimensions, where we place
the two planes limiting the flow in the zy region, and apply the
driving force along the = direction. The plane Poiseuille flow is
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Figure 7.9: Unity cell for the Newtonian Plane Poiseuille flow.
Particles colored by material (left), velocity (middle) and ID
(right).

by the way a bi-dimensional problem, since the velocity field is
constant over the y direction.

The steady state velocity profile over the z direction can be
obtained analytically, solving the Navier-Stokes equation (2.16),
under the assumption of stationary flow and no-slip boundary

conditions, obtaining:
2
2
- = 7.3
: (2)] (73)

Implementation in GPUSPH

Periodic boundary conditions are used in the x and y direction.
We set up a unit cell of cubic shape with 1m long side. The
boundaries are built using the Dummy boundary model in no-slip
configuration. Figure 7.9 illustrates the simulation domain.
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Results

We study the convergence of the method comparing the simulated
steady-state velocity profile with the analytical solution, given
by (7.3).

The difference between the analytical velocity profile and the
simulated velocity is evaluated over the height of the channel, at
intervals equal to Ap. For all the particles falling within each
interval, bucketing is performed, using the arithmetic mean, in
order to have a representative value for the interval. The errors,
that here we call e;, are then obtained for each interval as the
difference between the analytical solution and the simulated one.
To have a global measure of the error over the whole profile we
can use three statistical errors: the Ly error, defined as:

Ll = Z |ei|7 (74)
Ny,

where N, indicates the number of bucketing layers, the Lo error,

defined as:
Ly= [ ¢, (7.5)
N

and the L., error, defined as:

Loo = max {Jes} (7.6)

We perform simulations at three different resolution levels, a
Low Resolution with inter-particle distance Aprr = 1/16m =
0.0625 m, an Intermediate Resolution with inter-particle distance
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Aprr = Aprr/2 =1/32m = 0.03125m, and a High Resolution
with Apgr = Aprr/4 = 1/64m = 0.015625m. Figure 7.10
shows a comparison between the analytical solution and the
simulated ones. The convergence is apparent, since as the dis-
cretization is refined, the simulated solution moves towards the
analytical one. All of the three simulations develop a perfect
laminar flow, and no misalignment arises among particles of the
same layer, then effect of bucketing is negligible and, in fact, the
position of the dots in figure 7.10 corresponds to the position of
the particles in the simulation.

The errors coming from the three simulations are illustrated
in table 7.1. We can see that doubling At the errors are around
doubled. We can then asses the convergence of the model with
a slightly more than first order trend. The convergence trends
are shown in 7.11.

Error 16 32 64

type parts/m | parts/m | parts/m

I error [m/s] | 9.58-1073 | 5.06-10~3 | 2.88-1073
! error ratio 1.89 1.76

I error [m/s] [ 24-107% [ 8.97-10* | 3.62-10*
2 error ratio 2.68 2.48

I error [m/s] | 9.91-1073 \ 5.42.103 \ 3.24.1073
o error ratio 1.83 \ 1.67

Table 7.1: Li,Ly and L., errors for the Newtonian plane

Poiseuille at steady state. The ratios are computed as the
ratio of the error at lower resolution over the error at higher
resolution.
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Figure 7.10: Velocity profiles of the Bingham Plane Poiseuille
flow. Dotted lines are the simulated solutions, with dots in the
bucketing place, the green solid one is the analytical solution.

7.2.3 Non-Newtonian plane Poiseuille

As discussed in subsection 6.1, GPUSPH is able to reproduce
several rheological laws based on the Herschel-Bulkley model.
We present here a validation of the Plane Poiseuille flow for a
Bingham fluid. As for the Newtonian Poiseuille flow, described
in 7.2.2, the distance between the top and bottom planes is 1m,
and the domain is periodic in the flow and transverse directions
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Figure 7.11: Ly, Ly and L errors trends for increasing resolution
between numerical and analytical velocity profiles of the Bingham
Poiseuille flow. The two thin lines mark a reference for first order
and second order convergence rate.

(figure 7.12).

The employed fluid has consistency index k& = 0.1 Pa s,
density p = 1lkg/m? and yield strength 7o = 0.01 Pa, and
is driven by an external force conferring an acceleration F' =
0.05 m/s? resulting in a Reynolds number Re = 0.225.

We recall from 2.1.2 that a Bingham fluid has a threshold
behavior, such that the strain rate is null as long as the stress
satisfies the relationship: 7 < 7. In a Poiseuille flow with no-slip
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Figure 7.12: Bingham Plane Poiseuille flow. Particles colored by
material (left), velocity (middle) and ID (right).

boundary conditions, the stresses are higher in proximity of the
walls and decrease toward the interior of the cavity. This can
generate a region of zero strain rate at the center of the flow,
characterized by a flat region on velocity profile (du,/dz = 0),
called plug. The width of the plug is given by the expression

_2n
2 ,OF
Outside the plug region the velocity profile is defined by the law:

NOIRTENS

and the velocity at the plug is obtained by continuity from the
adjacent region.

The implementation in GPUSPH follows what said for the
Newtonian case, described in 7.2.2.

(7.7)

F

U, = —
2v
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Figure 7.13: Velocity profiles of the Bingham Plane Poiseuille
flow. Dotted lines are the simulated solutions, with dots in the
bucketing place, the green solid one is the analytical solution.

Results

Error 16 32 64

type parts/m | parts/m | parts/m

I error [m/s] | 4.42-1073 | 1.87-107% | 7.71.10~%
! error ratio 2.23 2.43

I error [m/s] | 1.14-107% [ 3.34-10* | 9.68-10°
2 error ratio 3.41 3.45

I error [m/s] | 5.39-107% [ 2.23-107% | 9.34-10*

error ratio

2.42

|

2.39
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Figure 7.14: Ly, Ly and L errors trends for increasing resolution
between numerical and analytical velocity profiles of the Bingham
Poiseuille flow. The two thin lines mark a reference for first order
and second order convergence rate.

Table 7.2: Ly, Ly and L, errors for the Bingham plane Poiseuille
at steady state. The ratios are computed as the ratio of the error

at lower resolution over the error at higher resolution.

Simulation performance

Simulating this non-Newtonian experiment requires different
times according to the employed resolution. Using 16 particles
per meter involves 6,100 particles and a time step Atig = 5.5 -
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1075 1s of evolution is simulated in 20s. Using 32 particles per
meter involves 41,000 particles and a time step Atzy = 1.4-107°
s; 1 s of evolution is simulated in 170 s. Finally, using 64
particles per meter involves 300,000 particles and a time step
Atga = 3.5-107% 5 : 1 s of evolution is simulated in 3,000 s. We
remark that the time-step in this case is limited by the viscosity,
and thus decreases with the square of the linear resolution leading
to a significant worsening of the ratio of simulated time to
runtime.

7.3 The Bingham Raileigh-Taylor in-
stability

The implementation of the non-Newtonian rheological model
described in 6.1 has been tested with the plane Poiseuille exper-
iment 7.2.3, that is a very good case for testing the accuracy
of the method, since it has an analytical solution. But on the
other side it is a very simple flow that could not show any hidden
behavior of the fluid. A more complex experiment is consti-
tuted by the Rayleigh-Taylor (RT) instability. It is a typical
example of multifluid problem, constituted by two fluids with
different density, initially disposed in order to have the heavier
fluid above. After an initial perturbation, the two fluids start
mixing under the effect of gravity, following a well defined dy-
namic, up to exchange their positions. GPUSPH has already
been validated with respect to the bi-dimensional Newtonian RT
instability [7]. Here we are going to simulate a RT instability in
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a three-dimensional space, using a Bingham rheology.

The tests will follow the work presented by [25], where the
RT instability is tested in terms of velocity trend of the interface
between the two fluids varying the value of the yield strength and
the initial perturbation. The two fluids adopted have density
p1 = 1Kg/m3 and ps = 2Kg/m3, and a kinematic viscosity
v =5-107%m?/s. The domain is periodic in the z and y
direction, where the interface of the two fluids is lying at the
height z = 0, with a width of the unity cell L = 7w m. The initial
disturbance is given by means of a velocity field, generated as

Uy = uge " sin(kx), wu, = uge ™ F* cos(kz), z>0 (7.9)

Uy = —upe™ sin(kx), u, = uge"* cos(kx), z<0 (7.10)

where k = 27 /L and we call uy amplitude of the disturbance.

There is no analytical model for the development of the
Bingham RT instability; the only analytical expressions regard
the velocity and curvature over time of the bubble top, for the
case of a Newtonian fluid, and is given by the following second
order system:

0K

S = —BK - 1w, (7.11)
ow W2+ gK
W — _ﬁ’ (7.12)

with K the curvature and W the velocity. To take into
account the effect of the yield strength we will compare the results
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Fluld number Velocity X (m/s) Velocity Z (m/s)
9.7696+00 Eo 770e+00
Fluid 1 E
—4.8847 —4.8857
=) —0.0013223
Fluid 2| E E
—-4.8847 —-4.883
-9.769e+00 EJ) 767e+00

Figure 7.15: On the left the unit cell, where particles are colored
by fluid. On the middle and on the right, the two components
of the velocity field constituting the initial disturbance; particles
are colored by velocity module.
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with those of an already validated model (Volume of Fluids),
given in [25]. In this case we won’t perform a convergence test,
but we will run a single well resolved simulation and execute a
qualitative comparison with the reference information.

The domain is thus implemented in GPUSPH using a dis-
cretization that considers 256 particles over the width of the
unity cell; periodic boundary conditions 2.4.2 are applied in the
x and y directions, while the top and bottom layer are modeled
using the Dynamic boundary model 2.4.1 conditions. The Gaus-
sian kernel is used and the polytropic constant is taken v =1,
as indicated by the reference work [25]. The speed of sound is
evaluated taking 30 times the maximum velocity between the
hydrostatic velocity and the ug. Figure 7.15 shows the unity cell
and the perturbing initial velocity field.

An initial test is performed using up = 10 m/s.

From a qualitative point of view, figure 7.16 shows the profile
of the instability at ¢t = 0.5 s. We can see the case relative to
up = 10 m/s for 79 = 0 Pa, i.e. a Newtonian fluid, in figure
7.16b, and for 79 = 1 Pa in figure 7.16d. In both cases we have
the formation of a typical RT profile, that in the Bingham case
is weaker.

Numerically speaking, figure 7.17 shows the evolution of the
bubble velocity for the Newtonian fluid, then the simulated
velocities can be directly compared with the analytical curve,
obtained from (7.11) and (7.12). To plot the data from GPUSPH
we consider the Shepard interpolation of the vertical velocity
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(c)uo=1m/s, (d)uo=1m/s,
UO=10m/s uo:IOm/s 70 =0 Pa 70=1 Pa
70 =0 Pa 170 =1 Pa

Figure 7.16: Rayleigh-Taylor instability at ¢t = 0.5 s for different
values of 79 and ug.
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(a) Simulated with VOF. Figure taken from [25]

® simulated ——
analytical —&—

velocity [m/s]

0 0.5 1
time [s]
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Figure 7.17: Velocity of the RT instability bubble with uy =
10m/s and 79 = 0 Pa. Comparison between a simulation ob-
tained with the VOF method (by [25]) and GPUSPH.
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Figure 7.18: Velocity of the RT instability bubble with uy =
10m/s and 79 = 1 Pa. Comparison between a simulation ob-
tained with the VOF method (by [25]) and GPUSPH.



7.3. BINGHAM RT INSTABILITY 179

field, evaluated at each particle position as:

Z uonozB

A~ ackF
u =

> Was

acF

(7.13)

with F' the set of neighbors of the central particle, and then we
take the maximum value in the region surrounding the bubble
top.

Both the VOF method and GPUSPH are able to approxi-
mate the theoretical Newtonian behavior, with GPUSPH better
reproducing the trend in both the transient and steady state
regions.

In figure 7.18 we have the evolution of the Bingham fluid.
As expected, the simulated velocities diverge from the analytical
curve because of the presence of the Bingham behavior, that
nullifies the shear rate when the stress goes below the value
70, and at around ¢t = 1.5 s eventually prevents the bubble to
move at all. The GPUSPH simulation, shown in figure 7.18b, is
compared with that obtained with the VOF method, shown in
figure 7.18a; despite the simulated velocities differ in modulus, a
good agreement is obtained in the general behavior, confirming
the presence of an initial braking phase and of a static phase
after about 1.5 s.

Finally, we test a behavior introduced by [25], stating that
the instant when the evolution of the bubble in the Bingham
flow is stopped depends on the amplitude ug. The simulations
are then repeated for ug = 1 m/s, and figures 7.16a and 7.16¢
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(b) Simulated with GPUSPH.
Figure 7.19: Velocity of the RT instability bubble with uy =

1m/s and 79 = 0 Pa. Comparison between a simulation obtained
with the VOF method (by [25]) and GPUSPH.
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show the instability at ¢ = 0.5 s; while in the Newtonian case the
instability evolves, even though slowly, for the Bingham rheology
the bubble suddenly stops after an initial adjustment. Looking
at the evolution of the bubble velocity for the Newtonian case,
shown in figure 7.19, we can see that the analytical evolution
is well reproduced, with again GPUSPH better minimizing the
error (figure 7.19b).

For the Bingham VOF simulation, shown in figure 7.20a,
the velocity rapidly decreases, reaching zero at ¢ = 0.5 s. This
behavior is reproduced by GPUSPH, where the zero velocity is
reached a bit earlier, at around ¢ = 0.4 s. At steady state the
velocity trend simulated by GPUSPH presents some oscillations

just above the zero, that can be explained as numerical noise
coming from the residual movement of SPH particles, that has
been observed not to generate any net displacement of the bubble
surface. We remark that similar oscillations are also present in
the ug = 10 m/s case (figure 7.18b), although they are more
apparent in this case due to the smaller scale.

7.4 Test: Cooling of an emplaced lava
flow

We applied the model for the thermal radiation, expressed by
the (6.3), to simulate the cooling phase of a real lava flow. The
simulation does not involve a mechanical study of the process,
but is limited to the thermal aspect. The lava flow is built
in GPUSPH from a map of temperature and thickness of the
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Figure 7.20: Velocity of the RT instability bubble with uy = 1m/s
and 19 = 1 Pa. Comparison between a simulation obtained with
the VOF method (by [25]) and GPUSPH.
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Figure 7.21: Top view of the lava flow implemented in GPUSPH.
Particles are colored by temperature.

already spread flow and from the Digital Elevation Map (DEM)
of the interested volcanic area. The flow under exam is the
episode of the 12" August 2011 [31] at Mount Etna.

The thermal model for conduction has already been validated,
as shown in [89]; the cooling phase of a cubic volume of fluid,
with initial parabolic temperature profile, has been analyzed,
and the comparison over time of the analytical and simulated
profile has revealed first order convergence in the errors Ly, L2
and L., expressed as in 7.2.2.

For the simulation we used a density p = 2,600kg/m?,
thermal conductivity x = 1Wm~'K™!, emissivity e = 0.96,
heat capacity ¢, = 1,600J kg ' K~! and ground temperature
T, = 296 K. The temperature of the particles forming the interior
of the flow is fixed to T; = 1,200 K.
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14:30 GMT

Figure 7.22: Thermal image used to reconstruct the map of the
temperature used as input of the simulation and to compare the
simulation results.
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The thermal evolution of the flow relies on the thermal radia-
tion from the surface and the thermal diffusion through the floor,
that implements a sponge layer 2.5.3. Since the emplacement is
generated as a problem initialization, all the particle have the
same spacing, and we cannot have under resolved areas in the
simulation. We can then model the particles surface using the
geometrical approach, introduced in 6.3.1.

In this experiment we don’t have a well defined reference
result, but we will use the information from thermal images
(7.22, the same that have been used to build the temperature
map. For this reason our analysis will be based on a qualitative
comparison of the simulated and measured data. Figures 7.23,
7.24 and 7.25 show the comparison between the measured and
simulated data, for three points of the flow, with a respectively
high, middle and low initial temperature. The initial instant for
the simulation is that associated to the temperature map.

We can see that the simulations follow quite faithfully the
measured data, though the simulated temperature tends to be
always above the measured ones. This could be caused due
to the absence in this simulation of the air convection cooling.
Some larger discrepancy are present on the last phase for the
low temperature point (7.25), in this case being the simulated
temperature lower. This could be due to a wrong assumption
made in the model, for example about the condition of the lava
underneath the interested surface spot, but it could also be an
artifact due to a mis-reference of the simulated point on the
thermal image; another possible contribution to the discrepancy
could be the uncertainty in the measured data. An overall good
matching with the measures is achieved.
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Figure 7.23: Surface temperature of an initially hot point on
the lava flow. Points in blue are measurements from a ther-
mal camera, the red line shows the temperature simulated by

GPUSPH.
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Figure 7.24: Surface temperature of a point with an initial middle
temperature on the lava flow. Points in blue are measurements

from a thermal camera, the red line shows the temperature
simulated by GPUSPH.
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Figure 7.25: Surface temperature of a point with an initial low
temperature on the lava flow. Points in blue are measurements
from a thermal camera, the red line shows the temperature
simulated by GPUSPH.



7.5. VISCOUS DAM-BREAK 189

7.5 Viscous dam-break

Dam breaks are one of the simplest test cases in the field of
CFD, and is described as a defined amount of confined fluid that
is suddenly freed from one side and allowed to spread onto an
horizontal plane, driven by gravity. In the simplest configurations,
validation is made against the progress of the front of the flow over
time. We will refer to a set up proposed in [18], where the case
is referenced as Benchmark test 1. In the following we will adopt
this notation, shortening it to BM1. the initial configuration of
the fluid is a box with length L = 6,6 m, height H =1 m and
width W = 6.6 m. The fluid has density p = 2700 kg/m?® and
a dynamic viscosity p = 10* Pa-s. According [2] and [77], the
evolution of the front over time is analytically described by

N

t
0.284 () itt <257
7 T K (7.14)

L t 5
1.133 (T + 1.221) —1 ift>2.5T

where T is the characteristic time of the problem, defined as
T = (L/H)?(u/pgh). In our case, we have T' = 16.45 s.

1) Implementation in GPUSPH: The simulation domain con-
sists of a base plane and three walls containing the fluid. The
fourth side of the main fluid box is left free to allow the fluid to
slump, simulating the sudden opening of a gate. A lateral view
of a slice of domain is shown in figure 7.26.

The solid walls are modeled using dummy boundaries, intro-
duced in section 2.4.1. The density diffusion approach introduced
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Figure 7.26: Lateral section of BM 1y at t = 10s. Particles are
colored by velocity magnitude.

by Molteni and Colagrossi [2009] is used to smooth out the noise
that naturally develops in the density field. For the speed of
sound, the usual choice in WCSPH is to pick a value ¢y around
10 or 20 the maximum velocity value. Our experiments how-
ever show that much lower errors at a given spatial resolution
can be obtained by using a higher speed of sound. There are
diminishing returns in raising the value of ¢g, though, due to
the smaller time-step, and even a reversal when the time-step
becomes too small for the available precision. The main results
that we illustrate are thus obtained with a speed of sound times
higher than the hydrostatic velocity, resulting in ¢g = 443 m/s.

7.5.1 Results for BM1

We show results for three different resolution, a Low Resolu-
tion with inter-particle distance Aprr = 1/8 m = 0.125 m, an
Intermediate Resolution with inter-particle distance Ap;p =
Aprr/2 = 1/16 m = 0.0625 m, and a High Resolution with
Appr = Aprr/4 = 1/32 m = 0.03125 m. In the following we
will refer to these three simulations as BM 1.z, BM1;r and
BM1gr. We measure the front of the fluid as the position of the
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Figure 7.27: Front position over time for BM1. The comparison
among the analytical solution and the solutions simulated with
different resolutions reveals convergence of the method.

furthest particle in the flow, plus Ap/2 to take into account the
particle volume. Results for the front position at the three reso-
lutions, compared to the front position predicted by equations
7.14 are presented in figure 7.27.

We observe that GPUSPH slightly overestimates the theoret-
ical solution for the front progress, and that the error becomes
smaller at higher resolutions. Table 1 shows the errors obtained
as the difference between the simulated and theoretical front
position in respectively the low, intermediate and high resolution
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cases at time t, and the error ratios, obtained as the error at
lower resolution over the error at higher resolution.

time [S] BMILR BMl]R BMlHR
10 error [m] 0.3085 0.2628 0.1822
error ratio 11.1739 \ 2.8779
500 error [m] 2.9546 | 1.0267 | 0.2113
error ratio 2.8779 \ 4.8599

Table 7.3: Errors for BM1 at short and long time. The ratios
are computed as the ratio of the error at lower resolution over
the error at higher resolution.

From table 7.3 and figure 7.28 we can assess the convergence
of the model and that the order of convergence grows over time,
being in the best case around a second order trend. The latter
result is due to the low-resolution simulation becoming under-
resolved as the flow progresses, due to the decrease in thickness,
leading to larger errors and to the formation of artifacts, as
shown in figure 7.29, illustrating the situation for BM1;p at
t = 500 s: we can observe that the front profile is no more well
reconstructed and some artifacts are arising, like the formation of
a second head and the detachment of the fluid from the ground.
For BM 1y we can further observe that at t = 45 s there is a
temporary inversion, with the simulation being slightly behind
the theoretical result. This may be explained by the change
in the expression of the analytical law, that presents a small
discontinuity at t = 2.57 = 41.125 s, giving a bigger value from
the right hand side.
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Figure 7.28: Logarithmic plot of the error for BM1 over the
spatial discretization interval for different times. The convergence
rate is higher at longer times due to the under-resolved condition
of lower resolution simulations.

Finally, concerning the fluid height, we have from [77] that for
short times the fluid height at the dam position and the end of
the reservoir should remain constant (i.e. h(t,0)/H = 0.684 and
h(t,—L)/H = 1) while the surface shape rearranges, whereas
for long times (¢t > 2.5T) the height at + = —L and = = 0
is the same, and evolves according to the law ¢t~2. For short
times (less than around 100 s) all of the three different resolution
simulations match the analytical result, with an error of less
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Figure 7.29: Under resolved flow front for BM1;r at ¢t = 500s:
this is one of the resolution issues arising in BM 1 as the flow
evolves.

than Ap.

7.5.2 Simulation performance

All the simulations were performed on a NVIDIA Titan X GPU
(Maxwell architecture); with the adopted spatial discretization,
BM1pR consists of 30,890, 152 particles and the time step (con-
trolled by the speed of sound) is Atpari,, = 2.5+ 107° 5. 15
of BM1ggr evolution is simulated in around 1,950s of real
time. BM1;g involves 8,080,744 particles and a time step
Atppr,, = 5.63:1075 s, and 1s of BM 1, evolution is simulated
in around 168 s. Finally, BM 1 involves 187,244 particles and



7.6. SIMULATING ERUPTIONS USING PISTONS 195

a time step Atpari,, = 5.6-10"%s and 1 s of BM 1 evolution
is simulated in around 18 s.

7.6 Simulating eruptions using pis-
tons

A fundamental role in the simulation of lava flows is covered
by the vent. Modeling a vent implies the management of two
fundamental aspects: the input of new particles in the simulation
domain and the establishment of a well defined flow rate. The
first aspect can be easily treated using some rotating crucibles
as done for 6.4, or holed reservoirs, as done for 6.6.1, but these
approaches make hard to prescribe a defined flow rate. This
issue can be overcome using a piston structure as will be shown
in the following.

7.6.1 Inclined viscous isothermal spreading
with piston

This benchmark test regards the simulation of a fluid spreading
onto an inclined plane, and follows the analytical solution derived
by [57]. It is also proposed in [18], so in analogy to BM 1 we will
refer to this experiment as BM2. The fluid has a Newtonian
rheology and is injected at a constant rate @) from a point
source through the plane. We are interested in the evolution of
the down-slope and cross-slope extent (Lq and y,, respectively
as shown in figure 7.30) of the flow. The plane is inclined
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Figure 7.30: Setup for BM2. (image from [18].

by an angle a = 2.5° and the fluid, with kinematic viscosity
v=yu/p=113-10"*m?/ s, flows at arate Q = 1.48-10°m3/ s.

The density is left free by [18], and we have opted to use
the same value adopted in BM1, p = 2700 kg/m?. According
to [18], the analytical solution at long time for the downslope
extent over time is given by:

34 5 1/9
o [T o] s o

and for the cross slope extent, at long times, is given by

sin o

Qcosa e 1/3 1/3
Yp = | ———— t/° =0.0324 t7/°. (7.16)
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Implementation in GPUSPH

The simulation domain is constituted by a base plane and a
piston, the latter used to obtain the constant flow rate @, as
shown in figure 7.31. Also in this case we perform a convergence
test using three levels of discretization: a low resolution with
inter-particle distance Aprr = 1/384 m = 2.6 - 1073 m, an
Intermediate resolution with Aprp = Aprr/1.5 =1/512 m =
1.95- 1072 m, and a High Resolution with Apgr = Aprr/1.5 =
1/768 m = 1.3-1072 m.

The fluid source, ideally a point source, is obtained by means
of a hole in the plane, through which the fluid is extruded.
Because of consistency requirements of the SPH method, the size
of the source cannot be chosen arbitrarily small, but there is a
lower bound dictated by the resolution. To avoid under-resolving
the inlet, we impose a lower bound on the inlet diameter in
order to have at least 8 Ap with the coarser resolution, then
we use 2 cm. For simplicity, the source has a squared shape.
The width of the piston is 0.1 m. It is taken bigger than the
hole section to avoid having a high fluid column that would
require a very high speed of sound and consequently very small
time steps. On the other side, having a too large piston implies
more stresses on the fluid that would lead to higher disorder
in the flow, with consequent increase in the discretization error
[66]. Moreover a large piston surface, coupled with the small
value of @), can determine small particles velocities that can be
affected by numerical precision during the integration process. In
order to make a simpler definition of the geometry, with reduced
numerical rounding, the floor is parallel to the zy coordinate
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x axis [m]

Figure 7.31: Implementation of BM2 in GPUSPH, lateral view
of a slice. Particles are colored by type: fluid in blue, walls in
green and the moving piston in red.

plane, and gravity is oriented by an angle of—a. A side view of
the simulation at ¢ = 15 s is presented in figure 7.31.

As in BM1, the speed of sound is chosen so as to minimize
compressibility while avoiding numerical instabilities due to loss
of precision. For BM2, we use ¢y = 125.5 m/s.

Results for BM2

The evolution of Ly and y,, are shown in figures 7.32 and 7.33.
The comparison between the simulated and analytical solutions
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Figure 7.32: Time evolution of the down-slope extension for
BM?2.

is to be performed at long time, anyway an irregularity can be
observed at the beginning of the simulation for both Ly and y,,,
where, while a theoretical solution would have a growing trend,
starting from zero, the simulated solutions maintain a non-zero
constant value. This is due to the fact that the vent is not a
point source and its size corresponds to the initial extension of
the flow. We observe that for L, (figure 7.32), the convergence
is apparent, with a resolution increase leading to results closer to
the theoretical solution. As in BM 1, as the flow spreads out, it
becomes under-resolved at lower resolution, leading to consider-
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Figure 7.33: Time evolution of the cross-slope extension for
BM?2.

ably worse results that diverge from the analytical solution over
time. Moreover, the under resolved flow front generates some
artifacts that result in a shaky position advance.

time [S] BMQLR BMQ]R BMQHR
100 error [m] 0.0437 0.0357 0.0233
error ratio 1.2247 \ 1.5290
145 error [m] 0.0606 [ 0.0388 [ 0.0237
error ratio 1.5644 \ 1.6383
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Figure 7.34: Logarithmic plot of the error for BM?2 over the
spatial discretization interval at different times. As for BM1,
the convergence rate is higher at longer times due to the under-
resolved condition of lower resolution simulations.

Table 7.4: Errors for BM2. The ratios are computed as the
ratio of the error at lower resolution over the error at higher
resolution.

The error trend for Ly is shown in 7.34 and reported in table
7.4; as for BM1 we have a convergence that gains orders over
time. Also in here, this can be explained considering the thinning
evolution of the flow, which makes the low-resolution simulation
becoming under-resolved as the flow progresses.
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When it comes to the cross-slope extent (figure 7.33), we have
a discrepancy between the simulated and analytical extension,
that leads at long time to a wider flow. The causes are not
yet fully known, and could likely be due to the approximations
done at numerical level such as finite size of the inlet, as well as
compressibility.

Simulation performance

BM?2pR involves 2, 761, 836 particles and a time step Atgyroy, =
4.15-107%s. Running on the same hardware as BM1, one
second of BM2gpr evolution is simulated in around 7,165s.
BM?2;pr involves 1,171, 807 particles and a time step Atpare,, =
6.22 - 10~%s, with one second of BM2;r evolution being sim-
ulated in around 1,673 s. Finally, BM 2y i involves 645,444
particles and a time step Atgyz,, = 8.27-107° s, with one
second of BM 2R evolution being simulated in around 646 s.

7.6.2 Axisymmetric cooling and spreading with
piston

This benchmark test deals with a non-isothermal flow. In anal-
ogy to BM 1 and BM2, we will refer to this experiment as BM 3.
The setup exhibits many similarities with BM2, including a
point source with fluid spreading on a plane. The floor is how-
ever horizontal in BM 3, leading to axial symmetry in the flow
emplacement. Thermal effects are also taken into account in
BM3, with only one-way coupling, as the fluid rheology is as-
sumed to be independent from the temperature, which therefore
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Parameter Value Parameter Value

Density 886kg/m3 Convective heat transfer ~ 2W/m?/K
Viscosity 3.4Pas Thermal conductivity 0.15W/m/K
Specific heat  1500J/kg/K | Eruption temperature o ~ 42°C

Bed slope 0°C Ambient temperature T,  20°C
Emissivity 0.96 Effusion rate 2.2-1078m3/s

Table 7.5: Parameters for BM 3.

acts as a passive tracer. The parameters for BM3 are reported
in table 7.5.
The radius of the expanding fluid evolves according to

pg@*\ "
R(t) ~ 0.715 (3u) t1/2 =2.23.1073 t1/2 (7.17)

Implementation in GPUSPH

The implementation in GPUSPH of BM3 is similar to that of
BM?2, though the difference in the magnitude of some physical
parameters introduces more stringent constraints. The very small
flow-rate sets an upper bound in the dimension of the source,
since too large an inlet would result in too small a velocity of the
piston, leading to numerical issues for its integration in single
precision. The upper bound also imposes limitations on the
coarsest, resolution that can be used to discretize the problem
and finally on the time-step. On the other hand, to be the
piston capable of containing enough fluid to run the simulation,
a smaller piston section implies a large piston height, requiring a
higher speed of sound that would affect the time step. A solution
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to the fluid column could be to make a horizontal piston, parallel
to the plane, but the junction with the hole would introduce
disorder in the flow. The size of the piston has been chosen in
order to approximate a trade- off with the issues just mentioned.
The piston has a squared section, 0.005 m wide and is 0.13 m
high. The plane has a side 0.12 m long and the vent is a square
hole placed in the middle. In order to avoid introducing disorder
in the flux, the hole shape and size matches with the piston
section.

We use for the wall the same thermal parameters that we
use for the fluid, and the thickness required by the dynamic
boundary model is also sufficient to implement the absorbing
conditions for the thermal model. The speed of sound is 40 m/s.

We perform a convergence test using three levels of dis-
cretization: a low resolution with inter-particle distance Aprr =
1/512 m = 1.95-10~3 m, an Intermediate resolution with Ap;p =
Aprr/1.5=1/768 m = 1.3-10~% m, and a High Resolution with
Appgr = Ap]R/1.5 = 1/1024 m=9.7-10"% m.

Results for BM3

For the flow dynamics, the model convergence can be assessed by
looking at the radius of the emplacement. We take as objective
the simulated time ¢ = 144 s the fluid is already spread enough
to show a clear temperature profile, and artifacts due to the low
resolution are yet to appear. We observe an over estimation of
the emplacement radius, being RBM 3y r(144) = 0.038 m and
R(144) = 0.027 m, probably due to discrepancies between the
numerical and analytical setup.
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Figure 7.35: Temperature profile of BM 3. The normalized tem-
perature is plotted over the distance from the vent, normalized by
the current flow radius. The two reference curves, i.e. analytical
and experimental, are taken from [33].
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Concerning the temperature profile, we perform a graphical
comparison between the simulated profile, and the analytical
and measured ones, as shown in figure 7.35, where we plot the
normalized temperature (T* = (T'—T1y,)/(To — 1)) with respect
to the radius normalized by the current flow extension. In the
two reference curves, the temperature at the vent is lower than
the temperature specified in the problem data, which has been
faced by setting a lower initial temperature of the simulated fluid.
From a graphical estimation, the temperature is chosen as the
93% of the normalized temperature, that is 313.6 K. We can see
that although the simulated solutions do not apparently match
the reference, they qualitatively tend to those as the resolution
is increased. The high mismatch in the shape of the profile can
be due to an incomplete implementation of the thermal model
for the boundary, that is not described in [18].

Simulation performance

BM3p,r involves 30,550 particles and a time step Atpps,, =
1.97 - 1075 s. One second of BM 3y evolution is simulated in
around 15 s on the same hardware used for the other benchmarks.
BM3;g involves 60’432 particles and a time step Atgas,, =
1.31-107% s. One second of BM3;r evolution is simulated in
around 134 s. Finally, BM 3y g involves 106, 724 particles and
a time step Atgys,, = 9.83-107% s. One second of BM3Lr
evolution is simulated in around 267 s.
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7.7 Simulating eruptions using open
boundaries

The two simulations BM2 and BM3 presented in 7.6, involving
the generation of flows at constant rate, can be repeated with a
more sophisticated way of generating the flow, that is using open
boundaries 2.4.3 to create an inlet. We are going to see that this
approach gives cleaner result an shorter simulation times, that
will be paid in terms of implementation complexity.

7.7.1 BM2: Inclined viscous isothermal
spreading with inlet

This benchmark test regards the simulation of a fluid spreading
onto an inclined plane, as already described in subsection 7.6.1,
where instead of relying on pistons, the generation of the flow is
achieved by means of an inlet, realized using open boundaries
2.4.3, as depicted in 2.2. To facilitate comparisons with the BM2
implementation that uses a piston, in the following we will refer
to such simulation as BM 2-piston.

Also in this case we use three discretization levels; here, as
we are going to see, with respect to BM2-piston we have less
stringent conditions in the time speed of sound and a smaller
number of particles involved, then we can afford to use finer
resolutions, i.e. Aprr = 1/512, Ap;r = 1/768 and Apyr =
1/1024.
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Figure 7.36: Lateral view of BM2yp at t = 15 s. The two red
lines mark the inlet region.

Implementation in GPUSPH

The simulation domain consists of a base plane, and the fluid
source, ideally a point source, is provided by a hole in the plane,
where the inlet is placed. The floor is parallel to the zy coordinate
plane, and gravity is oriented by an angle of —a.

To avoid under-resolving the inlet, we impose a lower bound
of 6Ap for the inlet diameter. Unlike in BM 2-piston, thanks to
the possibility of having inlets with random shape (see section
2.4.3) we use a vent with a round section. To ensure equal
spacing among particles, the round vent is obtained by means
of particles disposed on a regular grid, matching with the gird
used for the plane, that are all falling inside a circular region. A
side view of the simulation at ¢t = 15 s is shown in Figure 7.36.

The absence of the piston chamber makes us free of annoying
fluid columns, thus allowing the choice of smaller values for the
speed of sound. In contrast to BM2-piston, where the high
speed of sound implied long simulation times but also was a
main contribution the stability of the simulation, here we are
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going to show how it is possible to push in the opposite direction,
choosing small values of ¢y. In any case, we stay in accordance
to what said for the previous experiments, that, within certain
limits, a higher speed of sound gives better results [18]. Then
we evaluate the hydrostatic velocity using a height larger than
the actual necessary value, so we use the domain height. The
latter is obtained as the vertical projection of the inclined plane
(i.e. around 5 cm, whereas the thickness of the flow is less
than 1 cm.). We thus have ¢y = 19.4 m/s, resulting in time
steps of Atpara, , = 4.1-1075 s, Atgara,, = 2.67-107° s and
AtBMQHR =2.107%s.

Results for BM2

To remark the absence of the problems that in BM2-piston we
encountered in the design of the piston, mainly coming from the
small flow rate, here we are going to study the results obtained
for even smaller flow rates. We will use @ = 1.16 - 107 5m3/ s
instead of Q@ = 1.48 - 1076 m?/s.

The evolution of Lg and y,, for the simulated flow is shown in
Figures 7.37 and 7.38. We observe that for L4, the convergence
is apparent, with a resolution increase leading to results closer
to the theoretical results. As in the BM1 case, we observe
that as the flow spreads out, it becomes under-resolved at lower
resolution, leading to worse results, diverging from the analytical
solution over time. One apparent improvement is in the cleanness
of the plots, brought by the adoption of finer resolutions and in
general from the higher regularity of the flow at the vent.

The error plot is shown in figure 7.39. As for the all the
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Figure 7.37: Evolution of the flow front Ly over time.

time [S] BM?LR BM?]R BMQHR
100 error [m] 0.0452 0.0342 0.0237
error ratio 1.3216 \ 1.4430
145 error [m] 0.0536 [ 0.0387 [ 0.0232
error ratio 1.3850 \ 1.6681

Table 7.6: Errors for BM 2-inlet. The ratios are computed as
the ratio of the error at lower resolution over the error at higher
resolution.
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Figure 7.38: Evolution of the down-slope extent (Lg) and the
cross-slope extent (y,) for BM2.

spreading flows we have seen so far, the errors for the lower
resolution simulations increase over time, leading to higher con-
vergence rates. A major improvement can be seen here for the
first time, as for the high resolution simulation the error is smaller
for higher times, showing a convergence towards the analytical
solution that, in fact, is defined for long times. The errors are
shown in table 7.6.

When it comes to the cross-slope extent, Figure 7.38, despite
the solutions are cleaner with respect to BM 2-piston, we have
we have the same kind of discrepancy between the simulated and
analytical extension, that leads at long time to a wider flow. The
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Figure 7.39: Logarithmic plot of the error for BM2 over the
spatial discretization interval at different times. Once again,
the convergence rate is higher at longer times due to the under-
resolved condition of lower resolution simulations.

possible reasons are the same discussed for the case involving a
piston.

Simulation performance

BM?2p g involves initially 696,300 particles and a time step
Atguz,, = 4.1-1075% 5. One second of BM2x evolution is
simulated in around 156 s on the same hardware used for the
other benchmarks. BM2;g involves initially 1,536,444 particles
and a time step Atppre,, = 2.67- 1075 s. One second of BM2;R
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evolution is simulated in around 738 s. Finally, BM 2 r involves
2,799,236 particles and a time step Atgyo,, = 2.1-107° s.
One second of BM 2 i evolution is simulated in around 1, 740 s.

It should be noted that the real to simulated time ratio does
not change significantly over time, despite the increasing number
of particles due to the inlet generation, since the maximum
amount reached is barely sufficient to saturate the compute
capabilities of the GPU.

Comparison piston-inlet

We have seen two possible ways to simulate a prescribed flow
rate from a vent. Both approaches give a convergence in the
results.

The errors obtained here cannot be directly compared to that
obtained for BM 2-piston, since we are adopting different values
of effusion rate, then we are not modeling the same problem.
By the way, from a more qualitative comparison we can see
that for the same resolution the errors that we get in these new
simulations are larger. This is likely due to the adoption of a
smaller speed of sound, that in BM 2-piston we were forced to
take large in order to compensate the fluid columns, paying in
terms of simulation time. Higher valuer for the speed of sound
can be anyway used in the open boundary case.

The implementation involving open boundaries have shown
several advantages, like the reduction of the number of particles
involved in the simulation, the reduction of the simulation time,
the enlargement of the time step and improvement in terms of
stability and the possibility to use a finer resolution avoiding
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the annoying trembling occurring at low resolutions. Moreover
BM?2-inlet has shown an improvement of the result at longer
simulation times, suggesting a convergence towards the reference
data, that is expressed for long times. On the other side, a big
advantage of the piston is the simplicity in the implementation.

This results are also important to demonstrate that, even
using the same numerical method, a proper modellization of the
original problem has a strong impact on the simulation results.

7.8 Real Lava flow

This benchmark regards a real lava flow obtained experimentally
with natural basalt heated above the solidus and completely
degassed (the details of the experiment can be found in [26] and
online at http://lavaproject.syr.edu/)

The flow interacts with a triangular steel obstacle 45 cm
distant from the flow source. The walls of the obstacle are 14 cm
long and the opening angle between them is 90°. The parameters
for BM4 are reported in Table 7.7.

The fluid is modelled as Newtonian, with a temperature
dependent viscosity, described by

5500
T —610
where the temperature T is expressed in Kelvin.

The reference data for this problem are given in terms of
extension and front velocity as a function of time. The aver-
age front velocity before touching the obstacle is 4.06cm /s and
around 2 cm/s after encountering the obstacle.

logo = —5.94+ (7.18)
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Table 7.7: Parameters for BM4.

Parameter Value
Density 2350 kg m ™3
Specific heat 1500 Jkg 'K~!
Bed slope 14°
Effusion rate 0.77-1073 m3s~1
Convective heat transfer 2 Wm 2K !
Emissivity 0.95
Eruption temperature 1100 °C
Ambient temperature 25 °C
Thermal Conductivity of the bed 0.2 Wm K™}

Implementation in GPUSPH

In contrast to BM2 and BM3, the inlet in BM4 is not a point
source, and a velocity profile would have to be assigned over its
section. To avoid this issue, we place the inlet above a short
inflow channel, in a subcritical configuration, thus effectively
modeling only the tail end of the channel. For simplicity, in this
first stage we adopt for the channel a rectangular section instead
of a circular one. A lateral view of the simulation domain is
shown in figure 7.40.

The speed of sound is derived as usual from the highest
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Figure 7.40: Side view of the high resolution BM4 simulation.
Particles are colored by index.

velocity between the vent velocity and the hydrostatic velocity.
In this configuration the hydrostatic velocity is higher, and
determines a speed of sound ¢y = 43 m/s.

Due to the high viscosity and resolution, we use the semi-
implicit formulation we presented in [93], which requires the use
of the dynamic boundary model. From the thermal point of
view, we impose absorbing boundaries, by means of the sponge
layer technique (see 2.5.3). Applying the (2.41), we should have
H; > 0.0024 m, that considering a Ap = 1/256 = 0.0039 m will
be already satisfied by the four layers employed for the dummy
boundary model.

Additionally, following the approach seen in [93], we avoid the
very high viscosity values that arise in the final cooling phases
by clipping the viscosity curve at T'= 1190 K, that corresponds
to a kinematic viscosity of v = 44.45 m?/s.
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Figure 7.41: Comparison between real and simulated emplace-
ment obtained using (7.18).

Results for BM4

For this experiment we also performed several simulations at
three different resolution (64, 128 and 256 particles per meter),
but we did not achieve a significant convergence toward the
reference data. In fact, the simulated flows tend to be slower
and thicker than expected.

Figures 7.41 and 7.42 show the experimental flow compared
to the simulated flow at the same stages of the emplacement,
that is, when touching the obstacle and just after overcoming
it. It is clear that, since the simulated velocity differs from the
real one, the comparison makes no sense in terms of temporal
instant. From this visual comparison of the simulated and real
emplacements we can see that the shape of the emplacement
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Figure 7.42: Comparison between real and simulated emplace-
ment obtained using (6.6).

is different and that the simulated flow is wider. A number of
factors potentially contribute to these two discrepancies: the
boundary model in use is known to reduce adherence in the wet/
dry zone, and the simplified geometry of the channel itself, that
doesn’t match exactly the physical experiment (square instead
of round cross-section).

Concerning the main problem, related to the flow speed, the
higher thickness suggests a larger viscosity. We then repeated the
simulation used the viscosity law expressed by (6.6) obtaining
a much faster flow (around 6 m/s). We deduce that a possible
uncertainty or error in the expression of the experimentally
obtained viscosity model may be a cause of the discrepancy.

In any case, previous experiments have shown that some
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additional corrections to the model need to be done, both in
the thermal description of the problems and in the boundary
models. When any form of inaccuracy from these sources will
be eliminated, the simulation will be able to reveal any form of
discrepancy in the viscosity model and will be a potential tool
to improve it.

7.9 Conclusions

In this thesis we have shown the development of a model based
on SPH for the simulation of complex fluids, with the application
to a particularly complex case, constituted by lava flows. This
has been shown referring to GPUSPH, a versatile fully three-
dimensional simulation engine that exploit the advantages of
the SPH method and the power of modern GPUs to run very
accurate and performing simulations to serve the most disparate
applicative fields, ranging from engineering to geophysics.

We have seen the implementation in GPUSPH of the models
required to simulate a lava flow, and tested those, showing how
the final result was able to deal with features like Newtonian
and non-Newtonian fluids, with constant as well as temperature-
dependent rheology, with multi-phase systems and multi-fluid.

We have discussed how the explicit integration scheme can
become a limiting factor in the simulation of highly viscous fluids,
for which the time-step decreases with the square of the spatial
resolution quickly leads to very long simulation times and how
this is a problem for the application of GPUSPH to lava flows,
particularly in the cooling phase, where the viscosity of lava
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can grow by more than two orders of magnitude. So we have
implemented a semi-implicit integration scheme for WCSPH,
where the viscous contribution to the momentum equation is
integrated implicitly, solving the corresponding linear system
with the CG method. This allows the simulation of highly viscous
fluids using larger time-steps, thanks to the elimination of the
viscous term from the stability condition, bringing in the best
analyzed case to a reduction of the simulation time of about
43 times. We have also shown the effect that the viscosity, the
resolution and the CG residual threshold have on the simulation
time and on the quality of the results, and that for relatively
high viscosities or relatively fine resolutions, the semi-implicit
approach is the only one able to run a simulation when working
in single precision.

We have seen that the increase in time-step gives advantages
in term of numerical robustness and quality of results, although
it affects the stability in the density evolution when using dy-
namic boundaries. A solution to this is to compute the density
derivative from the value of the velocity used for the integration
of position.

From the application to lava flows we highlighted both the
runtime benefits, and the improvements in the quality of the final
emplacement, due to fewer numerical errors accruing during the
simulation, thanks to the smaller number of iterations necessary
to complete the same simulated time.

We have seen that the largest downside to the semi-implicit
scheme is the much higher computation cost of each integration
step, so that performance-wise it only becomes advantageous
for very large viscosities or very fine resolutions. A possible



7.9. CONCLUSIONS 221

approach in this sense would be to dynamically switch between
the explicit and the semi-implicit integration schemes depending
on resolution and viscosity. This would be of particular interest
in simulations where the particle viscosity is not constant over
time, which is typically the case for lava flows.

We have validated GPUSPH for the simulation of lava flows
against some benchmark tests or specific applications, presenting
also the simulation of the first three benchmark tests introduced
by [18]. In the latter, it was stated that the main drawback of
SPH is the Weakly Compressible formulation and therefore a
tuning of the parameters is needed to improve the quality of
the simulations. Following this reasoning we mainly acted on
the speed of sound and the boundary model in order to find
a good compromise between accuracy, stability and simulation
time. We have shown that for many cases we have a strong
convergence; while in some tests larger discrepancies with the
analytical results are present, we have proven the existence of
a convergent behavior and that the errors can be mitigated
choosing a proper resolution for the spatial discretization. We
have also encountered some issues related to under-resolved
conditions of the problem, and again we have seen that they
can be eliminated using finer discretization. For other cases of
discrepancies we have encountered we believe that the biggest
obstacle to reproduce the real behavior has been the incomplete
description of the problem setup from the reference with respect
to the thermal boundary conditions.

An essential aspect for the simulation of lava flows is the
modelling of the vent, to which end we have introduced open
boundaries, in order to create constant prescribed flows in a
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robust way, showing the improvements introduced in the results.

We shown that large limitations in the present implementa-
tion are related to the choice of single precision, proposing some
ways to mitigate or solve some of this problem.

Future developments will focus on the issues related to the
numerical precision in order to allow running simulations with
finer resolutions and thus obtain more accurate results. Further
improvements are also being worked on for the semi-implicit
scheme, to include support for the dummy boundary model and
to better integrate with the open boundaries, the current design
of which relies on the fluid velocity at the previous time-step. An
extension of the semi-implicit scheme to non-Newtonian rheology
is also being studied: it introduces a high degree of complexity
in the resolution of the system, that becomes non-linear, but
constitutes a great plus bringing the advantages of the semi-
implicit scheme to the study of the rheological properties of
lava.

For the performance, another significant speed-up to the
semi-implicit formulation could be achieved by pre-computing
the coefficient matrix, reducing the computational load of each
CG iteration, at the cost of a larger memory consumption. This
would however prevent large simulation from running on a single
GPU, a limitation that could be avoided by introducing support
for multiple GPUs in the semi-implicit scheme. Moreover we have
seen a decrease in performance for higher viscosities, due to the
less favorable conditioning of the coefficient matrix in the linear
systems needed to solve for the viscous term, then some benefits
could be achieved introducing appropriate preconditioners to
improve the convergence of the CG.
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Finally we have seen the simulations of some real lava flows,
finding a quite large discrepancy with the reference data. We
have seen how the uncertainty on the experimentally obtained
viscosity law could be a possible cause of discrepancy, showing
how its variations are reflected on the behavior of the fluid. This
will be rediscussed after further improving the results for the
simpler benchmark tests and we will assess that the results are
reproduced with a good accuracy. After that we will be able to
pass to a second big step, where the simulations will be used to
run reverse engineering processes that will help improving the
experimentally obtained models of the lava.
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