
Ph.D. Course In Systems, Energy, Computer and

Telecommunication Engineering

XXXI Cycle

Ph.D. Thesis

ENHANCING INTEROPERABILITY IN INDUSTRY 4.0

Marco Stefano Scroppo

Coordinator

Prof. Ing.

P. Arena

Supervisor

Prof. Ing.

S. Cavalieri

...in everliving memory of my beloved grandmother M., recently

passed away. I really miss you so much...

CONTENTS

1 Introduction 1

2 OPC UA - IEC 62541 7

2.1 OPC UA AddressSpace and Information Model 7

2.1.1 OPC UA NodeClass 8

2.1.2 OPC UA Events 11

2.1.3 OPC UA References 12

2.1.4 OPC UA Graphical Notations 14

2.1.5 OPC UA DataType 15

2.1.6 OPC UA ModellingRules 19

2.2 OPC UA Services . 21

2.2.1 OPC UA Discovery Service Set 21

2.2.2 OPC UA Session Service Set 21

2.2.3 OPC UA Browse, Read and Write Services . . . 21

2.2.4 OPC UA Subscription and MonitoredItem Ser-

vice Sets . 22

2.3 OPC UA Security . 25

v

CONTENTS

2.4 OPC UA for Devices 27

2.4.1 OPC UA Device Model 28

2.4.1.1 TopologyElementType ObjectType . . 28

2.4.1.2 DeviceType ObjectType 30

2.4.1.3 ConfigurableObjectType ObjectType . 30

3 JavaScript Object Notation (JSON) Data Interchange

Format 33

3.1 JSON base types . 33

3.1.1 JSON Example 34

3.2 JSON Schema . 36

4 Open Connectivity Foundation (OCF) 41

4.1 OCF Resource Model 41

5 Integration between OPC UA and the Web 49

5.1 OPC UA Web Platform Architecture 50

5.1.1 Web User’s basic knowledge needed to access

the OPC UA Web Platform 53

5.1.2 Web User’s communication technologies needed

to access the OPC UA Web Platform 61

5.2 Improvements of the proposal over the related work

present in literature . 62

5.2.1 OPC UA Web Platform versus RESTful OPC

UA solution . 64

5.2.2 OPC UA Web Platform versus Prosys solution . 65

5.2.3 OPC UA Web Platform versus OPC UA Pub-

Sub Specification 69

5.3 RESTful Interface . 73

vi

CONTENTS

5.3.1 Web User Authentication 75

5.3.2 Information about Data Sets 75

5.3.3 Information about Nodes 76

5.3.3.1 Decoding Procedure of the OPC UA

Variable Value 79

5.3.3.2 Fulfilling GET request through OPC

UA Services 82

5.3.3.3 Case Study 85

5.3.4 Updating value of Variable Nodes 92

5.3.5 Monitoring Variable Nodes 94

5.3.5.1 Case Study 99

5.3.6 Stop Monitoring Variable Nodes 101

5.4 OPC UA Web Platform Implementation 101

6 Integration between OPC UA and OCF 103

6.1 Mapping from OPC UA Information Model to OCF

Resource Model . 104

6.1.1 Mapping idea 104

6.1.2 ”x.opc.device” Device Type 111

6.1.3 ”x.opc.object” Resource Type 112

6.1.4 ”x.opc.datavariable” Resource Type 119

6.1.5 ”x.opc.method” Resource Type 121

6.1.6 Mapping OPC UA DataType and OPC UA

Variable Node Value attribute 124

6.1.6.1 Built-in DataType 126

6.1.6.2 Enumeration DataType 126

6.1.6.3 Structured DataType 127

6.1.6.4 Array 131

vii

CONTENTS

6.1.7 Case Study . 131

6.2 Mapping from OCF Resource Model to OPC UA Infor-

mation Model . 139

6.2.1 Mapping idea 139

6.2.2 OCFResourceType ObjectType 146

6.2.3 OCFResourceInstanceType ObjectType 149

6.2.4 OCFDeviceType ObjectType 150

6.2.5 CaseStudy . 157

6.3 Contribution of the proposal inside the OCF standard-

isation activity . 161

7 Conclusion 165

viii

LIST OF FIGURES

2.1 OPC UA Graphical Notations 14

2.2 Example of using a TypeDefinition inside a Node . . . 15

2.3 Example of OPC UA Structured DataType description 17

2.4 ModellingRule graphical notation adopted 20

2.5 OPC UA Device Model 28

2.6 OPC UA TopologyElementType ObjectType 29

2.7 OPC UA ConfigurableObjectType ObjectType 31

4.1 OCF Device instance of ”x.my.device” Device Type . . 46

4.2 OCF Device made up by a subdevice 47

5.1 OPC UA Web Platform Architecture 50

5.2 Example of OPC UA AddressSpace 58

5.3 Web User’s view of the OPC UA AddressSpace shown

by Figure 5.2 . 59

5.4 OPC UA PubSub Model 70

5.5 Possible use of the OPC UA PubSub model inside the

proposed platform . 72

ix

List of Figures

5.6 Graph realised by cutting OPC UA AddressSpace . . . 77

5.7 Mapping the GET Request with OPC UA Services . . 82

5.8 Check Existence of OPC UA Client and Session 83

5.9 OPC UA AddressSpace used in the Case Study 85

5.10 TController DataType 87

5.11 Realization of Monitor through OPC UA Services . . . 96

5.12 Publishing Procedure through the Topic/Broker 97

6.1 Example of the proposed mapping from OPC UA to OCF105

6.2 Mapping of OPC UA HasEventSource Reference 110

6.3 Example of Value of MyType DataType 129

6.4 Subset of OPC UA AddressSpace to be mapped to OCF 133

6.5 Description of OrderType DataType 133

6.6 OCF OPC UA Information Model 140

6.7 Prohibition of multiple inheritance in OPC UA 142

6.8 Example of OCFResourceInstanceType and OCFRe-

sourceType . 145

6.9 Light.BrightnessType ObjectType details 147

6.10 OCFResourceInstanceType ObjectType 149

6.11 OCFDeviceType ObjectType 151

6.12 HasResource and HasSubdevice ReferenceTypes 152

6.13 SubdeviceInstanceType ObjectType 154

6.14 ColType ObjectType 155

6.15 Contains ReferenceType 156

6.16 OCF Device belonging to the CustomDevice Device Type158

6.17 Mapping of the OCF Device of Figure 6.16 159

6.18 Mapping of the OCF Resource of Listing 6.3 160

6.19 OCF Bridge Device Component 162

x

LIST OF TABLES

2.1 Structure of each element of the array relevant to Value

attribute of EnumValues Property Node 16

4.1 OCF Common Properties defined by ”oic.core” Re-

source Type . 43

4.2 OCF Device Type Example 45

5.1 Web technologies adopted in the proposal versus exist-

ing solutions . 63

5.2 Basic Knowledge held by Web User versus existing so-

lutions . 63

5.3 Resources and HTTP methods defined 74

5.4 Attributes of Controller1 DataVariable 86

6.1 ”x.opc.device” Device Type 112

6.2 OCF Properties defined by ”x.opc.object” Resource Type113

6.3 JSON object of the OPCProperties array 115

xi

List of Tables

6.4 OCF Properties defined by ”x.opc.datavariable” Re-

source Type . 119

6.5 OCF Properties defined by ”x.opc.method” Resource

Type . 122

6.6 Mapping OPC UA DataTypes and array into JSON

base types and OCF data types 124

6.7 JSON object representing a single enumeration value . 126

6.8 JSON object representing a field of a Structured

DataType . 128

6.9 OCF Properties defined by ”oic.r.switch.binary” Re-

source Type . 144

6.10 OCF Properties defined by ”oic.r.light.brightness” Re-

source Type . 144

6.11 Mapping rules for OCF Resource addressed by ”/oic/d” 153

6.12 OCF CustomDevice Device Type 157

xii

LISTINGS

3.1 JSON Example . 35

3.2 JSON Schema Example validating the JSON Example

shown in Listing 3.1 38

5.1 JSON Schema for the description of the Node state . . 78

5.2 JSON Schema for ValueTypeSchema property in the

case of Built-in DataType 80

5.3 JSON Schema for ValueTypeSchema property in the

case of Structured DataType 81

5.4 JSON document received by the Web User for GET on

”/data-sets/1/nodes/2-79” 88

5.5 JSON Schema for ValueTypeSchema property in the

case of TController Structured DataType 90

5.6 The JSON document built using the current Con-

troller1 Value . 91

5.7 JSON document received by the Web User for GET

request on ”/data-sets/1/nodes/2-80” 91

5.8 JSON Schema for Variable value and/or status notifi-

cation on the Topic/Broker 98

xiii

LISTINGS

5.9 Example of JSON document created for the monitoring

of the Node Controller1 (ns=2;i=80) 100

6.1 JSON document representing the OPC UA Orders-

Folder Node . 132

6.2 JSON document representing the OPC UA Order1 Node136

6.3 OCF Resource representing a bulb 143

xiv

CHAPTER

ONE

INTRODUCTION

Since few years, Industry has been featured by a revolution, the fourth

one. The fourth industrial revolution has been coined with different

names in different countries; the most known is Industry 4.0. It fea-

tures the application of modern Information & Communication Tech-

nology (ICT) concepts, such as Internet of Things (IoT) [1], in in-

dustrial contexts to create more flexible and innovative products and

services leading to new business models and added value [2, 3]. The

emerging Industrial Internet of Things (IIoT) [4] is one of the main

results of this revolution.

Realisation of this novel vision may be achieved only if a big ef-

fort is really put to make interoperable the interchange of information

between different industrial applications [5]. In order to provide for

interoperability, definition and adoption of communication standards

are of paramount importance [6]. For this reason, during the last few

years, different organisations have developed reference architectures

1

Chapter 1. Introduction

to align standards in the context of the fourth industrial revolution.

Among the various standards taken in consideration by these ref-

erence architectures, OPC UA international standard (IEC 62541)

[7, 8] seems to be one of the leading candidates to become a reference

standard in this new era. As for example, the Reference Architec-

ture Model for Industrie 4.0 (RAMI 4.0) [9], which defines a three-

dimensional matrix that can be used to position existing standards

in the fourth industrial revolution, indicates for OPC UA the role

to standardise machine-to-machine communication. Another example

is the Industrial Internet Reference Architecture (IIRA), which is a

standards-based open architecture defined by the Industrial Internet

Consortium (IIC) [10]. The objective of IIRA is to create a capabil-

ity to manage interoperability, to map applicable technologies, and to

guide technology and standards development. Also in this case, OPC

UA plays a strategic role as it is one of the core connectivity standards

inside IIRA.

Even though OPC UA already combines features coming both from

industrial and ICT contexts, several activities have been carried on

during these last years. These activities have the aim to introduce

ICT enhancements into OPC UA in order to further improve its us-

ability inside the fourth industrial revolution and, in particular, in the

IIoT. As for example, literature presents some proposals to combine

OPC UA and REpresentational State Transfer (REST) architecture

style [11]; in particular, the usage of RESTful Web Services [12] to

access OPC UA is widely described [13, 14, 15]. This is due to many

advantages of RESTful Web Services in industrial settings as shown

in [13, 16] and to its usage in the context of IoT architectures [17].

Interoperability is an imperative requirement also in the IoT, as

2

Chapter 1. Introduction

no universal language exists for the Internet of Things. In the IoT

market, device makers have to choose between either using different

frameworks (e.g., provided by Apple, Amazon, or Google), which limit

their market share, or developing their own framework for standardis-

ation across multiple IoT ecosystems, which increases their costs. This

might also create a challenge for end users to ensure that the prod-

ucts they use are compatible with the ecosystem they have acquired

or alternately, to find some other ways to integrate their devices into

the network. To overcome this, industry players have come together

to form associations/foundations and consortiums of standards around

the various IoT components, including connected buildings, connected

home and industry IoT.

Open Connectivity Foundation (OCF) is one of the biggest indus-

trial connectivity standards organizations for IoT [18]. It is an indus-

try group whose aim is to develop specification standards to ensure

a set of secure interoperability guidelines for consumers, businesses,

and industries by delivering a standard communication platform and

providing a certification program for devices associated with the IoT.

Very recently, OCF has defined a set of specifications which lever-

age existing industry standards and technologies, provide connection

mechanisms between devices and between devices and the cloud, and

manage the flow of information among devices, regardless of their

form factors, operating systems, service providers or transports. At

this moment, OCF specification are under ISO/IEC standardisation

under the project FDIS 30118 by ISO/IEC JTC1 Information Tech-

nology committee.

As pointed out in this introduction, one of the main goal of Indus-

try 4.0 is the interoperability of industrial applications and the use

3

Chapter 1. Introduction

of enabling ICT technologies such as IoT. Due to the presence of dif-

ferent communication protocols in the current Industry 4.0 and IoT

scenarios, interoperability may be achieved only through integration

of these protocols. This integration must enable information exchange

between the several industrial applications built on them. Integration

of different protocols can be realised in several ways achieving various

levels of interoperability according to the main features of the integra-

tion itself [19]. As for example, interoperability between two different

ecosystems can be achieved by mapping the data model structures of

the ecosystems to be integrated.

Taking into account OPC UA, current literature present several ex-

amples of interoperability between this standard and other protocols.

Among them, [20] describes a solution for enabling interoperability

between OPC UA and DPWS. Another example is the draft version

of the mapping between OPC UA and DDS [21] (which is another core

standard of IIRA [10]).

Given these premises and acknowledged the importance of OPC

UA in this fourth industrial revolution, the research carried out dur-

ing the Ph.D. course and described in this thesis was focused on the

investigation about the enhancement of interoperability in Industry

4.0, IoT and IIoT. The research aim was to propose interoperability

improvements based on OPC UA and, in particular, on the mapping

of its information model in a different ecosystem.

First of all, the research was focused on the realisation of a proposal

enabling the interoperability between OPC UA and generic users not

compliant with OPC UA standard; in particular, it has been assumed

to propose a way to allow the interaction between OPC UA and devices

or applications using web technologies and without any knowledge of

4

Chapter 1. Introduction

the standard. The realization of this integration has been achieved

through the definition of a novel data model mapping the OPC UA

Information Model, based on common web data-formats (e.g. JSON).

In the following, this proposal will be called Integration between OPC

UA and the Web.

After that, the research focus has been enlarged to propose a so-

lution enabling the interoperability between OPC UA and IoT/IIoT

ecosystems. Among the current IoT/IIoT ecosystems, OCF has been

chosen for the integration with OPC UA, as it seems a promising solu-

tion to standardise the exchange of information into IoT as explained

before. The solution mainly aims to realise a mapping between OPC

UA and OCF information models, called in the following Integration

between OPC UA and OCF. Through this mapping, information main-

tained by an OPC UA Server may be used to populate a device compli-

ant to OCF specifications which acts as a server, allowing it to expose

this information to whatever client device in the OCF ecosystem. Vice

versa, information maintained by an OCF Device may be published

by an OPC UA Server allowing to make this information available to

whatever OPC UA-compliant device.

The thesis is organized as follows. First of all, an overview about

the fundamental elements used in this research is provided. In partic-

ular, the OPC UA standard is described in Chapter 2, the JSON data

format is analysed in Chapter 3 and the OCF ecosystem is described

in Chapter 4. After these overviews, the results of the research will be

provided: Chapter 5 describes the Integration between OPC UA and

the Web and Chapter 6 describes the Integration between OPC UA

and OCF.

5

CHAPTER

TWO

OPC UA - IEC 62541

The aim of this chapter is to deepen some features of the OPC UA

international standard (IEC 62541) needed to understand the content

of the thesis. OPC UA is mainly based on a Client/Server communi-

cation model. Very recently, an extension of OPC UA called PubSub

[22] has been released and defines a communication model based on

Publish/Subscribe pattern [23] in addition to the Client/Server one.

2.1 OPC UA AddressSpace and Informa-

tion Model

Inside an OPC UA Server, OPC UA Nodes are used to represent any

kind of information, including variable instances and types. The set

of OPC UA Nodes inside an OPC UA Server is called AddressSpace

[24].

7

Chapter 2. OPC UA - IEC 62541

Inside the OPC UA AddressSpace, OPC UA Nodes may be or-

ganised into different subsets, called Information Models [25]; each

of them is identified by a unique Namespace URI. An Array named

NamespaceArray contains the URIs relevant to the Information Mod-

els of an OPC UA AddressSpace; each URI in a NamespaceArray is

accessed through an integer index, called NamespaceIndex. Informa-

tion Model relevant to index 0 is mandatory and refers to the native

OPC UA Information Model. Each Node inside an Information Model

is univocally identified by an Identifier. A Node inside an OPC UA

AddressSpace is identified by an attribute named NodeId, which is a

couple composed by a NamespaceIndex (ns) and an Identifier (i).

2.1.1 OPC UA NodeClass

An OPC UA Node belongs to a NodeClass which defines the attribute

of the OPC UA Node. Each NodeClass is derived from the Base Node-

Class which defines the common attributes of OPC UA Nodes, among

which: NodeId (which identifies the OPC UA Node inside the OPC

UA AddressSpace), Description (which is a localised textual descrip-

tion of the OPC UA Node) BrowseName (used to identify the OPC

UA Node when browsing the OPC UA AddressSpace) and Display-

Name (which contains the name of the OPC UA Node that should be

displayed in a user interface). OPC UA defines the following Node-

Classes:

• Variable NodeClass, used to model values of the system. Two

types of Variable are defined: Property and DataVariable. A

Property contains server-defined metadata characterising what

other OPC UA Nodes represent. A DataVariable represents the

8

Chapter 2. OPC UA - IEC 62541

data of an OPC UA Object and it may be made up by a col-

lection of other OPC UA DataVariable Nodes. The Variable

NodeClass features the Value attribute containing its current

value; another attributed called DataType contains the NodeId

of a Node providing type definition for the Value attribute of the

Variable Node.

• VariableType NodeClass, used to provide type definition for Vari-

ables. OPC UA standard defines the BaseVariableType which

all the VariableTypes must be extended from. OPC UA already

defines several standard VariableTypes derived from BaseVari-

ableType. Among them there are the BaseDataVariableType

and the PropertyType. The former is used to define a DataVari-

able Node, whilst the latter defines a Property Node.

• DataType NodeClass, used to provide type definition for the

Value attribute of a Variable Node.

• Object NodeClass, used to represent real-world entities like sys-

tem components, hardware and software components, or even a

whole system. An OPC UA Object is a container for other OPC

UA Objects, DataVariables and Methods. As the Object Node

does not provide for a value, an OPC UA DataVariable Node

can be used to represent the data of an Object. For example,

an Object modelling a file uses a DataVariable to represent the

file content as an array of bytes. As another example, function

blocks in control systems might be represented as OPC UA Ob-

jects: the parameters of the function block (e.g., its setpoints)

may be represented as OPC UA DataVariables. The Object

9

Chapter 2. OPC UA - IEC 62541

function block might also have properties that describe its exe-

cution time and its type.

• ObjectType NodeClass, used to hold type definition for OPC UA

Objects. OPC UA defines the BaseObjectType which all the

ObjectTypes must be extended from. OPC UA already defines

several standard ObjectTypes derived from BaseObjectType.

Among them there is the FolderType ObjectType to model hi-

erarchy among OPC UA Nodes. Instances of FolderType Ob-

jectType are used to organise the AddressSpace into a hierarchy

of OPC UA Nodes; they represent the root Node of a subtree,

and have no other semantics associated with them. As for ex-

ample, OPC UA defines the OPC UA Node named Objects with

NodeId given by NamespaceIndex=0 and Identifier=85 of Fold-

erType ObjectType: it is the entry point for the entire set of

Objects and Variables in an AddressSpace.

• Method NodeClass, used to model callable functions that initi-

ate actions within an OPC UA Server. Methods are lightweight

functions, whose scope is bounded by an owning OPC UA Ob-

ject, similar to the methods of a class in object-oriented program-

ming. Methods can have a varying number of input arguments

and return resultant arguments. Each Method is described by a

Node belonging to the Method NodeClass. This Node contains

the metadata that identifies the arguments of the Method and

describes its behaviour. OPC UA Method NodeClass features

two boolean attributes named Executable and UserExecutable.

The Executable attribute indicates if the Method is currently

executable; it does not take any user access rights into account,

10

Chapter 2. OPC UA - IEC 62541

i.e. although the Method is executable this may be restricted to a

certain user/user group. The UserExecutable attribute indicates

if the Method is currently executable taking user access rights

into account. OPC UA Method NodeClass features two OPC

UA Properties named InputArguments and OutputArguments.

The InputArguments Property is used to specify the arguments

that shall be used by a client when calling the Method. The

OutputArguments Property specifies the result returned from

the Method call. In order to invoke a Method, it is necessary

to use a specific OPC UA Service named Call in which actual

parameters are passed [26].

• View NodeClass, used to allow OPC UA Servers to subset the

AddressSpace into Views to simplify OPC UA Client access.

• ReferenceType NodeClass, used to define different Reference

types. In the following, description of References will be given.

It is worth noting that only for the NodeClasses defining types, the

boolean attribute isAbstract is present. A ”true” value means that no

instances of the type can be created and the type is called abstract :

instances may exist only for the relevant subtypes. A type with a

”false” value for this attribute is called concrete: instances of concrete

types can be realised.

2.1.2 OPC UA Events

OPC UA also defines Events, which represent specific transient occur-

rences; system configuration changes and system errors are examples

of Events. Event Notifications report the occurrence of an Event.

11

Chapter 2. OPC UA - IEC 62541

Events are not directly visible in the OPC UA AddressSpace. OPC

UA Objects can be used to subscribe to Events. In particular, OPC

UA defines a Notifier as an OPC UA Object that can be subscribed

by OPC UA Clients to get Event Notifications.

2.1.3 OPC UA References

A relationship may be defined between two OPC UA Nodes and is

called Reference [8, 24, 25]. References may be classified into: Hier-

archical and NonHierarchical.

The semantic of a Hierarchical Reference is that it spans a hier-

archy. Hierarchical References does not forbid loops. For example,

starting from Node ”A” and following Hierarchical References it may

be possible to browse to Node ”A”, again. It is not allowed to have

self-references using Hierarchical References. OPC UA foresees several

Hierarchical Reference among which:

• HasComponent and HasOrderedComponent. If the source OPC

UA Node is an Object, the target Nodes may be OPC UA

Objects, DataVariables and Methods; the meaning is that the

source Object is made up by the target OPC UA Nodes. If the

source OPC UA Node is a DataVariable, the target Nodes may

be other OPC UA DataVariables; the meaning is that the source

variable is made up by a set of other variables.

• HasProperty. This Reference may connect a source OPC UA

Node to a target OPC UA Property; the meaning is that the

source Node features a property described by the target Node.

In the following, in the case of a generic OPC UA Node linked to

12

Chapter 2. OPC UA - IEC 62541

an OPC UA Property Node by a HasProperty Reference, it will

be said for short that the OPC UA Node features the Property

related to the Property Node.

• Organizes. This Reference may connect a source OPC UA

Object of FolderType ObjectType to other OPC UA Objects

and/or Variables; the meaning is that the source Node organises

(i.e. acts like a folder) the target Nodes.

• HasChild. It models a non-looping hierarchy between OPC UA

Nodes.

• Aggregates. This reference is used to indicate that an OPC UA

Node belongs to another OPC UA Node.

• HasEventSource. This reference may connect two OPC UA

Nodes; the semantic of this reference is to relate Event sources

to a Notifier in a hierarchical, non-looping organisation.

• HasNotifier. It relates Notifier OPC UA Objects, in order to

establish a hierarchical organisation of event notifying Objects.

• HasSubtype. It expresses a subtype relationship of types.

NonHierarchical References do not span a hierarchy and should

not be followed when trying to present a hierarchy. The NonHierarchi-

cal References are: HasTypeDefinition, HasEncoding, HasDescription,

HasModellingRule, HasParentModel and GeneratesEvent. HasType-

Definition is used to bind an OPC UA Object or Variable to its Ob-

jectType or VariableType, respectively. The meaning of HasMod-

ellingRule, HasEncoding and HasDescription References will be ex-

13

Chapter 2. OPC UA - IEC 62541

plained in the remainder of this chapter. Description of HasParent-

Model and GeneratesEvent References can be obtained by [8, 24].

2.1.4 OPC UA Graphical Notations

OPC UA specifications define graphical symbols to represent Nodes

and References [24]. They are shown by Figure 2.1a and Figure 2.1b,

respectively.

(a) Graphical Notation of Nodes (b) Graphical Notation of References

Figure 2.1: OPC UA Graphical Notations

It is worth noting that instead of using the HasTypeDefinition

Reference to point from an Object or Variable to its ObjectType or

VariableType, the name of the TypeDefinition can be added to the

text used in the Node. The TypeDefinition shall either be prefixed

with ”::” or it is put in italic as the top line as shown in Figure 2.2.

14

Chapter 2. OPC UA - IEC 62541

Figure 2.2: Example of using a TypeDefinition inside a Node

2.1.5 OPC UA DataType

The Value attribute of an OPC UA Variable is described by a

DataType. OPC UA DataType may be Built-in, Enumeration or

Structured.

Built-in DataTypes provide for base types like Int32, Boolean,

Double; see [27] for the complete list of the Built-in DataTypes avail-

able.

Enumeration DataTypes are used to represent a discrete set of

named values. The Value attribute is of Built-in Int32, i.e. an integer,

which allows to identify the enumeration value. Enumeration values

are maintained by the Enumeration DataType using two mutual ex-

clusive OPC UA Properties named EnumStrings and EnumValues.

The Value attribute of the EnumStrings Property Node is an array

of LocalizedText (for a formal definition of this type see [24]) each of

which represents the human-readable representation of an enumerated

value; the integer representation of the enumeration value points to a

position of the array. The Value attribute of the EnumValues Prop-

erty Node is an array too and allows to represent enumerations with

integers that are not zero-based or have gaps (e.g., 1, 2, 4). In this

case each element of the array is a structure made up by the elements

15

Chapter 2. OPC UA - IEC 62541

shown by Table 2.1.

Table 2.1: Structure of each element of the array relevant to Value

attribute of EnumValues Property Node

Name Type Description

Value Int64 The integer representation of an enumeration.

DisplayName LocalizedText
A human-readable representation of the value

of the enumeration.

Description LocalizedText A description of the enumeration value.

Structured DataTypes represent structured data; they are the

most powerful construct allowing to specify user-defined (i.e. vendor-

specific) complex types. Generally, they are made up by a structure

that may contain other Structured and/or Built-in DataTypes.

Transmission of information between OPC UA Client and Server

may occur using OPC UA Binary, XML or JSON data encoding [27].

For Built-in DataTypes, the encodings are well defined by the OPC

UA specification which defines standard data types giving the encod-

ing rules corresponding to the Built-in DataTypes [25].

For Structured DataTypes, the encodings are exposed in the Ad-

dressSpace, so that OPC UA Clients can obtain them in order to

decode or encode the data during the communication with the OPC

UA Servers. For this reason, different encoding rules may be available

for a Structured DataType, depending on the profile used for data

transmission; as for example, DefaultBinary encoding is used for the

binary data transmission (i.e. OPC UA Binary data encoding). In the

following, details about representation of encoding of the Structured

16

Chapter 2. OPC UA - IEC 62541

DataType will be given considering only the DefaultBinary.

In order to provide the encoding rules, each DataType Node rep-

resenting a Structured DataType points to an Object of DataType-

EncodingType ObjectType representing the encoding for the specific

data transmission (e.g. DefaultBinary Object in the case of binary

data transmission).

Figure 2.3 shows an example of a vendor-specific Structured

DataType named MyType. As it can be seen, this Node is linked

to the DefaultBinary Object through an HasEncoding Reference.

Figure 2.3: Example of OPC UA Structured DataType description

HasDescription Reference allows to link the DefaultBinary Ob-

ject to an OPC UA Variable of the DataTypeDescriptionType Vari-

ableType, named in the example MyTypeDescription. Among its

attributes, the Value contains the entry point of the Variable of

17

Chapter 2. OPC UA - IEC 62541

DataTypeDictionaryType VariableType which contains the description

of the Structured DataType (i.e. its encoding). In the figure, this OPC

UA Variable is named MyDictionary. HasComponent Reference is

used to link the two variables MyTypeDescription and MyDictionary.

As shown by Figure 2.3, the Value attribute of the MyDictionary

Variable contains one or more entries called StructuredType. A Struc-

turedType contains in turn several Field elements. A Field refers to

a component of the Structured DataType and features the attributes

Name and TypeName describing the relevant component.

In the example shown by Figure 2.3, only the StructuredType rel-

evant to MyType is shown. It is easy to understand that MyType is

a structure having two elements named ”var1” and ”var2”. The first

element is of a Built-in DataType (i.e. Int32), and the second one is

of a Structured DataType, named VarType, defined again in the same

MyDictionary Variable as shown by Figure 2.3. As shown, this nested

Structured DataType is made up by two elements: ”var3” of Int32

Built-in DataType and ”var4” of String Built-in DataType.

Array of elements belonging to Built-in, Enumeration and Struc-

tured DataTypes are allowed for the Value attribute of OPC UA Vari-

able Nodes; for this reason, the Variable NodeClass defines two at-

tributes named ValueRank and ArrayDimensions which are used to

indicate whether the Value attribute of the Variable Node is a scalar or

an array and, in the latter case, how many dimensions the array owns;

ArrayDimensions is used to specify the maximum supported length

for each dimension specified in ValueRank, only in case the Value at-

tribute contains an array. It is worth noting that OPC UA allows only

array values with elements of the same type, which is specified by the

DataType attribute of the OPC UA Variable Node.

18

Chapter 2. OPC UA - IEC 62541

2.1.6 OPC UA ModellingRules

HasModellingRule Reference is used to describe how instances of types

should be created. The source of this Reference is an InstanceDecla-

ration. An InstanceDeclaration is an Object, Variable or Method that

references a ModellingRule Object with an HasModellingRule Refer-

ence and is the TargetNode of a Hierarchical Reference from a type

Node or another InstanceDeclaration.

A ModellingRule Object specifies what happens to the In-

stanceDeclaration with respect to instances of the OPC UA type. For

instance, a Mandatory ModellingRule for a specific InstanceDecla-

ration specifies that instances of the OPC UA type referencing the

InstanceDeclaration must have a counterpart of that InstanceDeclara-

tion. An Optional ModellingRule for a specific InstanceDeclaration,

instead, specifies that instances of the OPC UA type may have a coun-

terpart of that InstanceDeclaration but it is not required. Mandatory

and Optional ModellingRules require that the counterpart of the In-

stanceDeclaration has the same BrowseName of the InstanceDeclara-

tion.

Other two ModellingRules exist named MandatoryPlaceholder

and OptionalPlaceholder. The differences with the previous Mod-

ellingRules is that the counterparts of InstanceDeclaration may be

more than one, regardless of the BrowseName of the InstanceDec-

laration. For this reason, the BrowseName of InstanceDeclarations

having the OptionalPlaceholder and MandatoryPlaceholder Mod-

ellingRule will be enclosed within angle brackets (e.g. <InstanceDec-

larationNames>). Furthermore, in the grapichal representation of

OPC UA Nodes used in this thesis, a ModellingRule Object and rel-

19

Chapter 2. OPC UA - IEC 62541

evant HasModellingRule Reference are represented inside the source

InstanceDeclaration Node only by the kind of ModellingRule Object in

square brackets (i.e. [Mandatory], [Optional], [OptionalPlaceholder],

[MandatoryPlaceholder]). Figure 2.4 shows an example of the graph-

ical notation just described.

Figure 2.4: ModellingRule graphical notation adopted

20

Chapter 2. OPC UA - IEC 62541

2.2 OPC UA Services

OPC UA offers many services to allow an OPC UA Client to access

to the AddressSpace of OPC UA Servers [26].

2.2.1 OPC UA Discovery Service Set

OPC UA Servers may register themselves with a Discovery Server

using the OPC UA RegisterServer Service. OPC UA Clients can later

discover any registered Servers by calling the OPC UA FindServers

Service on the Discovery Server [26].

2.2.2 OPC UA Session Service Set

Once an OPC Client has found a specific OPC UA Server, it has

to create a Session in order to exchange data with the Server [8].

OPC UA Client can establish a Session with the OPC UA Server by

using the OPC UA CreateSession Service. Once a Session has been

established, it must be activated using the OPC UA ActivateSession

Service [26].

2.2.3 OPC UA Browse, Read and Write Services

Once a Session has been created and activated, access to the AddressS-

pace maintained by the OPC UA Server can occur.

The simplest way to allow an OPC UA Client to explore the Ad-

dressSpace of an OPC UA Server is using the OPC UA Browse Service

[26]; given a particular OPC UA Node it allows to discover the Refer-

ences and the relevant target Nodes.

21

Chapter 2. OPC UA - IEC 62541

OPC UA Read and Write Services allow an OPC UA Client to

access to a specific OPC UA Node inside a Session [8, 26].

The Read Service is used to read one or more attributes of one

or more Nodes. The OPC UA Client specifies a list of Nodes and

the relevant attributes to be read. The function returns a list of the

attribute values read. Other elements are passed together with each

attribute value; among them, there is the StatusCode. The StatusCode

is produced by the OPC UA Server to indicate the conditions under

which an attribute value was generated, and thereby can be used as an

indicator of the usability of the value. OPC UA defines three values

for the StatusCode (which contain a SubCode): Good (it assures that

the value is reliable), Uncertain (it indicates that the quality of the

value is uncertain for reasons indicated the SubCode), Bad (it means

that the value is not usable for reasons indicated by the SubCode).

Values that have an uncertain status associated with them shall be

used with care since these results might not be valid in all situations.

Values with a bad status shall never be used.

The Write Service is used to write values to one or more attribute

of one or more Nodes.

2.2.4 OPC UA Subscription and MonitoredItem

Service Sets

Subscriptions and MonitoredItems represent a more sophisticated way

to exchange data from OPC UA Server to OPC UA Client. They allow

an OPC UA Client to receive cyclic updates of OPC UA Variable

values, Node attributes and Events [8, 26].

A Subscription is the context needed to realise this cyclic exchange;

22

Chapter 2. OPC UA - IEC 62541

it is associated to a OPC UA Session and is created using the Create-

Subscription Service.

MonitoredItems are created using the OPC UA CreateMonitored-

Items Service. Each MonitoredItem identifies the item (i.e. Variable

value, Node Attribute or OPC UA Event) to be monitored and the

Subscription to use to send Notifications when a change is detected.

The content of a Notification depends on the changes detected; for

example, in the case of changes of OPC UA Variable value, the No-

tification contains the new value updated. Notifications are put in

a queue defined inside each MonitoredItem. Size and queuing policy

may be defined by the OPC UA Client for each MonitoredItem queue.

Notification are packaged into NotificationMessages for transfer to the

OPC UA Client.

MonitoredItems have several settings among which there is the

Sampling Interval which defines the rate at which it checks for changes

in the Variable values, Node attributes and Events. Only for the OPC

UA Variable Node, an attribute called MinimumSamplingInterval is

defined specifying the lower bound value that the sampling interval

can assume for each single Variable value.

Considering a MonitoredItem associated to an OPC UA Variable,

in order to detect a Variable value change, several filters are avail-

able. Among them, the DataChangeFilter exists. DataChangeFilter

features an important parameter, called trigger, which specifies the

conditions under which a Notification must be produced. The default

value of the trigger parameter is that a Notification is produced if

a change in the Variable value or a change in the associated Status-

Code is detected. Changes in the value may be generic (i.e., what-

ever changes), or it may be specified by another parameter of the

23

Chapter 2. OPC UA - IEC 62541

DataChangeFilter, called DeadbandType; it may assume three possi-

ble values: None (i.e., no rule is defined for the changes of Variable

values), AbsoluteDeadBand and PercentDeadband. According to the

AbsoluteDeadband [26], a change in the OPC UA Variable value is

detected when the absolute value of the difference between the last

value (that stored in the queue) and the current value of the OPC UA

Variable is greater than a parameter called AbsoluteDeadband, fixed

by the OPC UA Client. In other terms, a Notification is produced if

(2.1) is verified.

|lastcachedvalue− currentvalue| > AbsoluteDeadband (2.1)

The AbsoluteDeadband can be applied only to Variable of Numeric

type (i.e., Integer, Unsigned Integer, Float and Double).

The PercentDeadband [28] can be applied only for OPC UA Vari-

ables of Numeric Type for which a range of the possible values has

been defined inside the OPC UA Server. This range is called EU-

Range. In the case of Numeric Variable with an EURange, the OPC

UA Client specifies a deadbandValue and a Notification is produced if

(2.2) is verified.

|lastcachedvalue− currentvalue| > deadbandV alue

100
∗ EURange

(2.2)

Each Subscription features a PublishingInterval, which defines the

interval at which the OPC UA Server clears all the MonitoredItem

queues contained in the Subscription and conveys their contents (i.e.,

Notifications) into a NotificationMessage to be sent to the OPC UA

Client.

24

Chapter 2. OPC UA - IEC 62541

Transmission of NotificationMessages by OPC UA Server is trig-

gered by Publish requests sent by OPC UA Client [8, 26]. The OPC

UA Server enqueues all the Publish requests received until a Notifi-

cationMessage is ready (according to the PublishingInterval, as said

before). When this occurs, the NotificationMessage is sent back to

the OPC UA Client through a Publish response. For each Publish

request sent by the OPC UA Client, exactly one NotificationMessage

is transmitted by the OPC UA Server through a Publish response.

2.3 OPC UA Security

OPC UA gives a lot of importance to the secure communication be-

tween OPC UA Client and Server. A Secure Session must be created

on the top of a Secure Channel, which may be featured by different

levels of security, through the choice of the so-called Endpoints [8, 29].

Secure Channel is established to guarantee confidentially, integrity

and application authentication. When a Secure Channel has been es-

tablished, a Secure Session may be created on its top between OPC UA

Client and Server to guarantee user authentication and authorization.

Creation of both Secure Channel and Secure Session is based on

the use of X.509 certificates issued by a certification authority (CA).

Among these certificates, there is the OPC UA Application Instance

Certificate, which identifies the installation of an OPC UA product

inside an OPC UA Client and Server. It is used during the creation

of a Secure Channel.

Each OPC UA Server offers several Endpoints, each of which

groups different attributes. Among them, there are: the URL of the

25

Chapter 2. OPC UA - IEC 62541

Endpoint, the Application Instance Certificate of the OPC UA Server,

the Security Policy (which is the set of algorithms available for the

implementation of the secure mechanisms for confidentially and/or in-

tegrity like Basic128Rsa15 or Basic256) and the Security Mode (which

may enable both digital signature and encryption mechanisms, only

digital signature mechanism or none of them). Before the creation

of the Secure Channel, the OPC UA Client chooses the Endpoint of

the OPC UA Server with the desired features. For example, let us

consider an OPC UA Client who wants to use both digital signature

and encryption, and let us assume that he wants to realise the digi-

tal signature with sha1 algorithm and aes128 for encryption [29]. In

this case, the OPC UA Client must look for an Endpoint featuring

Basic128Rsa15 as Security Policy, and a Security Mode which enables

both digital signature and encryption (it is important to recall that

Basic128Rsa15 is a suite of security algorithms that include aes128

for encryption and sha1 for authentication). In order that an OPC

UA Client may discover the available Endpoints of a specific OPC UA

Server, OPC UA GetEndpoints Service can be used [26]; it gives the

list of the Endpoints and the relevant features available for a particular

OPC UA Server.

OPC UA Client create a Secure Channel using the OPC UA

OpenSecureChannel Service, specifying the URL of the preferred End-

point [8, 26]; this service also allows the OPC UA Client to send its

Application Instance Certificate to the Server. If the certificate is ap-

proved by the OPC UA Server, the Secure Channel is created. It is a

logical connection between a single OPC UA Client and a single OPC

UA Server, which maintains a set of keys known only to the Client

and Server; these keys are used to authenticate and encrypt messages

26

Chapter 2. OPC UA - IEC 62541

sent across the network.

After Secure Channel has been established, OPC UA Client starts

to establish a Secure Session using the services described in subsec-

tion 2.2.2. First of all, the Session is created using the OPC UA Cre-

ateSession Service. Once the Session has been established, the OPC

UA Client uses the OPC UA Service ActivateSession to send the user

credentials to the Server. It is worth noting that user credentials may

be represented by another certificate or by a pair username/password.

2.4 OPC UA for Devices

In the current automation systems, devices from many different manu-

facturers must be integrated resulting in effort for installation, version

management and device operation. This challenge can be faced best

with an open and standardised device model. For this reason, OPC

UA has defined a specification called OPC UA for Devices - Compan-

ion Specification [30], to define the information model associated with

Devices; it is made up by three models which build upon each other:

• The (base) Device Model is intended to provide a unified view

of devices irrespective of the underlying device protocols.

• The Device Communication Model adds Network and Connec-

tion information elements so that communication topologies can

be created.

• The Device Integration (DI) Host Model allows reflecting the

topology of the automation system with the devices as well as

the connecting communication networks.

27

Chapter 2. OPC UA - IEC 62541

In the following, an overview of the Device Model will be given in

order to better understand the content of the thesis.

2.4.1 OPC UA Device Model

The Device Model defines several elements, as shown by Figure 2.5

taken from the OPC UA Specification [30].

Figure 2.5: OPC UA Device Model

In the following, only those necessary for the proper understanding

of the thesis will be deepened.

2.4.1.1 TopologyElementType ObjectType

TopologyElementType is the base ObjectType for elements in a device

topology. This ObjectType is abstract and defines the basic infor-

mation components for all configurable elements in a device topology.

Figure 2.6 shows the TopologyElementType component.

28

Chapter 2. OPC UA - IEC 62541

Figure 2.6: OPC UA TopologyElementType ObjectType

All elements in a topology may have Parameters and Methods. Pa-

rameters are modelled with OPC UA DataVariable nodes. If such an

element has Parameters they are kept in an Object called Parame-

terSet as a flat list of Parameters. If it has Methods they are kept

the same way in an Object called MethodSet. Both ParameterSet and

MethodSet are target of a an HasComponent Reference starting from

the TopologyElement Object.

FunctionalGroups can be used to organise the Parameters and

Methods to reflect the structure of the TopologyElement. A Func-

tionalGroup Node is an instance of the FunctionalGroupType Object-

29

Chapter 2. OPC UA - IEC 62541

Type, a subtype of FolderType ObjectType. TopologyElements may

have an arbitrary number of FunctionalGroups to organise Parameters

and Methods. As for example, a FunctionalGroup called Identification

shall be used to organise Parameters for identification of this Topol-

ogyElement. It is worth noting that the same Parameter or Method

might be referenced from more than one FunctionalGroup.

2.4.1.2 DeviceType ObjectType

The abstract DeviceType ObjectType provides a general type defini-

tion for any Device. It is a subtype of TopologyElementType Ob-

jectType. A Device Node (i.e. an instance of a concrete subtype of

DeviceType) may have Parameters, Methods, and FunctionalGroups

as defined for the TopologyElementTypeDevices.

DeviceType defines several OPC UA Properties, providing a way

for a Client to get common Device information, among which: Softwar-

eRevision (which provides the revision level of the software/firmware

of the device), Model (which provides the model name of the Device)

and Manufacturer (which provides the name of the company that

manufactured the device).

2.4.1.3 ConfigurableObjectType ObjectType

ConfigurableObjectType is used as a general means to create modular

topology units. If needed, an instance of this type will be added to

the head object of the modular unit.

OPC UA specification [30] defines a generic pattern to expose and

configure components, named Configurable Component pattern. This

pattern is based on the following principles:

30

Chapter 2. OPC UA - IEC 62541

• A ConfigurableObject shall contain a folder called Supported-

Types that references the list of subtypes of BaseObjectType

available for configuring components. The Types are referenced

using Organizes References.

• The instances of the available Types shall be components of the

ConfigurableObject (through HasComponent References).

Figure 2.7 shows the ConfigurableObjectType ObjectType.

Figure 2.7: OPC UA ConfigurableObjectType ObjectType

31

CHAPTER

THREE

JAVASCRIPT OBJECT NOTATION (JSON)

DATA INTERCHANGE FORMAT

In the last few years, JSON (JavaScript Object Notation) [31, 32] has

achieved remarkable popularity as the main format for the represen-

tation and the exchange of information over the modern web.

3.1 JSON base types

JSON is a data format based on the data types of the JavaScript pro-

gramming language. JSON can represent four primitive types (string,

number, boolean and null) and two structured types (object and ar-

ray). In particular, the following base types are defined [31, 32]:

• String : a sequence of Unicode character included between double

quotes.

• Number : numerical values. A number is represented in base 10

33

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

using decimal digits. It contains an integer component that may

be prefixed with an optional minus sign, which may be followed

by a fraction part and/or an exponent part. A fraction part is a

decimal point followed by one or more digits. An exponent part

begins with the letter E in upper or lower case, which may be

followed by a plus or minus sign. The E and optional sign are

followed by one or more digits.

• Literal names : can assume only the values true, false and null.

This JSON base type is used to represent both boolean (using

true and false) and null (null) primitive types.

• Object : a sequence of key/value pairs between curly brackets

where key and value are separated by colon and pairs are sepa-

rated by commas; a key must be a string whilst a value must be

of a JSON base type.

• Array : an ordered collection of values between square brackets

where values are separated by commas. As for JSON object, a

value must be of a JSON base type.

3.1.1 JSON Example

As an example, let us consider the JSON document shown by List-

ing 3.1. It contains a JSON object representing the temperature val-

ues measured during to the last 24 hours in Rome (Italy), assuming

a sampling interval of 6 hours (i.e. only four temperature values are

produced every day).

The JSON object is made up by four key/value pairs. The

keys of the pairs are: ”country”, ”city”, ”isReliable” and

34

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

”last24hTemperatures”; the relevant values are of JSON string base

type for ”country” and ”city”, JSON literal names base type for ”is-

Reliable” and JSON array base type for ”last24hTemperatures”. The

boolean value in ”isReliable” indicates if the temperature measure-

ments contained in the document are reliable or not. The JSON array

base type relevant to the ”last24htemperatures” key contains the tem-

peratures of the last 24 hours, measured every 6 hours. For this reason,

the array contains four JSON objects, each of which is made up by

two key/value pairs where the keys are ”timestamp” and ”tempera-

ture” and the JSON base types are string and number, respectively.

They allow to represent the timestamp and the temperature value

for each measurement done. This example illustrates the simplicity

and readability of a JSON document, which partially explains its fast

adoption.

{
"country" : "Italy" ,

"city" : "Rome" ,

"isReliable" : true ,

"last24hTemperatures" : [

{
"timestamp" : "14/05/2018 00:30:00" ,

"temperature" : 21

} ,
{

"timestamp" : "14/05/2018 06:30:00" ,

"temperature" : 22

} ,
{

"timestamp" : "14/05/2018 12:30:00" ,

35

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

"temperature" : 30

} ,
{

"timestamp" : "14/05/2018 18:30:00" ,

"temperature" : 26

}
]

}

Listing 3.1: JSON Example

3.2 JSON Schema

With the popularity of JSON it was soon noted that in many scenarios

one can benefit from a declarative way of specifying a schema for JSON

documents. For instance, in the public API scenario one could use a

schema to avoid receiving malformed API calls that may affect the

inner engine of the application. A declarative schema specification

would also give developers a standardised language to specify what

types of JSON documents are accepted as inputs and outputs by their

API.

JSON Schema [33, 34, 35] is a simple schema language that allows

users to constrain the structure of JSON documents and provides a

framework for verifying the integrity of the requests and their compli-

ance to the API.

JSON schema is represented as JSON objects. A JSON object

may be empty (i.e., “{}”) or it may contain a number of key/value

pairs having special meanings. An empty JSON object validates every

JSON document, whilst the second format validates a JSON document

36

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

according to the rules associated to each key specified in the JSON

Schema. Among these keys there are:

• ”$schema”: it is used to specify if the JSON document is a JSON

Schema. It also specifies which version of the JSON Schema

specification is used.

• ”properties”: the list of key/value pairs that could be present in

the JSON document. For each pair, the related JSON Schema

is provided.

• ”type”: the type of the JSON Schema or the value type for

each key/value pair listed in ”properties”. When it specifies the

type of the JSON Schema, it may assumes several values, among

which the “object” value; the relevant meaning is that the JSON

Schema is a collection of key/value pairs. When ”type” is used

to define the value type for each key/value pair, it may indicate

if a value is an object, an array or a JSON base type. It is

worth noting that specification allows to use integer to restrict

numeric values only to integer numbers (number type identifies

both integer and real numbers).

• ”enum”: an array containing the allowed enumerated values.

• ”required”: an array that specifies which properties must be

present in a JSON document compliant with the schema. The

properties here defined must be a subset of the content of ”prop-

erties”.

• ”additionalProperties”: a boolean that indicates if different

properties from those specified in ”properties” are allowed.

37

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

As an example, let us consider the JSON Schema shown by List-

ing 3.2.

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "object" ,

"properties" : {
"country" : {"type" : "string"} ,
"city" : {"type" : "string"} ,
"isReliable" : {"type" : "boolean"} ,
"last24hTemperatures" : {

"type" : "array" ,

"items" : {
"type" : "object" ,

"properties" : {
"timestamp" : {"type" : "string"} ,
"temperature" : {"type" : "number"}

} ,
"required" : ["timestamp" , "temperature"] ,

"additionalProperties" : fa l se

}
}

} ,
"required" : ["country" , "city" , "isReliable" , "

last24hTemperatures"] ,

"additionalProperties" : fa l se

}

Listing 3.2: JSON Schema Example validating the JSON Example

shown in Listing 3.1

It validates any JSON document made up by key/value pairs where

keys are ”country”, ”city”, ”isReliable” and ”last24hTemperatures”

38

Chapter 3. JavaScript Object Notation (JSON) Data Interchange Format

and values are string for ”country” and ”city”, boolean for ”isReliable”

and array for ”last24hTemperatures”. In turn, the JSON Schema

specifies that each element of the array ”last24hTemperatures” is an

object made up by two key/value pairs where keys are ”timestamp”

and ”temperature” with string and number values, respectively.

All the four properties specified by the JSON Schema (i.e. ”coun-

try”, ”city”, ”isReliable” and ”last24hTemperatures”) are mandatory

due to their presence in the ”required” property. Furhtermore, other

key/value pairs are not allowed due to the property ”additionalProp-

erties” set to false. For the same reason each object inside the array

”last24hTemperature” must be made up by the two properties ”times-

tamp” and ”temperature” and no additional properties are allowed.

The JSON document seen before in Listing 3.1 is correctly vali-

dated by the JSON Schema of Listing 3.2.

39

CHAPTER

FOUR

OPEN CONNECTIVITY FOUNDATION (OCF)

OCF specifications [36] are based on the REpresentational State

Transfer (REST) architecture style [11]. The OCF specifications en-

able interoperability between heterogeneous devices acting as OCF

Clients and devices acting as OCF Servers. The notion of client and

server is realised through roles; an OCF Server exposes hosted re-

sources, whilst an OCF Client accesses resources on a server through

RESTful operations. Data exchange between OCF Client and OCF

Server occurs in JSON format [31].

4.1 OCF Resource Model

OCF defines the OCF Resource Model to enable the interoperability

and to provide consistency between devices in OCF ecosystem [36].

The OCF Resource Model is based on the concepts of Device and

Resource. According to the OCF Core Specification [37], a Device

41

Chapter 4. Open Connectivity Foundation (OCF)

models a logical entity (e.g., corresponding to a real device) whilst

a Resource is the representation of a component of a Device (e.g., a

sensor in a smartphone).

An OCF Resource is an instance of one or more OCF Resource

Types. Each Resource Type defines a set of properties exposed by the

Resource. A Resource is addressed using URI and contains properties.

Properties are represented as key/value pairs of a JSON object and

are defined using OCF data types derived from JSON base types.

According to [37], OCF adopts the same JSON base types described

in Section 3.1, with the exception of ”true” and ”false” value that in

JSON are defined by the literal name type but in OCF are mapped in

OCF boolean data type (values ”true” and ”false” are left unaltered).

The properties of a Resource represent the state of the Resource itself.

In addition, a Resource declare a set of OCF Interfaces. Each Interface

specifies how is possible to interact with the Resource itself.

OCF specification defines several common properties which must

be present in a Resource. They are specified by the ”oic.core” Re-

source Type, and consist of an unique identifier for the Resource in

the context of a Device (id), the name of the Resource (n), the Re-

source Types (rt) and the Interfaces (if) supported by the Resource.

The properties of Resource Type ”oic.core” must be present in every

JSON object representing an OCF Resource and are summarised in

Table 4.1.

42

Chapter 4. Open Connectivity Foundation (OCF)

Table 4.1: OCF Common Properties defined by ”oic.core” Resource

Type

Property Name OCF data type Mandatory Description

id string or uuid No

Identifier for the

Resource in the

context of a Device

n string No Name of the Resource

rt array of strings Yes
Defines the Resource

Types of the Resource

if array of strings Yes
Interfaces supported

by the Resource

OCF specifies that a Resource can be related to another Resource

through an OCF Link [37]. A Link consists of a set of parameters.

The ”rel” parameter specifies the kind of relationship of a Link; if it is

not provided, a value of ”rel” = ”hosts” shall be assumed. The ”href”

parameter specifies the target URI of the Resource pointed by the

Link. The context URI of a Link is implicitly the URI of the Resource

containing the Link itself unless the Link specifies the ”anchor” param-

eter. The ”anchor” parameter is used to change the context URI of the

Link, in the sense that the relationship with the target URI is based

on the anchor URI. As an example, consider a Resource representing

a floor containing Links pointing to the Resources representing the

rooms in the floor. If each room contain lights, these may be defined

in the Resource representing the floor as Links having the ”anchor”

parameter set to the URI of the Resources representing the rooms

containing the lights. Another important parameter is ”p” (Policy)

43

Chapter 4. Open Connectivity Foundation (OCF)

which defines rules for correctly accessing a Resource referenced by

the target URI. One of these rules, named Observable, may be used

to notify the OCF Client on state change of the target Resource.

A Link is always owned by the source Resource, and a Resource

with properties and Links is named Collection. Properties of an OCF

Collection are defined by the Resource Type ”oic.wk.col”. Among

these properties, ”links” is used to gather every Link having as source

the Collection itself.

According to OCF specifications, a Device belongs to a Device

Type. A Device Type is identified by a string; also a Device Name

is associated to a Device Type for informative purpose. A Device

Type mandates the list of minimum OCF Resources that a Device of

this type must expose; a Device may include other Resources, but the

implementation of those specified by its Device Type is mandatory.

In order to enable the functional interaction between OCF Client

and OCF Server, OCF mandates a list of core Resources that must

be supported and exposed by a Device. Specifically, OCF defines

three well-known Resources in an OCF Device. These Resources are

addressed in the context of the OCF Device using the predefined URIs

”/oic/p”, ”/oic/d” and ”/oic/res” and belongs to the OCF Resource

Types named ”oic.wk.p”, ”oic.wk.d” and ”oic.wk.res”, respectively.

The Resource addressed by ”/oic/p” URI represents the physical

platform hosting the physical device. It is used to expose information

about platform like vendor name or software version.

The Resource addressed by ”/oic/d” URI represents the device and

its properties. Properties of this Resource are defined by the Resource

Type ”oic.wk.d”. These properties provide information about the de-

vices as: a localized description of the device in one or more language

44

Chapter 4. Open Connectivity Foundation (OCF)

(ld), the software version (sv), the manufacturer name (dmn) and the

model number (dmno). It is worth noting that the ”rt” property of

this Resource includes also the Device Type of the device represented,

alongside the Resource Type ”oic.wk.d”.

The Resource addressed by ”/oic/res” URI is the entry point for

all the Resources exposed by the OCF Device. It contains OCF Links

to each Resource owned by the Device.

In the following, an example of an OCF Device Type will be given.

Table 4.2 points out its description according to the formalism used

in OCF specifications, giving a Device Name and the string which

identifies the Device Type (i.e. ”x.my.device”).

Table 4.2: OCF Device Type Example

Device Name Device Type
Required

Resource Name

Required

Resource Type

MyDevice ”x.my.device” MyResource ”x.my.resource”

According to Table 4.2, each Device of this type must implement

a Resource of ”x.my.resource”. Figure 4.1 shows an instance of this

Device Type.

For each Resource, only URI and ”rt” property are shown. The

Resource containing the Device information (addressed by ”/oic/d”

URI) contains two elements in the ”rt” property; one of these is the

”x.my.device” string representing the Device Type in Table 4.2.

An OCF Device can represent a device made up by subdevices.

In this case, an OCF Device can expose Resources representing the

subdevices. A Resource of this kind belongs to a Device Type (i.e.

its ”rt” property must contain a Device Type) and shall expose the

45

Chapter 4. Open Connectivity Foundation (OCF)

Figure 4.1: OCF Device instance of ”x.my.device” Device Type

properties defined by ”oic.wk.d” Resource Type. Furthermore, if the

Resource representing a subdevice is also a Collection (i.e. it has the

”oic.wk.col” Resource Type in its ”rt” property), it shall link manda-

tory Resources specified by the Device Type.

Figure 4.2 shows an example of a Device made up by a subdevice.

The OCF Device represented in this figure is the same shown by Fig-

ure 4.1, with the addition of a Resource representing a subdevice and

addressed by the URI ”/my/subdevice”. As shown, the ”rt” property

of this Resource contains three strings: ”oic.wk.d”, ”x.my.device” and

”oic.wk.col”. The first element specifies that this Resource represents

a Device whilst the second the relevant Device Type. The last element

specifies that this Resource is also a Collection: for this reason it has to

link the mandatory OCF Resources defined by the ”x.my.device” De-

46

Chapter 4. Open Connectivity Foundation (OCF)

vice Type (i.e. a Resource belonging to the ”x.my.resource” Resource

Type as defined in Table 4.2).

Figure 4.2: OCF Device made up by a subdevice

47

CHAPTER

FIVE

INTEGRATION BETWEEN OPC UA AND THE

WEB

As pointed out in the Introduction (Chapter 1), this chapter describes

a proposal of integration between OPC UA and the Web, enhancing

the interoperability between OPC UA and generic users which do not

have any knowledge of the standard.

The proposal consists in the definition of a novel data model based

on common web data-formats and mapping the OPC UA Information

Model. This data model has been defined and used in the implementa-

tion of a web platform, called OPC UA Web Platform, able to offer to a

generic client a lightweighted interface to OPC UA Servers; lightweight

interface is considered both in terms of messages exchanged between

client and server and in terms of basic knowledge to be held by a

client. The web platform proposed is based on a REST architecture,

due to the relevant advantages pointed out in [13].

49

Chapter 5. Integration between OPC UA and the Web

Several papers and articles describe definition and realization of

the OPC UA Web Platform and the relevant data model, from early

stages [38, 39, 40] to the actual version described in this chapter [41].

The OPC UA Web Platform has been implemented and the relevant

code is available on GitHub [42].

5.1 OPC UA Web Platform Architecture

OPC UA Web Platform is based on the adoption of a REST architec-

ture and is shown by Figure 5.1.

Figure 5.1: OPC UA Web Platform Architecture

As it can be seen, OPC UA Web Platform offers to a Web User

the access to one or more OPC UA Servers. The generic term Web

User will identify a generic application which consumes the services

offered by the OPC UA Web Platform; these services allow the Web

User to access information maintained by OPC UA Servers, without

50

Chapter 5. Integration between OPC UA and the Web

knowledge of the OPC UA standard and without a real awareness of

the presence of OPC UA Servers behind the OPC UA Web Platform,

which are seen just as generic servers publishing information. Web

User is neither required to be an OPC UA Client nor to implement the

OPC UA communication stack (i.e., OPC UA protocol and services).

Web User is only constrained to have knowledge of basic concepts

detailed in the following subsection.

The OPC UA Web Platform consists of two main modules:

• RESTful Web Service Interface. It accepts requests submitted

by an authenticated Web User. Communication between Web

User and the OPC UA Web Platform is synchronous as for each

Web User’s request through the RESTful Web Service Interface,

the OPC UA Web Platform will send a relevant response; it is

realised by communication protocols described in the remainder

of this section. Due to the adoption of REST, communication

between Web User and OPC UAWeb Platform is stateless. This

means that each Web User’s request is independent from any

stored context on the OPC UA Web Platform, and each Web

User’s request must contain all the information necessary to the

OPC UA Web Platform to accomplish the requested service and

to generate the relevant response.

• Middleware. It performs all the operations needed to fulfil each

request coming from a Web User; these requests may require

data exchange between the Middleware and the available OPC

UA Servers. For this reason, the Middleware includes an OPC

UA Client used for the access to the OPC UA Servers. Commu-

nication between OPC UA Client and OPC UA Servers occurs

51

Chapter 5. Integration between OPC UA and the Web

according the standard OPC UA communication protocol and

services (i.e. using the OPC UA communication stack), as shown

by Figure 5.1.

The RESTful Web Service Interface provides several service that

will be clearly described in the remainder of this chapter. Among

these services it has been foreseen a particular one, called Monitor. It

allows Web User to request the activation of a particular asynchronous

communication between the platform and the Web User based on

Publish/Subscribe Pattern [23]. For this reason, Figure 5.1 shows

the presence of a set of Brokers, needed to handle each asynchronous

communication requested by a Web User.

Each Web User needing to use the OPC UA Web Platform must

be previously registered. During registration, user credentials in terms

of username and password must be stored in the OPC UA Web Plat-

form. Credentials are issued by a Web User only one time at his first

access to the OPC UA Web Platform. The platform validates these

credentials and generates a signed token which is returned to the Web

User. He will use the signed token received, in each next web service

synchronous request issued to the OPC UA Web Platform.

In order to guarantee a secure communication between Web User

and OPC UA Web Platform, encryption of data information flow (in-

cluding the exchange of the signed token) has been realised by HTTPS

[43]. Secure communication between OPC UAWeb Platform and each

OPC UA Server is realised by the OPC UA Client integrated in the

Middleware, through the OPC UA secure mechanisms [29] (explained

in Section 2.3).

The next two subsections will deal with two important items about

52

Chapter 5. Integration between OPC UA and the Web

the basic knowledge and communication technologies that a Web User

must hold to access the platform. These sections will allow the reader

to realise how minimal are the requirements requested to access the

platform, allowing a real enhancement of OPC UA interoperability

with a very large set of applications.

5.1.1 Web User’s basic knowledge needed to ac-

cess the OPC UA Web Platform

It has been assumed that the Web User must be aware about the

capability of the OPC UAWeb Platform to make available one or more

data sets to be accessed for both reading and writing operations. Each

data set has an identifier called dataset-id, assigned by the OPC UA

Web Platform as an integer positive number. Each data set is mapped

by the OPC UA Web Platform to an OPC UA Server, although this

mapping is hidden to the Web User who is not really aware about the

presence of OPC UA Servers.

Each data set is seen by a Web User as a set of elements, called

Nodes (not OPC UA Nodes but simply Nodes), each of which may

refer to a variable, an object, a method and a folder (they will be

called Variable Node, Object Node, Method Node and Folder Node,

respectively). It is assumed that the common concept of variable,

object, folder and method must be held by the Web User. About

the object, Web User must be aware that an Object Node is made

up by other Object, Variable and Method Nodes. Furthermore, an

Object Node may publish an event and may be have an event source

connected to it. The concept of property must be also held by the

Web User; he must be aware that a property may be associated to

53

Chapter 5. Integration between OPC UA and the Web

an Object or a Variable Node, giving additional information about it.

OPC UA Web Platform is in charge to map OPC UA Variables, OPC

UA Objects, OPC UA Methods and OPC UA FolderType Objects to

Nodes; this map will be hidden to the Web User. Each Node has a

node-id assigned by the platform and visible to the Web User.

On the basis of what said until now, concatenation of dataset-id

and node-id allows the Web User to univocally identify each Node

exposed by the OPC UA Web Platform.

Another Web User’s basic knowledge is that Nodes are linked each

other; the concept of link to be held is the same of an edge in a graph.

Web User must be aware that for each Node one or more edges may

exist, linking the source Node to a target Node. The edge is always

oriented from the source Node to the target Node. Furthermore, each

edge features an attribute which gives information about the relation-

ship between source and target Nodes. The following values have been

foreseen for the relationship attribute:

• HasComponent. If the source is an Object Node, the target may

be an Object, a Variable or a Method Node; in this case, the

meaning is that the source Node is made up by the target Nodes.

If the source is a Variable Node, the target must be a Variable

Node; the meaning is that the Variable Node is made up by a

collection of the target Variable Nodes. This attribute is mapped

by the OPC UA Web Platform to the OPC UA HasComponent

and HasOrderedComponent Hierarchical ReferenceTypes.

• HasProperty. The source may be an Object or a Variable Node,

whilst the target must be a Variable Node. It means that the

Object or Variable Node features a property given by the value

54

Chapter 5. Integration between OPC UA and the Web

of the target Variable Node. It is mapped by the OPC UA Web

Platform to the OPC UA HasProperty Hierarchical Reference-

Types.

• Organizes. The source is a Folder Node, whilst the target may

be Object and Variable Node. It means that the folder organises

(i.e. it is a directory containing) the target Nodes. It is mapped

by the OPC UA Web Platform to the OPC UA Organizes Hier-

archical ReferenceTypes.

• HasChild. It may connect whatever kinds of Nodes. Its mean-

ing is that a non-looping hierarchy between these Nodes exist,

according to the orientations of the edges. It is mapped by the

OPC UA Web Platform to a vendor-specific subtype of the OPC

UA HasChild Hierarchical ReferenceType.

• Aggregates. Target and source Nodes may be generic. It means

that the target Node belongs to the source Node. It is mapped

by the platform to a vendor-specific subtype of the OPC UA

Aggregates Hierarchical ReferenceType.

• HasEventSource. An edge with this attribute will connect a

source Node with a target Node to relate event sources in a hier-

archical, non-looping organisation. It is mapped by the platform

to the OPC UA HasEventSource Hierarchical Reference.

• HasNotifier. It is used to relate Object Nodes which are event

notifiers. It is mapped by the OPC UA Web Platform to the

OPC UA HasNotifier Hierarchical Reference.

55

Chapter 5. Integration between OPC UA and the Web

On the basis of what said, the edges considered for the Nodes are

mapped to the entire set of OPC UA Hierarchical References. This

is important to be pointed out because this information will be used

in the remainder of the chapter. It is also important to be pointed

out that this mapping is internal to the OPC UA Web Platform and

hidden to the Web User.

For each Node inside a data set, the Web User knows that he may

access to its information, provided by the OPC UA Web Platform as

properties of a JSON document. The following basic properties have

been defined for each Node: a node-id, a Name and a Type. As said

before, each Node in a data set has a node-id assigned by the platform

and visible to the Web User; it has been assumed that OPC UA Web

Platform produces the node-id as a string containing the concatena-

tion between the NamespaceIndex and the Identifier of the OPC UA

NodeId. For example node-id=”0-85” refers to the OPC UA Node

belonging to NamespaceIndex 0 and Identifier 85 (i.e., OPC UA Node

with ns=0; i=85). Name is the text which can be displayed for a Node

and is realised by the OPC UAWeb Platform as a string containing the

OPC UA DisplayName of the relevant OPC UA Node. Type specifies

the type of Node from the Web User’s point of view and may assumes

one of the following values: ”folder”, ”object”, ”method”, ”variable”.

Only in the case of Variable Node, Web User may access to the

properties Value, ValueTypeSchema, Status, MinimumSamplingInter-

val and Deadband. For each Variable Node, Web User knows that a

Value is associated. In order to correctly understand the value, Web

User must be aware about the relevant type. For this reason, descrip-

tion of the type is given to the Web User through the ValueType-

Schema, made up by a JSON Schema and describing how the Value

56

Chapter 5. Integration between OPC UA and the Web

property is made. Status belongs to an enumerated type, which can

assume three different values: Good, Uncertain, Bad. Their meanings

are the same of StatusCode as defined in the OPC UA, and described

in Chapter 2. This knowledge must be held by the Web User.

Web User must be aware that for each Variable Node, an asyn-

chronous transmission mechanism may be realised. The Value of a

Variable Node may be automatically sent to the Web User by the OPC

UAWeb Platform for each change in the value and/or the status of the

Node. In order to provide to the Web User the information about the

minimum sampling interval that he can request for the asynchronous

transmission relevant to a specific Node Variable, the MinimumSam-

plingInterval property has been defined. Furthermore, the Value of

a Variable Node may be sent, if requested by the Web User, if the

change of the Node Variable Value occurs according to a percentage

or absolute deadband, according to conditions (2.1) or (2.2) given in

Section 2.2.4. For this reason, for each Variable Node the property

Deadband has been defined. It specifies if the Web User is allowed

to realise the asynchronous transmission based on the deadband on a

specific Variable Node and, in this case, the deadband type allowed to

the Web User; this property may assume one of the following value:

”percentage”, ”absolute”, ”both”, ”none”.

In order to better understand what introduced until now, the fol-

lowing example will be given. Figure 5.2 shows a simple OPC UA

AddressSpace, pointing out the presence of several types of References

and NodeClasses. On the top of the AddressSpace there is an OPC UA

FolderType Object, which organises other OPC UA Objects. Some of

the OPC UA Objects have several components, among which Methods

and DataVariables. Among the OPC UA DataVariables, it is possi-

57

Chapter 5. Integration between OPC UA and the Web

ble to see one featuring a Value attribute belonging to the MyType

DataType considered in Section 2.1.5 and shown by Figure 2.3. This

means that the OPC UA AddressSpace contains also the definition of

this DataType, i.e. all the OPC UA Nodes shown in Figure 2.3 (not

shown for space reason). Figure 5.3 shows the OPC UA AddressSpace

given by Figure 5.2 from the Web User’s perspective.

Figure 5.2: Example of OPC UA AddressSpace

58

Chapter 5. Integration between OPC UA and the Web

Figure 5.3: Web User’s view of the OPC UA AddressSpace shown

by Figure 5.2

As it can be seen in Figure 5.3, the WebUser’s view is limited to

a set of Nodes of different types, connected by oriented edge with the

relationship property. The Variable Node features a different back-

ground colour in order to point out that for them the Web User will

receive additional information detailed in the following. As it is possi-

ble to see, the Web User’s view of the OPC UA AddressSpace, allows

him to capture the relevant structure in terms of objects, folders and

methods and gives to him detailed information about variables.

Comparing Figures 5.2 and 5.3, it is possible to point out that all

the information about OPC UA types are hidden to the user. This

59

Chapter 5. Integration between OPC UA and the Web

does not means that information about types disappears, but they are

used by the OPC UA Web Platform and passed to the Web User in a

more friendly form, when needed.

As an example, let us consider the information about Objects and

Folders. In the OPC UA AddressSpace shown by Figure 5.2, the

BaseObjectType and FolderType ObjectTypes are used to specify if

an OPC UA Object is a folder or not. In the Web User’s view this

information is passed through the Type property of the Node, spec-

ifying if the Node is an Object Node or a Folder Node, as shown by

Figure 5.3.

Another example is the description of the MyType DataType

which is included (but not shown for space limitation) in the OPC

UA AddressSpace of Figure 5.2. This description is totally hidden to

the Web User, as shown by Figure 5.3, but it is given to him through

a JSON Schema document contained in the ValueTypeSchema prop-

erty of the relevant Variable Node (the Node with the Note (1) shown

in Figure 5.3); the remainder of this chapter will detail how JSON

Schema is built and used to fill the ValueTypeSchema property.

The examples just presented allow to enforce the concept that

although the Web User’s view is simplified, information maintained

by the OPC UA AddressSpace is not lost for the Web User, but it is

given to the Web User in a more friendly way.

60

Chapter 5. Integration between OPC UA and the Web

5.1.2 Web User’s communication technologies

needed to access the OPC UA Web Plat-

form

Communication between Web User and the OPC UA Web Platform

may be synchronous (based on RESTful web services [11]) and asyn-

chronous (based on Publish/Subscribe Pattern [23]), as shown by Fig-

ure 5.1.

It has been assumed to realise synchronous communication through

the HTTP protocol using a connection encrypted by the Transport

Layer Security (TSL), i.e. HTTPS [43]. It allows to realise encryp-

tion of data information flow between Web User and OPC UA Web

Platform, and vice versa.

About asynchronous communication, several technologies are cur-

rently based on the Publish/Subscribe Pattern; the technologies used

for the implementation of the proposed platform are both Microsoft

SignalR [44] and MQTT [45]. Web User is allowed to choose one

of them to realise the asynchronous communication according to his

preferred/available technology. Considering the SignalR-based com-

munication, the Hub model has been adopted; it is basically based on

the use of WebSocket, but it allows the use of HTTP if WebSocket

technology is not supported by the Web User. Among available im-

plementations of MQTT, the authors were interested in Mosca [46].

Mosca is a MQTT broker whose implementation is based on Node.js

[47] and may use WebSocket or HTTP.

61

Chapter 5. Integration between OPC UA and the Web

5.2 Improvements of the proposal over

the related work present in literature

As pointed out in the Introduction of this thesis (Chapter 1), other

solutions proposing a REST architecture for OPC UA exist in the

current literature. The ones that seem closer to the proposal are

described in [13, 14, 15], called in the following RESTful OPC UA

[13] and Prosys [14, 15]. The aim of this section is to compare these

solutions with the OPC UA Web Platform in order to highlight its im-

provements over these existing works. Comparison will be done from

two points of view: web technologies used for the communication and

OPC UA basic knowledge that the user has to hold. Tables 5.1 and

5.2 summarise these differences which will be better explained in the

two following subsections.

Furthermore, in Chapter 2 it has been said that a novel OPC UA

specification based on a Publish/Subscribe pattern has been defined.

As the OPC UA Web Platform adopts the Publish/Subscribe pattern,

a last subsection presents a comparison between the novel OPC UA

PubSub specification and the OPC UA Web Platform, in order to give

a better understanding about the potential relationship between the

proposed approach and the OPC UA specification.

62

Chapter 5. Integration between OPC UA and the Web

Table 5.1: Web technologies adopted in the proposal versus existing

solutions

RESTful OPC UA Prosys OPC UA Web Platform

Sync Async Sync Async Sync Async

Modified

OPC UA

Comm.

Stack

N/A HTTP

Server

Sent

Event

over

HTTP

HTTP

MQTT or

SignalR

over

Web-

Socket or

HTTP

UDP N/A TCP/IP TCP/IP TCP/IP TCP/IP

Table 5.2: Basic Knowledge held by Web User versus existing solu-

tions

RESTful OPC UA Prosys
OPC UA Web

Platform

User is an OPC UA

Client, so it must hold

full knowledge of OPC

UA Information Model

and Services and must

hold the modified OPC

UA communication

stack

Full Knowledge of OPC

UA Information Model

and Services; the client

is constrained to

implement a specific

subset of OPC UA

services and protocol

Basic Knowledge

described in Section

5.1.1 and no need to

implement OPC UA

services and protocol

(no need of OPC UA

communication stack).

63

Chapter 5. Integration between OPC UA and the Web

5.2.1 OPC UA Web Platform versus RESTful

OPC UA solution

RESTful OPC UA [13] provides a RESTful approach in the OPC UA

Client/Server communication model. No middleware exists between a

user and an OPC UA Server as the user itself is an OPC UA Client

which directly exchange data with the OPC UA Server. The RESTful

data exchange model is obtained using a modified OPC UA commu-

nication stack. The RESTful data exchange has been limited to the

OPC UA synchronous services through the use of UDP as transport

protocol; asynchronous ones are realised according to the original OPC

UA standard. As consequence, from the communication point of view

the only similarity with the proposal here presented is the REST ar-

chitecture chosen in both approaches. In RESTful OPC UA the user

must have the full knowledge of OPC UA Information Model and Ser-

vices as it is an OPC UA Client and has to implement a modified

OPC UA communication stack. The proposed solution has the aim to

provide a RESTful approach in the communication with an OPC UA

Server but it does not force the users to be OPC UA Clients but rather

it enlarges them to a generic Web User as described before. This is

obtained using a middleware which hides the OPC UA communica-

tion. For this reason, it is not requested to the Web User neither to

implement OPC UA communication stack nor to have full knowledge

about OPC UA Information Model and Services. In conclusion, the

OPC UA Web Platform adopts a RESTful approach similarly to the

solution proposed in [13] but it is able to improve the RESTful OPC

UA eliminating the restriction on users, which are no longer forced to

be OPC UA Clients but simple Web Users.

64

Chapter 5. Integration between OPC UA and the Web

5.2.2 OPC UA Web Platform versus Prosys solu-

tion

Prosys solution [14] is mainly based on the Master’s Thesis [15]. Al-

though the platform presented in [15] and the one here proposed offer

interfaces which seem similar, there are a lot of differences between

them. In the following these differences will be pointed out, high-

lighting that the OPC UA Web Platform approach do not overlap the

Prosys approach but improves it.

The main assumption of [14] is that a user is a web client com-

pliant to basic OPC UA Client Facets [48]. In other words the web

client must be an OPC UA Client implementing a specific subset of

services and protocol of the OPC UA specifications. The OPC UA

Web Platform proposal removes the restriction on users as they have

to be simple Web User (i.e. it is required neither to be an OPC UA

Client nor to have knowledge about OPC UA standard). This means a

great simplification as a user is not forced to implement the OPC UA

communication stack and specific services foreseen by the standard.

The advantage of this choice is the enhancement of interoperability be-

tween OPC UA Servers and generic clients not compliant with OPC

UA standard, increasing the set of devices and applications which can

access the information maintained by the former. For this reason the

OPC UA Web Platform improves the solution [14, 15] allowing access

from the web to OPC UA Server not only for application compliant

with OPC UA Facets, but also for generic applications not compliant

to OPC UA standard which cannot have access to information owned

by OPC UA Servers using solutions like those presented in [14, 15].

In [14] is clearly stated that the web client was designed to support

65

Chapter 5. Integration between OPC UA and the Web

standard web browsers; in other words, the work presented in [14] aims

to realise an OPC UA Client interface running on a web browser. The

OPC UA Web Platform presented in the thesis offers an interface to

a generic user without any constraints. For instance, Web User may

be either a human operator using a web browser or an application

running on a smart device. From this point of view, the proposed

approach enlarge the set of applications/devices which may use the

platform to access OPC UA Servers.

In order to improve interoperability of OPC UA Server into en-

vironments not compliant with the OPC UA standard, in the pro-

posal here presented, particular effort has been put to the problem

of data encoding of vendor-specific Structured DataTypes. As said in

Section 2.1.5, OPC UA allows the definition of vendor-specific Struc-

tured DataTypes stored in an OPC UA Server. If an OPC UA Client

needs to access a OPC UA Variable whose Value attribute belongs

to a vendor-specific Structured DataType, the relevant encoding rules

must be retrieved from the server. If a client is not compliant to OPC

UA standard, it has no possibility to access such encoding rules. For

this reason, the proposal foresees that for each OPC UA Variable of

this kind, the generic client receives a JSON document containing its

current value alongside a JSON Schema describing the structure of

the value. This value is human-readable and is obtained by the pro-

posed platform applying the encoding rules of the relevant DataType.

It is worth noting that the JSON Schema sent to the generic client

may be used for several purposes, among which to validate the value

received and to allow the client to write new well-formed values to be

sent to the platform. It is worth noting that the proposed platform

gives to the Web User the human-readable value regardless of the OPC

66

Chapter 5. Integration between OPC UA and the Web

UA DataType, in order to improve interoperability allowing whatever

client to understand information received without any knowledge of

the OPC UA DataTypes. In the approach presented in [14] the prob-

lem of distribution of the values encoded according to vendor-specific

OPC UA DataTypes is not treated; as consequence, a web client is

not allowed to understand the relevant values received from an OPC

UA Server but it has to decode the data received applying the rele-

vant encoding rules. In this case the OPC UA Web Platform improves

the Prosys solution resolving the problem of decoding complex data,

directly providing comprehensible data and avoiding the decoding of

the data by the user.

Both the solutions presented in [14] and in this thesis feature an

interface exposing several resources defined according to a REST ar-

chitecture. Choice of the resources is totally different in the two ap-

proaches. In [14], it has been assumed that OPC UA items relevant

to the OPC UA Client/Server communication model become REST

resources; example of such resources are the OPC UA MonitoredItem,

the OPC UA Session and the OPC UA Subscription. There are sev-

eral consequences relevant to this choice. First of all, the web client

must be aware of the meaning of these resources, and this explains

why it must be compliant to OPC UA Client Facets [48]. A generic

client not compliant with OPC UA cannot understand the meaning of

these resources as they are strictly linked to the OPC UA standard.

Another important consequence is that the access to a single piece

of information maintained by the OPC UA AddressSpace could not

be realised through the direct access to the relevant resource exposed

by the interface, but through a preparatory sequence of requests to

the interface according to the OPC UA Client/Server communication

67

Chapter 5. Integration between OPC UA and the Web

model. For example, if a client of [14] wants to monitor an OPC UA

Node, it is obliged to request the creation of new resources relevant

to OPC UA Session, Subscription and MonitoredItem if they do not

exist. The OPC UA Web Platform removes this overhead as the Web

User is able to obtain exactly the single piece of information from a

certain server without the need to perform preparatory accesses to

resources different from the one containing the information desired.

In fact, all the stateful tasks related to OPC UA Client/Server com-

munication are hanled in a black-box approach, and the information

must be obtained at any moment simply accessing a single resource.

This improvements make possible the interoperability with applica-

tions running on very simple and resource-constrained devices (e.g.,

smart devices inside an IIoT environment) which do not know the

OPC UA communication model. This results in a reduction of the

complexity on the client side compared to the solution in [14].

The choice made in [14] to define a resource for each OPC UA

item related to the OPC UA Client/Server communication model

leads to address each resource by paths strictly bounded to a sin-

gle client. This due to the OPC UA standard which requires that

items like OPC UA Session and Subscription can be used only by the

OPC UA Client which created them. For instance, in [14] an OPC

UA Node is represented by the resource featuring the path ”/api/ses-

sions/{sessionId}/nodes/{nodeId}”; it is clear that {sessionId} is the

identifier of a Session created by the client accessing the node and can

be used only by it. This restriction has been removed in the OPC UA

Web Platform where each resource is uniquely identified by a path

independent from the Web User; this improves the availability of the

data that must be obtained by several users using the same path.

68

Chapter 5. Integration between OPC UA and the Web

Another improvement of the OPC UA Web Platform is about

stateless constraints of the REST architecture. In [14] is clearly stated

that the current development of the proposed architecture is featured

by the storing of sessions created by the web clients, breaking in this

way the stateless constraint of the REST architecture. Sessions are

handled through Cookies as the web client is assumed to be a web

browser. Furthermore, use of Cookies limits the portability of the

proposal presented in [14] into an environment different by a web

browser. The lack of stateless constraint in the approach presented

in [14] is also due to the delivery of the real-time push notifications

to clients through the use of Server-Sent Events (SSE). In particular,

this approach uses a heartbeats mechanism sent through a separate

push endpoint; the absence of heartbeat messages informs the con-

nected web clients that connection to the service has been lost. This

allows the client user interface to display the connection status to the

user. It is clear that maintaining the connection status is not com-

pliant with the stateless concept of the REST architecture, as said

before. The stateless principle has been respected in OPC UA Web

Platform as clearly explained; furthermore, there is no constraints on

the kind of client, which may be run inside a web browser or may be

an application running on whatever (smart) device.

5.2.3 OPC UA Web Platform versus OPC UA

PubSub Specification

OPC UA is a developing standard; at this time, the novel OPC UA

PubSub Specification [22] has been defined by the OPC Foundation.

It specifies a Publish/Subscribe model (in addition to the existing

69

Chapter 5. Integration between OPC UA and the Web

Client/Server model) used to enable an asynchronous stream of infor-

mation between Publishers and Subscribers through a genericMessage

Oriented Middleware (MOM), as shown by Figure 5.4.

Figure 5.4: OPC UA PubSub Model

This model seems close to the one here proposed to implement the

asynchronous communication between Web User and the OPC UA

Web Platform (as depicted by Figure 5.1). Comparing the two models,

it is worth noting that Web User and the OPC UA Web Platform

play the roles of subscriber and publisher, respectively. Although the

two models seem similar, there are several differences between them

explained in the following.

In OPC UA PubSub model, a Publisher may be pre-configured

(configuration mainly involves the data set to send) or may be con-

figured using the PubSub Configuration Model as defined by [22]; in

this last case the OPC UA PubSub Model should be used in synergy

with the OPC UA Client/Server model as specification defines par-

ticular OPC UA Methods to change this configuration. In particular,

it is requested that, on behalf of one or more subscribers, an OPC

70

Chapter 5. Integration between OPC UA and the Web

UA Client creates a Session with the OPC UA Server and then in-

vokes such methods by the Call service of the OPC UA Client/Server

communication model. In the approach here presented, a generic Web

User is able to directly configure the data set to be published (speci-

fying the rate and the Topic where the data will be issued), using the

interface of the proposed platform.

OPC UA PubSub model specifies that a Subscriber can be a native

OPC UA application or an application that has just knowledge about

the rules used to decode and understand the messages exchanged

with the Publisher. In particular, a Publisher envelopes data in a

DataSetMessage, contained into a NetworkMessage, in turn contained

in the payload of a transport protocol segment (e.g. UDP, AMQP,

MQTT). Instead, the platform here presented issues encoded data di-

rectly in the payload of the protocol segment. About data encoding,

the proposed approach adopts the same OPC UA JSON encoding

rules defined by [27]. The Web User does not need any rule to extract

data from the payload; furthermore, it is able to understand the data

received using suitable JSON Schemas provided by the interface of the

OPC UA Web Platform.

OPC UA specifies that the transport protocols OPC UA TCP,

HTTPS and WebSocket could be used in the Client/Server communi-

cation model. OPC UA PubSub model could be used in two different

variants: broker-based (in this case the MOM is a Broker and standard

messaging protocols like AMQP or MQTT are used in the communi-

cation with it) and broker-less (in this case the MOM is the network

infrastructure and datagram protocols like UDP are used in order to

realise the communication between Publisher and Subscriber). In the

proposal here presented, the synchronous communication is based on

71

Chapter 5. Integration between OPC UA and the Web

HTTP requests, whilst the asynchronous communication scenario is

based on the use of broker and MQTT and SignalR as messaging

protocols (which may both rely on WebSocket or HTTP).

It is worth noting that the solution here presented can coexist with

the OPC UA PubSub model; the OPC UA Web Platform may rely

on both OPC UA Client/Server and OPC UA PubSub models. Fig-

ure 5.5 shows a possible use of the OPC UA PubSub model inside the

proposed solution; the asynchronous communication currently imple-

mented by the OPC UA Web Platform Middleware on the basis of

the OPC UA Client/Server model may be realised through the novel

OPC UA PubSub model.

Figure 5.5: Possible use of the OPC UA PubSub model inside the

proposed platform

72

Chapter 5. Integration between OPC UA and the Web

5.3 RESTful Interface

The definition of OPC UA Web Platform Interface is based on the

REST architectural approach. The platform exposes resources on

which Web User may perform a subset of CRUD (Create, Read, Up-

date and Delete) operations mapped on HTTP methods. According to

the classification of REST resources done in [49], it is possible to define

the following kind of resources: Collection, Document and Controller.

The list of available data sets was modelled as a Collection re-

source, which allows the Web User to retrieve information about to

the data sets offered by the OPC UA Web Platform.

A Document resource refers to a Node allowing to the Web User

to retrieve information about the state of a single Node; definition of

the state of a Node will be given in Section 5.3.3. If the Document

resource represents a Variable Node, Web User can also update the

Variable Node value.

Controller resource models a procedural concept. In the proposed

platform two procedures have been implemented related to Web User

authentication and to an asynchronous transmission mechanism of

Variable Node values.

Resources are addressed using URI as described in [49]. For exam-

ple the URI ”/data-sets/1/nodes/2-75” refers to a resource represent-

ing a Node with node-id ”2-75” and belonging to the data set with

dataset-id ”1”.

It has been assumed that Node with node-id=”0-85”, correspond-

ing to the OPC UA Object named Object with NodeId=”ns=0; i=85”

described in Section 2.2, will be the entry point of a data set.

Based on what said until now, Table 5.3 summarises the resources

73

Chapter 5. Integration between OPC UA and the Web

provided by the platform and the HTTP methods used for interaction.

Table 5.3: Resources and HTTP methods defined

Kind of

Resource
Resource GET POST

Collection /data-sets
Return the list of

available data sets
N/A

Document

/data-

sets/{dataset-
id}/nodes/{node-

id}

Return the state of

the Node node-id in

the data set

dataset-id

Update the value of

a Variable Node

with node-id in the

data set dataset-it

/data-

sets/{dataset-
id}/nodes/

Return the entry

point of a specific

data set (the state

of the Node with

node-id=”0-85” in

the data set with

dataset-id)

N/A

Controller

/authenticate N/A
Return the auth

token

/data-

sets/{dataset-
id}/monitor

N/A

Activate async

transmission of the

Variable Node

values in a specified

data set

/data-

sets/{dataset-
id}/stop-
monitor

N/A

Stop async

transmission

previously activated

74

Chapter 5. Integration between OPC UA and the Web

5.3.1 Web User Authentication

In order to guarantee a secure communication between Web User and

OPC UAWeb Platform, an ad-hoc Controller resource with URI ”/au-

thenticate”, has been defined. Web User makes a POST request on

this resource, specifying his credentials stored in the platform during

registration phase. The OPC UA Platform validates the user creden-

tials and generates a signed token for the Web User, which is returned

to him in the POST response. An encryption mechanism based on

HTTPS allows a secure transmission of the token. The Web User will

use the signed token received, in each next request issued to the OPC

UA Web Platform.

5.3.2 Information about Data Sets

The Collection resource with URI “/data-sets” allows a Web User to

request information about available data sets. For each GET request

made by Web User on this resource, the OPC UA Web Platform will

invoke the FindServers Service [8, 26] to retrieve the list of the available

(and registered) OPC UA Servers. The OPC UA Web Platform will

associate a dataset-id (assumed to be a positive integer) to each OPC

UA Server URL. The platform will send back the list of the couples

dataset-id/OPC UA Server URL, by means of the GET response. In

each following request involving a particular data set, the Web User

will indicate the relevant dataset-id in the URI path.

75

Chapter 5. Integration between OPC UA and the Web

5.3.3 Information about Nodes

Resource with URI ”/data-sets/{dataset-id}/nodes/{node-id}” has

been defined to represent a Node with node-id {node-id} in a spe-

cific data set with dataset-id {dataset-id}. Making a GET request on

this resource, the Web User will receive information about the state of

the Node specified. The authors assumed that the state of a Node is

composed by two parts: the first one describes the Node itself, whilst

the second one describes the edges having the Node as source.

The description of the Node depends on the kind of the Node. In

the case of Variable Node, its description is made up by the prop-

erties: node-id, Name, Type, Value, ValueTypeSchema, Status, Dead-

band, MinimumSamplingInterval. For the other kinds of Node, only

node-id, Name and Type are given to the Web User.

Description of edges having the Node as source, is made up by a

list of elements, one for each target Node; each element describes the

target Node (specifying only the properties node-id, Name and Type)

and the relationship property of the edge connecting source and target

Nodes.

Web User may optionally make a GET request on the URI ”/data-

sets/{dataset-id}/nodes”. In this case, the OPC UA Web Platform

will transform this URI into ”/data-sets/{dataset-id}/nodes/0-85”, al-
lowing the Web User has to retrieve state of the entry point of the data

set.

For each GET request on ”/data-sets/{dataset-id}/nodes/{node-
id}”, the OPC UA Web Platform will access to the OPC UA Node

relevant to the Node with the node-id {node-id}, inside the OPC UA

Server relevant to the data set with the dataset-id {dataset-id}. In the

76

Chapter 5. Integration between OPC UA and the Web

following this OPC UA Node will be identified as OPC UA Starting

Node. All the OPC UA attributes of the OPC UA Starting Node are

retrieved by the OPC UA Web Platform and temporary stored inside

it.

As Section 5.1.1 pointed out that the edges refer to the entire set

of OPC UA Hierarchical Reference, the OPC UA Web Platform will

follow the Hierarchical References starting from the OPC UA Starting

Node. Following these references, the OPC UA Web Platform builds

a temporary graph through a cut of the OPC UA AddressSpace with

depth one starting from the OPC UA Starting Node, as shown by

Figure 5.6.

Figure 5.6: Graph realised by cutting OPC UA AddressSpace

Information relevant to the OPC UA Starting Node, to the other

OPC UA Nodes contained in the temporary graph and to the relevant

OPC UA Hierarchical References is used to build the Node state as a

JSON document compliant to the JSON Schema shown by Listing 5.1.

77

Chapter 5. Integration between OPC UA and the Web

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "object" ,

"properties" : {
"node-id" : {"type" : "string"} ,
"Name" : {"type" : "string"} ,
"Type" : {"enum" : ["folder" , "object" , "method" , "

variable"]} ,

"Value" : {} ,
"ValueTypeSchema" : {"type" : "object"} ,
"Status" : {"enum" : ["good" , "uncertain" , "bad"]} ,

"Deadband" : {"enum" : ["absolute" , "percent" , "both" , "

none"]} ,

"MinimumSamplingInterval" : {"type" : "number"} ,
"Edges" : {

"type" : "array" ,

"items" : {
"type" : "object" ,

"properties" : {
"node-id" : {"type" : "string"} ,
"Name" : {"type" : "string"} ,
"Type" : {"enum" : ["folder" , "object" , "method" , "

variable"]} ,

"Relationship" : {"enum" : ["HasComponent" , "

HasProperty" , "Organizes" , "HasComponent" , "

HasChild" , "Aggregates" , "HasEventSource" , "

HasNotifier"]}
} ,
"required" : ["node-id" , "Name" , "Type" , "

Relationship"] ,

"additionalProperties" : fa l se

}

78

Chapter 5. Integration between OPC UA and the Web

}
} ,
"required" : ["node-id" , "Name" , "Type" , "Edges"] ,

"additionalProperties" : fa l se

}

Listing 5.1: JSON Schema for the description of the Node state

As shown by Listing 5.1, the information relevant to node-id,

Name, Type and Edges are mandatory. Only in the case of Variable

Nodes, Value, ValueTypeSchema, Status, Deadband and Minimum-

SamplingInterval properties are also present. Edges is an array of

objects, each representing a single edge. For each edge information

about target Nodes and the relationship is provided. JSON document

describing the Node state is given to the Web User inside the body of

the GET response.

5.3.3.1 Decoding Procedure of the OPC UA Variable Value

As said in Section 5.1.1, Web User has no visibility about Built-in

and Structured DataTypes and related encodings for each OPC UA

Variable. This requires that for each Variable Node, the Web User

must receive from the OPC UA Web Platform the description of the

type relevant to the Value property, in order to correctly validate

each value received, and create well-formed value in case it wants to

write a new value for the Variable Node. It has been assumed to

send this description inside the ValueTypeSchema property shown by

Listing 5.1.

Let us assume that the Web User makes a GET request on a Node

relevant to an OPC UA Variable whose Value attribute belongs to

79

Chapter 5. Integration between OPC UA and the Web

a Built-in DataType. In this case, the OPC UA Web Platform is in

charge to retrieve information about the OPC UA standard data types

used to encode the Built-in DataType; on the basis of the standard

data type, the corresponding JSON base type, able to represent it,

must be found. In the research carried on, it has been verified that

for each OPC UA Built-in DataType, a JSON base type representing

it exists. Finally, the OPC UA Web Platform will prepare the JSON

Schema shown by Listing 5.4, where the value ”XXX” is replaced by

the JSON base type corresponding to the standard data type encoding

the OPC UA Built-in DataType. This Schema is put into the Val-

ueTypeSchema property of the JSON document describing the Node

state.

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "XXX"

}

Listing 5.2: JSON Schema for ValueTypeSchema property in the

case of Built-in DataType

Now, let us assume that the Web User makes a GET request on a

Node relevant to an OPC UA Variable whose value attribute belongs

to a Structured DataType. In this case, the OPC UA Web Plat-

form will consider the DataTypeDictionaryType Variable describing

the Structured DataType. The ValueTypeSchema property will be

filled with a JSON Schema containing several properties, one for each

Field element of the StructuredType entry (see Figure 2.3). Listing

5.3 shows an example of the JSON Schema corresponding to a Struc-

80

Chapter 5. Integration between OPC UA and the Web

tured DataType. In the case of a Field whose TypeName refers to a

Built-In DataType, the relevant property is filled with the correspond-

ing JSON base type. In the example of Listing 5.3, the ”FieldName1”

property corresponds to the Name of a Field whose TypeName refers

to a standard data types; the value ”XXX” is filled with the corre-

sponding JSON base type. In the case of a Field whose TypeName

refers to a StructuredType, a nested JSON document representing it,

is inserted. The JSON document shown in Listing 5.3 presents a prop-

erty ”FieldName2” corresponding to the Name of a Field whose Type-

Name refers to a StructuredType. As shown, in this case the property

is filled with another JSON document modelling the StructuredType

in term of Fields here present (e.g., the field ”FieldName3”).

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "object" ,

"properties" : {
"FieldName1" : {"type" : "XXX"} ,

. . .

"FieldName2" : {
"type" : "object" ,

"properties" : {
"FieldName3" : {"type" : "XXX"}
. . .

}
}

}
}

Listing 5.3: JSON Schema for ValueTypeSchema property in the

case of Structured DataType

81

Chapter 5. Integration between OPC UA and the Web

5.3.3.2 Fulfilling GET request through OPC UA Services

The GET request on the resource /data-sets/{dataset-
id}/nodes/{node-id}” is accomplished by the OPC UA Web

Platform using the OPC UA Browse and OPC UA Read Services

[8, 26], as shown by Figure 5.7.

When the OPC UA Web Platform receives a GET request relevant

to a Node resource, the first action performed is the call of a proce-

dure named in Figure 5.7, ”Check existence of OPC UA Client and

Session”. This procedure may be called also for other OPC UA Web

Platform services, as it will be shown in the following subsections. The

procedure is represented by Figure 5.8.

Figure 5.7: Mapping the GET Request with OPC UA Services

It checks if an OPC UA Client instance exists inside the Middle-

ware. If this does not occur, the instance is made and it will be used

in the future for all the Web Users requesting services from the plat-

form. Then, the platform checks for the existence of a Secure Session

82

Chapter 5. Integration between OPC UA and the Web

Figure 5.8: Check Existence of OPC UA Client and Session

between the OPC UA Client and the OPC UA Server relevant to the

dataset-id specified by the Web User. If the OPC UA Session does not

exist, it is created. According to what explained in Chapter 2 about

Secure Session, the OPC UA Web Platform creates a SecureChannel

adopting the best security options available [29]. To this aim, it uses

the OPC UA GetEndpoint Service to retrieve the list of Endpoints of

the OPC UA Server [26], choosing that offering the highest security

options. Then the OPC UA CreateSecureChannel Service is invoked

[26], as explained in Chapter 2. Finally, an OPC UA Session is cre-

ated and activated through the OPC UA CreateSession and OPC UA

ActivateSession Services [26].

Coming back to the GET request, after the check about existence

83

Chapter 5. Integration between OPC UA and the Web

of OPC UA Client and OPC UA Session has been completed, the

OPC UA Web Platform will invoke the OPC UA Services shown in

Figure 5.7, i.e. OPC UA Read and OPC UA Browse, in order to build

the graph shown by Figure 5.6.

OPC UA Read request allows the platform to retrieve the full set

of information about the OPC UA Starting Node. OPC UA Browse

request allows to retrieve the description of the References contained

in the OPC UA Starting Node. For each Hierarchical Reference, the

Browse Service allows also to retrieve information of the target OPC

UA Node pointed by the OPC UA Starting Node using the Hierarchi-

cal Reference itself.

Figure 5.7 shows the last procedure named ”Decoding and Creation

of the JSON document”. It aims to create the JSON document giving

the Node state according to the JSON Schema shown by Listing 5.1.

The main part of the information needed to create this document are

given by the results achieved through the previous calls of OPC UA

Read and Browse Services [26] as explained before. In the case of

a Variable Node, the procedure described in Section 5.3.3.1 must be

applied to fill the ValueTypeSchema property shown by Listing 5.1.

When the JSON document has been built according to the JSON

Schema of Listing 5.1, it is inserted in the GET response sent to the

Web User.

84

Chapter 5. Integration between OPC UA and the Web

5.3.3.3 Case Study

In order to better understand the procedure behind the GET request

on the resource ”/data-sets/{dataset-id}/nodes/{node-id}”, in the fol-

lowing a practical example will be considered. It refers to the simple

Information Model shown by Figure 5.9, made up by an OPC UA

FolderType Object named Controllers and two OPC UA DataVari-

ables named Controller1 and Controller2 organised by the folder.

Figure 5.9: OPC UA AddressSpace used in the Case Study

It has been assumed that the information model is identified by the

NamespaceIndex number 2 (i.e., ns=2); the figure shows the Identifiers

of three nodes inside this Information Model (i.e., i=79, 80 and 81).

The same figure points out that this information model is reachable

from the standard OPC UA Node Objects (ns=0; i=85).

Table 5.4 points out some attributes of Controller1 OPC UA

DataVariable.

85

Chapter 5. Integration between OPC UA and the Web

Table 5.4: Attributes of Controller1 DataVariable

Attribute Value

NodeId ns=2;i=80

DisplayName Controller1

Value Byte[]

DataType TController (NodeId)

MinimumSamplingInterval 500

The Value attribute of Controller1 contains the most recent value

of the Variable: in the example, its content has been assumed to be

represented in Binary Encoding. Its type is defined by the DataType

attribute; as shown by Table 5.4, this attribute specifies the NodeId of

the OPC UA DataType Node defining the type of the Value attribute.

In this example, the OPC UA DataType Node is named TController,

which has been assumed to be a Structured DataType. Another at-

tribute presented in Table 5.4 is the MinimumSamplingInterval; the

table shows the relevant value assumed in this example.

Figure 5.10 shows the TController DataType Node. Its description

is very similar to that shown by Figure 2.3 for the MyType DataType

in Section 2.1.5. As it can be seen, the MyCustomDictionary Vari-

able specifies that the Structure DataType is made up by two Fields

named ”var1” and ”var2”, of Int32 and Type2 DataTypes respectively.

Int32 is a Built-in DataType; Type2 is another Structured DataType

made up by two fields named ”var3” and ”var4”, of Int32 and String

DataTypes respectively, as shown by Figure 5.10.

Suppose that the Web User makes the GET request on the resource

86

Chapter 5. Integration between OPC UA and the Web

Figure 5.10: TController DataType

/data-sets/1/nodes/2-79, assuming that the OPC UA Server owning

the AddressSpace shown by Figure 5.9 refers to the dataset-id=1. As

shown by Figure 5.7, after having assured the existence of an OPC UA

Client instance and an active and secure OPC UA Session, the OPC

UA Web Platform performs the OPC UA Read and Browse Service

requests. Both OPC UA Services have the OPC UA NodeId with

ns=2 and i=79 as argument.

OPC UA Read Service allows the platform to retrieve the informa-

tion needed to fill the properties node-id, Name and Type (i.e. ”2-79”,

”Controllers” and ”folder”, respectively).

OPC UA Browse Service allows the platform to retrieve the infor-

mation about the Hierarchical References starting from the OPC UA

Starting Node. In particular, the information obtained for each Hier-

87

Chapter 5. Integration between OPC UA and the Web

archical Reference are node-id, Name and Type of the target Node and

the Relationship between target and OPC UA Starting Node. Con-

sidering Figure 5.9, only the two Organizes References starting from

Controllers OPC UA Node are found. For the Organizes Reference

pointing the OPC UA Node Controller1, the information obtained to

fill the properties node-id, Name Type and Relationship are ”2-80”,

”Controller1”, ”variable” and ”Organizes”, respectively. For the Or-

ganizes Reference targeting the OPC UA Node Controller2, the infor-

mation obtained are the same as the previous one with the exception

of node-id which is equal to ”2-81”.

Information coming from OPC UA Read and Browse Services, are

used to create a JSON document compliant to the schema shown by

Listing 5.1. Considering the example just explained, the JSON docu-

ment shown by Listing 5.1 is obtained and sent to the Web User inside

the GET response.

{
"node-id" : "2-79" ,

"Name" : "Controllers" ,

"Type" : "folder" ,

"Edges" : [

{
"node-id" : "2-80" ,

"Name" : "Controller1" ,

"Type" : "variable" ,

"Relationship" : "Organizes"

} ,
{

"node-id" : "2-81" ,

"Name" : "Controller2" ,

88

Chapter 5. Integration between OPC UA and the Web

"Type" : "variable" ,

"Relationship" : "Organizes"

}
]

}

Listing 5.4: JSON document received by the Web User for GET on

”/data-sets/1/nodes/2-79”

In the following, another example of GET request will be pre-

sented, involving the Structured DataType TController described by

Figure 5.10. Let’s suppose to make the GET request on the resource

”/data-sets/1/nodes/2-80”. In this case, the OPC UA Starting Node

is a Variable Node. OPC UA Read Service on this OPC UA Node

allows the platform to fill the properties node-id, Name, Type with

”2-80”. ”Controller1” and ”variable”, respectively. As this OPC UA

Node is a DataVariable, its representation provided by the platform in

the GET response features the properties Status, MinimumSampling-

Interval, DeadBand, Value and ValueTypeSchema. Status is set to

”Good” and MinimumSamplingInterval is set to 500. Deadband is set

to ”none” as the platform recognise that the OPC UA DataVariable

Node has not a numeric DataType and does not feature an EURange.

In order to fill the ValueTypeSchema property, the following procedure

will be performed by the OPC UA Web Platform.

On the basis of the DataType attribute of the OPC UA Starting

Node, the TController NodeId is obtained (as shown by Table 5.4).

The OPC UA Browse Service is called by the OPC UA Web Platform,

starting from TController OPC UA Node, following the HasEncoding

Reference and looking for the DefaultBinary DataTypeEncodingType

Object. Another call of OPC UA Browse Service from this node al-

89

Chapter 5. Integration between OPC UA and the Web

lows to reach the TControllerDescription Variable; as said in Section

2.1.5, its Value attribute contains the entry point of the DataType-

DictionaryType Variable (i.e., MyCustomDictionary in Figure 5.10)

describing the structure of the TController DataType. On the basis

of the information obtained about this structure, the JSON Schema

shown by Listing 5.5 is built and used to fill the ValueTypeSchema

property of the Variable Node.

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "object" ,

"properties" : {
"var1" : {"type" : "integer"} ,
"var2" : {

"type" : "object" ,

"properties" : {
"var3" : {"type" : "integer"} ,
"var4" : {"type" : "string"}

} ,
"required" : ["var3" , "var4"] ,

"additionalProperties" : fa l se

}
} ,
"required" : ["var1" , "var2"] ,

"additionalProperties" : fa l se

}

Listing 5.5: JSON Schema for ValueTypeSchema property in the

case of TController Structured DataType

TController DataType structure (described by the Value attribute

of MyCustomDictionary Variable in Figure 5.10) is used to decode the

90

Chapter 5. Integration between OPC UA and the Web

binary stream representing the Controller1 Value attribute as seen in

Table 5.4. In this example, it has been assumed that ”var1” has a

value of 10 and ”var2” contains the field ”var3” and ”var4” with the

values 15 and ”config”, respectively. Using these values, the JSON

document shown by Listing 5.6 is built.

{
"var1" : 10 ,

"var2" : {
"var3" : 15 ,

"var4" : "config"

}
}

Listing 5.6: The JSON document built using the current Controller1

Value

Using all the information collected until now, the OPC UA Web

Platform is able to build the JSON document describing the state

of the Variable Node representing the OPC UA DataVariable Con-

troller1, according to the JSON Schema of Listing 5.1. It is shown by

Listing 5.7 and it is passed to the Web User through the GET response

body.

{
"node-id" : "2-80" ,

"Name" : "Controller1" ,

"Type" : "variable" ,

"Value" : f i l l e d with the JSON document o f Listing 5.6 ,

"ValueTypeSchema" : f i l l e d with the JSON Schema o f

Listing 5.5 ,

91

Chapter 5. Integration between OPC UA and the Web

"Status" : "good" ,

"Deadband" : "None" ,

"MinimumSamplingInterval" : 500 ,

"Edges" : []

}

Listing 5.7: JSON document received by the Web User for GET

request on ”/data-sets/1/nodes/2-80”

As it is possible to see from Listing 5.7, the Edges property is an

empty array, as no references start from the OPC UA Starting Node.

Listing 5.7 also points out that the Value property is filled with the

JSON document shown by Listing 5.6 and the ValueTypeSchema is

filled with the JSON Schema of Listing 5.5.

5.3.4 Updating value of Variable Nodes

It has been assumed to allow the Web User to update only the Value

property of a Variable Node. This update is possible sending a POST

request to the resource ”/data-sets/{dataset-id}/nodes/{node-id}”.
Web User must specify the value to be updated in the body of the

POST request.

It is required that Web User has previously received the state of the

Variable Node through the GET request on the same resource ”/data-

sets/{dataset-id}/nodes/{node-id}”. In particular, the Web User has

to know the JSON Schema contained in the ValueTypeSchema prop-

erty of the Variable Node to update. The new value to be updated

must be a JSON document compliant with this JSON Schema. A

value not compliant will produce an error condition notified to the

Web User by the OPC UA Web Platform.

92

Chapter 5. Integration between OPC UA and the Web

For each POST request, the OPC UA Web Platform use to the

OPC UA Write Service, passing the new value to be set. This value

must be encoded by the OPC UA Web Platform according to the

relevant DataType. To this aim, the OPC UA Web Platform has to

obtain the NodeId of the OPC UA DataType Node (e.g., MyType or

TController DataTypes in Figures 2.3 and 5.10). This is realised using

the OPC UA Read Service on the OPC UA DataVariable Node and

reading the DataType attribute. Once the NodeId has been obtained,

the platform can access to the DataType Node and can understand if

it is a Built-in or a Structured DataType.

If it is a Built-in DataType, the new value to be updated is con-

verted from the JSON base type to the standard data type relevant to

the Built-in DataType. The value obtained is inserted into the OPC

UA Write Service request.

If the OPC UA DataType is a Structured DataType, OPC UA

specification requires that the value to be inserted into the OPC UA

Write Service request is encoded inside a particular object called Ex-

tensionObject [27]. Furthermore, it is required that this object must

contain the NodeId of the DataTypeEncodingType Object associated

to the Structured DataType (e.g., DefaultBinary Object in Figures 2.3

and 5.10). This NodeId can be easily obtained starting from the OPC

UA Structured DataType Node (e.g., MyType and TController Nodes

in Figures 2.3 and 5.10, respectively) and following the HasEncoding

Reference by the OPC UA Browse Service.

Once the OPC UA Web Platform receives the OPC UA Write

response, the relevant state will be returned to the Web User in the

body of the POST response.

93

Chapter 5. Integration between OPC UA and the Web

5.3.5 Monitoring Variable Nodes

A Controller resource for each data set has been defined in order to

allow the Web User to activate an asynchronous transmission mecha-

nism of the value and/or the status relevant to a particular Variable

Node; as said before, it has been assumed that the asynchronous trans-

mission occurs when a change in the value and/or the status of the

Node and, optionally, when a change in the value according to absolute

or percent deadband is detected.

The controller resource has the URI ”/data-sets/{dataset-
id}/monitor”. A POST request on this resource allows the Web User

to enable notification of changes of value and/or status of one or more

Variable Nodes inside a specific data set. Notifications are published

in a Topic on a specific Broker. The Web User has to specify the

following information inside the body of the POST request:

• ElementToMonitor : it is an array of elements, each of which is

made up by the following items:

– node-id : it specifies the Variable Node in the specified data

set, for which asynchronous transmissions are requested.

– SamplingInterval : it specifies the desired sampling interval

at which a Variable Node is checked to detect changes in

the value and/or status, and optionally to detect changes

in the value according to absolute or percent deadband.

– Deadband: it allows to specify the requested deadband; it

assumes one of these values: ”absolute”, ”percent”, ”none”.

– DeadbandValue: it allows to specify the value of the abso-

lute or percent deadband. It is considered only if Deadband

94

Chapter 5. Integration between OPC UA and the Web

parameter is set to ”absolute” or ”percent”.

• BrokerURL: it is a string containing the concatenation of the

technology used (e.g., SignalR, MQTT) and the address of the

Broker chosen by the Web User for asynchronous communica-

tion.

• Topic: it allows to specify the Topic/Group where notifications

will be published; Web User will subscribe on the same Top-

ic/Group on the Broker in order to receive the asynchronous

updates.

It has been assumed that for each POST request, the OPC UA

Web Platform is in charge to create an OPC UA Subscription inside

the OPC UA Server relevant to the data set specified by the Web User;

this OPC UA Subscription is associated to the couple Topic/Broker

specified by the Web User. An internal table is used by the OPC UA

Web Platform to this aim; in this table, information about OPC UA

Subscription and relevant OPC UA Server is associated to each couple

Topic/Broker.

Starting from the moment the POST request succeeds, all the No-

tifications produced inside the OPC UA Subscription are published on

the Topic of the specified Broker. This asynchronous information flow

may be cancelled by making a POST request on another controller

resource described in the Section 5.3.6.

Fulfilment of the POST request is realised by the OPC UA Web

Platform through the use of the OPC UA CreateSubscription and Cre-

ateMonitoredItems Services [8, 26], according to the procedure shown

by Figure 5.11.

95

Chapter 5. Integration between OPC UA and the Web

Figure 5.11: Realization of Monitor through OPC UA Services

The OPC UA Web Platform checks the existence of OPC UA

Client and OPC UA Session, as shown by Figure 5.8. Then, it ver-

ifies the existence of the couple Topic/Broker in its internal table; if

this verification fails, a new OPC UA Subscription is created inside

the specified OPC UA Server using the OPC UA CreateSubscrip-

tion Service. Moreover, OPC UA MonitoredItems are created inside

the OPC UA Subscription, using the OPC UA CreateMonitoredItem

Service; they are associated to the OPC UA Variables relevant to

the Nodes passed by the Web User inside the ElementsToMonitor ar-

ray. Furthermore, the SamplingInterval and DeadbandValue values

are assigned to each MonitoredItem. It has been assumed to set the

96

Chapter 5. Integration between OPC UA and the Web

PublishingInterval of the Subscription to the lowest value among the

SamplingIntervals present in the ElementsToMonitor array.

If the Web User specifies a couple Topic/Broker already existing,

the OPC UA Web Platform will retrieve information about the OPC

UA Subscription associated to this couple. After having checked its

belonging to the OPC UA Server relevant to the same data set spec-

ified by the Web User, OPC UA MonitoredItems are added to the

OPC UA Subscription [26] for each Variable Node contained in the

ElementsToMonitor array. Again, the OPC UA CreateMonitorItems

Service is used to this aim. If the couple Topic/Broker refers to an

OPC UA Subscription on a different OPC UA Server, an error condi-

tion is returned to the Web User.

In the case of successful creation of OPC UA MonitoredItems,

POST response is sent to the Web User reporting the successful result.

In order to get NotificationMessages produced by the OPC UA

Subscriptions created as just explained, the synchronous exchange of

Publish requests and responses is realised between the OPC UA Web

Platform and the OPC UA Server, as shown by Figure 5.12.

Figure 5.12: Publishing Procedure through the Topic/Broker

97

Chapter 5. Integration between OPC UA and the Web

For each OPC UA Publish response received, the OPC UA Web

Platform extracts the NotificationMessage and, in turns, the Notifi-

cations there contained. For each Notification, the OPC UA Web

Platform creates a JSON document according to the JSON Schema

shown by Listing 5.8.

{
"$schema" : "http://json-schema.org/draft -07/schema#" ,

"type" : "object" ,

"properties" : {
"node-id" : {"type" : "string"} ,
"Name" : {"type" : "string"} ,
"Value" : {} ,
"ValueTypeSchema" : {"type" : "object"} ,
"Status" : {"enum" : ["good" , "uncertain" , "bad"]}

} ,
"required" : ["node-id" , "Name" , "Value" , "ValueTypeSchema

" , "Status"] ,

"additionalProperties" : fa l se

}

Listing 5.8: JSON Schema for Variable value and/or status

notification on the Topic/Broker

Value property is relevant to the content of each Notification and

ValueTypeSchema contains the description of the type relevant to the

Value property; Value and ValueTypeSchema are filled as already seen

in the previous sections.

Each JSON document so produced is published independently on

the Topic of the Broker specified by the Web User.

Figure 5.12 points out the presence of a loop, as the entire sequence

98

Chapter 5. Integration between OPC UA and the Web

of actions shown in the figure is cyclically repeated until the publica-

tion on the Topic/Broker is cancelled as explained in the Section 5.3.6.

5.3.5.1 Case Study

Considering the simple Information Model shown by Figure 5.9, let us

assume that Web User desires to activate the asynchronous transmis-

sions of value and/or status of Controller1 Node using the SamplingIn-

terval of 500 ms. Furthermore, let us assume that he wants to receive

the notifications for changes in value and/or status on a MQTT Topic

defined in a specific MQTT Broker. In order to do this, the Web User

makes a POST request on the resource /data-sets/1/monitor” setting

the parameters as follow: ElementsToMonitor array contains a single

element where node-id is set to ”2-80”, SamplingInterval is set to 500

ms, Deadband is set to ”none”, DeadbandType is not present (i.e., set

to null), BrokerURL is set to a concatenation of the string ”MQTT”

and the address of the MQTT Broker specified by the Web User, and

Topic is set to the string that identifies the Topic on the MQTT Broker

which the Web User is subscribed.

According to Figure 5.11, the OPC UA Web Platform checks if an

OPC UA Subscription exists for the Topic/Broker couple specified in

the Monitor request and for the OPC UA Server relevant to the data

set specified by the Web User. Assuming that this does not exist, a

new OPC UA Subscription is created inside the OPC UA Server; a

MonitoredItem is created inside it too. The OPC UA MonitoredItem

is linked to the OPC UA Controller1 Node. The relevant SamplingIn-

terval is set to 500 ms and the filter is set to DataChangeFilter with

no deadband. PublishingInterval of the novel OPC UA Subscription

99

Chapter 5. Integration between OPC UA and the Web

is set to 500 ms.

Once the OPC UA MonitoredItem has been created by the OPC

UAWeb Platform, the publication of Notifications inside the Subscrip-

tion starts at a rate given by the inverse of the SamplingInterval. All

the Notifications produced at every PublishingInterval are collected

into a NotificationMessage. Therefore, at every PublishingInterval

only one Notification is produced and is inserted in the Notification-

Message. According to Figure 5.12, the OPC UA Web Platform will

start to trigger the transmission of each NotificationMessage by using

the OPC UA Publish Service.

For each Publish request sent to the OPC UA Server, the OPC UA

Web Platform receives a Publish response containing a Notification-

Message. The OPC UA Web Platform extracts the only Notification

contained in the NotificationMessage and create a JSON document

according to the JSON Schema shown by Listing 5.8.

Listing 5.9 shows the JSON document produced.

{
"node-id" : "2-80" ,

"Name" : "Controller1" ,

"Value" : f i l l e d with the JSON document o f Listing 5.6 ,

"ValueTypeSchema" : f i l l e d with the JSON Schema o f

Listing 5.5 ,

"Status" : "good"

}

Listing 5.9: Example of JSON document created for the monitoring

of the Node Controller1 (ns=2;i=80)

As it is possible to see, it has been assumed that the current Value

100

Chapter 5. Integration between OPC UA and the Web

is given by the JSON document shown by Listing 5.6. The Value-

TypeSchema is the same of that shown by Listing 5.5. The JSON

document shown in Listing 5.9 is published over the MQTT Topic

defined in the MQTT Broker specified by the Web User.

5.3.6 Stop Monitoring Variable Nodes

Web User who has previously activated a monitor service, may cancel

it at any time. To accomplish this task, the controller resource ”/data-

sets/{dataset-id}/stop-monitor” has been defined for each data set.

The Web User makes a POST request, providing the BrokerURL and

Topic as defined in Section 5.3.5.

For each POST request, the OPC UA Web Platform looks for the

couple Topic/Broker in its internal table. If it is present, the relevant

OPC UA Subscription is deleted through the OPC UA DeleteSub-

scription Service [8, 26]. According to the OPC UA specifications,

successful completion of this service causes all MonitoredItems that

use the Subscription to be deleted. In this way, publication on the

Topic/Broker is cancelled.

5.4 OPC UA Web Platform Implemen-

tation

The OPC UA Web Platform described in this chapter was imple-

mented and the relevant source code was made available on GitHub

[42].

Implementation was based on open source technologies able to cre-

101

Chapter 5. Integration between OPC UA and the Web

ate cross platform web applications easily deployable on the main

server operating systems. In particular, the implementation of the

OPC UA Web Platform was achieved using Microsoft .NET Core and

ASP.NET Core frameworks [50]. The former is an open source im-

plementation of the .NET Standard Library, born and evolved in the

last years with the aim to enable the development of cross-platform

applications; its source code is available on GitHub [51]. The latter

is a server-side web application framework. An ASP.NET Core Web

Application is deployable on the majority of the modern platforms.

The implementation of the OPC UA Client was based on the Open

Source OPC UA cross platform .NET Core stack available on GitHub

[52], which was developed for .NET Core applications.

For the authentication and authorization, JSON Web Tokens

(JWT) open standard was the solution adopted [53]. The JWTmecha-

nisms was developed through the use of libraries provided by Microsoft

in the .NET Core framework.

Two different implementations of the Publisher/Subscriber asyn-

chronous communications shown by Figures 5.1 and 5.12 were realised.

The relevant technologies adopted are Microsoft SignalR and MOSCA

MQTT, respectively [44, 46].

102

CHAPTER

SIX

INTEGRATION BETWEEN OPC UA AND OCF

As pointed out in the Introduction (Chapter 1), this chapter describes

a proposal of integration between OPC UA and IoT/IIoT ecosystems.

Among the current IoT/IIoT ecosystems, OCF has been chosen for the

integration with OPC UA. In particular, the proposal aims to realise

a mapping between OPC UA Information Model and OCF Resource

Model.

Several papers and articles describe the mapping proposed. The

mapping from OPC UA Information Model to OCF Resource Model

is described in [54, 55, 56]. The mapping from OCF Resource Model

to OPC UA Information Model is described in [57]. The complete

bidirectional mapping is described in [58].

This chapter is organized as follows: the mapping from OPC UA

Information Model to OCF Resource Model is described in Section

6.1; the mapping from OCF Resource Model to OPC UA Information

Model is described in Section 6.2. Finally, the possible contribution

103

Chapter 6. Integration between OPC UA and OCF

of the proposal will be discussed in Section 6.3.

6.1 Mapping from OPC UA Information

Model to OCF Resource Model

This section presents the mapping from OPC UA Information Model

to OCF Resource Model. Mapping may involve the entire OPC UA

AddressSpace of a specific OPC UA Server or its subset.

6.1.1 Mapping idea

The proposal of mapping from OPC UA Information Model to OCF

Resource Model is based on the use of an OCF Device, named OPC

UA Device, belonging to the ad-hoc defined ”x.opc.device” Device

Type. Such Device is made up by several OCF Resources which

may be related each other by OCF Links. Each OCF Resource be-

longs to one of three ad-hoc defined Resource Types: ”x.opc.object”,

”x.opc.datavariable” and ”x.opc.method”. The Device Type and the

Resource Types just introduced will be detailed in Section 6.1.2, 6.1.3,

6.1.4 and 6.1.5.

In order to better understand this section, an example of the pro-

posed mapping is provided in Figure 6.1.

On the left of Figure 6.1, a simple subset of an OPC UA AddressS-

pace is shown. It is made up by an OPC UA Object (MyObject1) and a

Folder (MyFolder). The ObjectMyObject1 is made up by another Ob-

ject (MyNestedObject1), by an OPC UA DataVariable (MyDataVari-

able1) with a Property specified by the OPC UA Property Node called

104

Chapter 6. Integration between OPC UA and OCF

Figure 6.1: Example of the proposed mapping from OPC UA to OCF

MyProperty1, and by an OPC UA Method (MyMethod1). The Folder

MyFolder contains an OPC UA Object (MyObject2), which is in turn

made up by an OPC UA DataVariable (MyDataVariable2) and by

an OPC UA Object (MyNestedObject2). This last OPC UA Node

features an OPC UA Property (MyProperty2) and is made up by an

OPC UA Method (MyMethod2). OPC UA References are present to

link these Nodes, as shown by the figure.

The subset of OPC UA AddressSpace shown on the left of Fig-

ure 6.1 is mapped into OCF by the OCF Device of ”x.opc.device”

Device Type present on the right side. Inside the OCF Device, the

OCF Resources and OCF Links used for the mapping are shown. An

OCF Resource is made up by several properties according to its type,

which is represented by the value of the mandatory ”rt” property. In

the figure, properties of OCF Resources are shown using JSON for-

malism.

105

Chapter 6. Integration between OPC UA and OCF

As the definition of an OCF Device Type must include mandatory

Resources that must be implemented by all Devices of this type, the

here proposed Device Type ”x.opc.device” has a mandatory Resource,

named ”AddressSpaceSubset”, of ”x.opc.object” type. It is worth

noting that this OCF Resource has not correspondence in the OPC

UA Address Space and its aim is to aggregate the Resources mapping

the OPC UA Nodes. Figure 6.1 shows this OCF Resource, featuring

”rt” property with the value ”x.opc.object” and the ”n” property filled

using the name ”AddressSpaceSubset”. More details will be provided

in Section 6.1.2.

An OPC UA Node belonging to the Object NodeClass is mapped

into OCF Resource of ”x.opc.object” Resource Type; such a OCF Re-

source features the ”rt” property set to the value ”x.opc.object” and

the ”n” property filled using the DisplayName of the OPC UA Ob-

ject Node represented. As an example, consider the OPC UA Object

MyObject1; the relevant OCF Resource mapping this Node is the one

holding the property ”n” set to ”MyObject1”.

The OPC UA Node of OPC UA ObjectType NodeClass defin-

ing the type of an Object Node is mapped into a property of the

OCF Resource mapping the OPC UA Object Node and defined by

the ”x.opc.object” ResourceType. This property is named ”OPCN-

odeType” and is set to a string whose value may be ”Folder” or ”Ob-

ject”, according if OPC UA Object Node is defined by FolderType

ObjectType (or its subtype) o by any other ObjectType, respectively.

For instance, consider the OPC UA Object MyObject1 and the rele-

vant OCF Resource named ”MyObject1”. Its ”OPCNodeType” prop-

erty is set to ”Object” as the OPC UA Object MyObject1 is defined

by the BaseObjectType ObjectType. On the other hand, the OPC

106

Chapter 6. Integration between OPC UA and OCF

UA Node MyFolder is mapped into the OCF Resource with property

”n” set to ”MyFolder” and ”OPCNodeType” set to ”Folder” as the

OPC UA Node is of FolderType ObjectType. Finally, considering the

OCF Resource named “AddressSpaceSubset”, it has been assumed to

set the ”OPCNodeType” property to ”Folder”, as its behaves like an

OPC UA Node of FolderType ObjectType organising several Nodes.

More details about ”x.opc.object” Resource Type will be provided in

Section 6.1.3.

An OPC UA Node belonging to the Method NodeClass is mapped

into OCF Resource of ”x.opc.method” Resource Type. In this case,

again property ”n” is filled using the DisplayName of the OPC UA

Method Node, whilst property ”rt” is set to ”x.opc.method”. In Fig-

ure 6.1, the OPC UA Nodes MyMethod1 and MyMethod2 are mapped

into the OCF Resources with property ”n” set to ”MyMethod1” and

”MyMethod2”, respectively. More details about ”x.opc.method” Re-

source Type will be provided in Section 6.1.5

Mapping of OPC UA Nodes belonging to the Variable NodeClass

depends on the kind of Variable.

An OPC UA DataVariable Node is mapped into OCF Resource of

”x.opc.datavariable” Resource Type, thus its ”rt” property is set to

”x.opc.datavariable”. As an example, consider the OPC UA DataVari-

able MyDataVariable1 and the relevant OCF Resource with property

”n” set to ”MyDataVariable1” (i.e. the DisplayName of the OPC UA

Node). More details about ”x.opc.datavariable” Resource Type will

be provided in Section 6.1.4.

An OPC UA Property Node is not mapped into an OCF Resource

but it is mapped as value of a property of the OCF Resource rep-

resenting the OPC UA Node to which the OPC UA Property be-

107

Chapter 6. Integration between OPC UA and OCF

longs, named ”OPCProperties”. In other words, it has been assumed

that the OCF Resource mapping an OPC UA Object, DataVariable

or Method Node and connected to one or more OPC UA Property

Nodes by HasProperty Reference, exposes a property ”OPCProper-

ties”. This last has been realised as an array of JSON objects, each

of which represents an OPC UA Property Node. For instance, consid-

ering the OCF Resources modelling the OPC UA MyDataVariable1

and MyNestedObject2, the ”OPCProperties” array property of such

resources contains an object called MyProperty1 and MyProperty2,

respectively. Each object models an OPC UA Property Node, as said

before. In both case the ”OPCProperties” property is an array of

just one element. More details about details about ”OPCProperties”

property and about the JSON objects there contained will be provided

in Section 6.1.3.

About the mapping of OPC UA VariableType NodeClass, the rele-

vant information carried out is used to distinguish whether a Variable

Node is an OPC UA DataVariable or a Property Node, so that it could

be mapped in the proper way, as described before.

As described in Section 2.1.5, the type of the Value attribute for

OPC UA Variable Node (DataVariable or Property) is defined by a

DataType Node belonging to the DataType NodeClass (e.g., MyType

Node shown by Figure 2.3). It has been assumed to map the Value

attribute of a Variable Node and the relevant DataType Node us-

ing an ad-hoc defined property inside the OCF representation of the

OPC UA Variable Node. This property holds the representation of

the Value attribute according to the relevant OPC UA DataType. For

OPC UA DataVariable Node, the property is named ”OPCValue” (not

shown in Figure 6.1) and belongs to the OCF Resource representing

108

Chapter 6. Integration between OPC UA and OCF

the OPC UA DataVariable Node. In the case of an OPC UA Prop-

erty Node, the relevant JSON object contained in the ”OPCProper-

ties” array features a property called ”opc-property-value” (not shown

in Figure 6.1). Section 6.1.6 will give technical details about ”OPC-

Value” and ”opc-property-value” properties and the representation of

the Value attribute according to the relevant OPC UA DataType.

An OPC UA Reference is defined by an OPC UA Node belonging

to the ReferenceType NodeClass. OPC UA References are mapped in

OCF according to their ReferenceType.

An OPC UA Reference belonging to Organizes or HasComponent

ReferenceTypes is mapped as an OCF Links. Considering Figure 6.1,

Organizes and HasComponent References are directly mapped into

OCF Links owned by OCF Resources modelling OPC UA Folder, Ob-

ject or DataVariable. It is important to point out that the meaning

of the OPC UA Organizes and HasComponent References is not lost

in the mapping; in fact, the kind of relationship realised by an OCF

Link between two OCF Resources may be distinguished by the ”OPC-

NodeType” property of the OCF Resource from which this OCF Link

starts.

An OPC UA Reference belonging to the HasTypeDefinition Ref-

erenceType is used to distinguish between OPC UA Object Node of

FolderType ObjectType or of any other ObjectType, and is mapped

by ”OPCNodeType” property.

An OPC UA Reference belonging to the HasProperty Reference-

Type is involved in the mapping of OPC UA Properties, to fill the

”OPCProperties” array, as discussed previously.

As said in Sections 2.1.2 and 2.1.3, OPC UA defines Events and

uses References belonging to the HasEventSource ReferenceType to

109

Chapter 6. Integration between OPC UA and OCF

identify OPC UA Nodes acting as Event source. It has been assumed

that, if an OPC UA Node reached by an OPC UA HasEventSource

Reference is represented as an OCF Resource, all the OCF Links hav-

ing such a Resource as target will be marked with the Observable

flag in the ”p” parameter [37]. Figure 6.2 shows on the left a subset

of an OPC UA AddressSpace containing an OPC UA Object and a

DataVariable Node; the latter is at the same time a component of the

OPC UA Object and an Event source. On the right the mapping into

OCF is shown; the OCF Link models the HasComponent Reference,

as said before. The HasEventSource Reference is modelled setting the

Observable bit in the ”p” parameter for this OCF Link.

Figure 6.2: Mapping of OPC UA HasEventSource Reference

On the basis of what said about OPC UA References, it is clear

that some of them are not mapped into elements of the OCF Resource

Model; in the following, it will be pointed out that missing mappings

occur because they are not necessary and no information is lost in

these cases.

OPC UA References belonging to the HasNotifier ReferenceType

are not mapped as Events are not visible in the OPC UA AddressS-

pace, as pointed out in [8].

OPC UA References belonging to HasModellingRule, HasParent-

Model and GeneratesEvent ReferenceTypes are only used when new

instances of OPC UA Nodes must be created inside the OPC UA

110

Chapter 6. Integration between OPC UA and OCF

AddressSpace. For this reason, their mapping to OCF is meaning-

less, because the aim of the mapping here proposed is obtaining the

representation of each information already existing in OPC UA Ad-

dressSpace into OCF ecosystem.

As said before, in the case of OPC UA Variable Node the Value

attribute depends on the relevant OPC UA DataType, whose descrip-

tion can be reached in the AddressSpace using HasEncoding and Has-

Description References, as shown by Figure 2.3. Description of OPC

UA DataType is included inside each OCF Resource modelling an

OPC UA DataVariable Node or inside the JSON object contained in

the ”OPCProperties” array in the case of OPC UA Property Node,

as briefly explained before and described in great details in Section

6.1.6. On the basis of this choice, the mapping of HasEncoding and

HasDescription References is not needed at all.

6.1.2 ”x.opc.device” Device Type

The Device Type ”x.opc.device” specifies that a Device of this type

shall expose a mandatory OCF Resource of the ”x.opc.object” Re-

source Type named ”AddressSpaceSubset”. This Resource does not

map any actual OPC UA Node but its aim is to aggregate OCF Re-

sources mapping OPC UA Nodes. The presence of this Resource is due

to the constraint that a Device Type definition must include manda-

tory Resources for its Device instance [37]. Table 6.1 gives a descrip-

tion of this Device Type. As seen, Figure 6.1 shows an example of

a Device belonging to this type; as it is possible to see in the right

part of the figure, the Device exposes the mandatory OCF Resource

named ”AddressSpaceSubset” linking all the OCF Resources used to

111

Chapter 6. Integration between OPC UA and OCF

represent the OPC UA Nodes shown on the left of Figure 6.1.

Table 6.1: ”x.opc.device” Device Type

Device Name Device Type
Required

Resource Name

Required

Resource Type

OPC UA Device ”x.opc.device” AddressSpaceSubset ”x.opc.object”

According to the overview about OCF Device Type done in Section

4.1, a Device of ”x.opc.device” type will include the three mandatory

OCF Resources described in Section 4.1, i.e. addressed by ”oic/p”,

”oic/d” and ”oic/res” URI. Among them, the OCF Resource identified

by the ”/oic/d” URI, used to represent the OCF Device, features

the ”rt” property containing the ”x.opc.device” Device Type defined.

The other properties of this Resource are strictly related to the OCF

specification; hence, their values are assigned according to OCF and

there is no need to use information from OPC UA to fill them. The

only exception is represented by the optional ”n” property, which may

be filled by a string aimed to give some information about the mapping

between OPC UA and OCF: for instance, it may assume a string value

able to give general information about the content of the subset of

OPC UA AddressSpace mapped.

6.1.3 ”x.opc.object” Resource Type

The Resource Type ”x.opc.object” is aimed to map OPC UA Ob-

ject Nodes of any ObjectType. As explained in Section 4.1, every

OCF Resource shall implement the common properties defined by the

”oic.core” Resource Type and summarised by Table 4.1. In the case

112

Chapter 6. Integration between OPC UA and OCF

of ”x.opc.object” Resource Type, the property ”n” is filled using the

OPC UA attribute DisplayName; the Resource Type property (”rt”)

is filled with the name of the Resource Type used to represent the

Resource (i.e. ”x.opc.object”); the identifier of the Resource (”id”)

is filled using a string representation of the OPC UA NodeId of the

mapped OPC UA Object Node. Consider a NodeId with integer in-

dex: the string representation consist of a concatenation of the value

ns (NamespaceIndex) and value i (Identifier) separated by a dash;

for example, the NodeId made up by ns=2 and i=12 becomes ”2-12”.

The interface property (”if”) is strictly related to the OCF RESTful

services: for this reason its value depends on the implementation of

the Device and has nothing to do with the mapping here treated.

In addition to the OCF common properties explained above, a Re-

source belonging to the Resource Type ”x.opc.object” exposes several

properties, as shown by Table 6.2.

Table 6.2: OCF Properties defined by ”x.opc.object” Resource Type

Property Name OCF data type Mandatory Description

Common Properties See ”oic.core” Resource Type in Table 4.1

OPCNodeType string Yes

It specifies if the

Resource

represents an

OPC UA Node of

FolderType or

any other

ObjectType

113

Chapter 6. Integration between OPC UA and OCF

Table 6.2 Continued

Property Name OCF data type Mandatory Description

OPCDescription string No

The textual

description of the

mapped OPC

UA Object Node

OPCProperties array of objects No

An array of

JSON objects

representing

OPC UA

Property Nodes

links array of OCF Links No

An array of OCF

Links mapping

OPC UA

References

An instance of the ”x.opc.object” is a Collection Resource, since it

can be linked to other Resources through OCF Links; this explains the

presence of the property ”links” in Table 6.2. It is an array containing

the OCF Links mapping OPC UA Organizes and HasComponent Ref-

erences starting from the OPC UA Object Node represented by the

current OCF Resource. For each Link, the ”href” property is filled

with the target URI of the Resource corresponding to the OPC UA

Node pointed by the OPC UA Reference modelled by the Link. Fur-

thermore, the parameter ”p” of the Link will have the Observable flag

marked, if the OCF Resource reached by the Link represents an OPC

UA Node targeted by an HasEventSource Reference.

A property named ”OPCNodeType” is defined as a string in order

114

Chapter 6. Integration between OPC UA and OCF

to differentiate whether the OCF Resource represents an OPC UA

Object Node whose type may belong to the FolderType ObjectType

or to any other ObjectType. HasTypeDefinition Reference starting

from the OPC UA Object Node is used in the mapping to obtain this

information. According to these two cases, this property can assume

the values “Folder” and “Object”, respectively.

A string property named ”OPCDescription” is defined in order to

map the Description attribute of the OPC UA Object Node repre-

sented.

A property named ”OPCProperties” is defined in order to repre-

sent the OPC UA Property Nodes connected to the represented OPC

UA Node by HasProperty References; it is defined as an array of JSON

objects. For each HasProperty Reference, a JSON object mapping the

target OPC UA Property Node is created and inserted in the JSON

array. As seen in Section 6.1.1, Figure 6.1 shows a very simple example

where each of two OPC UA Nodes MyDataVariable1 and MyNeste-

dObject2 features a single HasProperty Reference starting from it.

For this reason, each OCF Resource representing one of these Nodes

contains the array property named ”OPCProperties”. In both cases,

this property has only a JSON object representing the relevant OPC

UA Property of the Node (i.e. the OPC UA Nodes MyProperty1 and

MyProperty2). Table 6.3 shows the properties of the JSON object

contained in the OPCProperties array.

Table 6.3: JSON object of the OPCProperties array

Property

Name

OCF data

type
Mandatory Description

115

Chapter 6. Integration between OPC UA and OCF

Table 6.3 Continued

Property

Name

OCF data

type
Mandatory Description

opc-

property-

name

string Yes

It contains the BrowseName

attribute of the OPC UA

Property Node

value-type string Yes

It specifies the OCF data type

used for the representation of

the Value attribute of OPC

UA Property Node.

opc-

property-

value

<type> Yes

The Representation of the

Value attribute of OPC UA

Property Node. Its OCF data

type <type> is specified by

”value-type” property.

enum-values
array of

objects
No

It contains the enumeration

values if the OPC UA Value

attribute mapped is an

enumeration.

num-

dimensions

array of

numbers
No

If the OPC UA Value attribute

mapped is an array, this

property specifies the relevant

dimensions

116

Chapter 6. Integration between OPC UA and OCF

Table 6.3 Continued

Property

Name

OCF data

type
Mandatory Description

innermost-

type
string No

If the OPC UA Value attribute

mapped is an array, this

property specifies the OCF

data type mapping the OPC

UA DataType of the elements

of the array.

Table 6.3 points out that each JSON object representing an OPC

UA Property Node is made up at least by three mandatory properties.

The first mandatory property is named ”opc-property-name” and

is filled using the BrowseName attribute of the OPC UA Property

Node, since this attribute is very suitable to define the semantic of

the property. The OCF data type used to represent this property is

string [37].

The other two mandatory properties are ”value-type” and ”opc-

property-value”. The latter is used to represent the OPC UA Value at-

tribute of the OPC UA Property using a OCF data type (i.e. <type>)

specified by the former. The choice of the OCF data type used de-

pends on the OPC UA DataType of the OPC UA Property: Section

6.1.6 will point out how this mapping has been realised.

If the Value attribute of the OPC UA Property Node is an array,

the ”value-type” property is filled by the string ”array” (i.e. <type>

is OCF data type array). In this case the two optional properties

”num-dimensions” and ”innermost-type” are present specifying the

dimensions and the OCF data type of each element of the array, re-

117

Chapter 6. Integration between OPC UA and OCF

spectively. So that, the ”opc-property-value” will contain the repre-

sentation of the original OPC UA array. Again, representation of each

value of the array will be described in Section 6.1.6.

If the Value attribute of the OPC UA Property Node is an enumer-

ation, the ”value-type” property is filled by the string ”number”(i.e.

<type> is OCF data type number) and ”opc-property-value” con-

tains the integer representation of the enumeration (as the OPC UA

Property Value attribute is of the Int32 Built-in DataType). The enu-

meration values are inserted in the optional property ”enum-values”:

this property is an array of JSON objects where each object contains

one of the possible enumeration value. Representation of each value

of the array will be described in Section 6.1.6.

It is worth noting that this Resource Type is used also to define

a mandatory Resource for the ”x.opc.device” Device Type, as seen

in the previous subsection. As widely discussed, this mandatory Re-

source do not map any OPC UA Node. It has been assumed to fill its

properties as specified in the following. The property ”n” is set with

the string “AddressSpaceSubset” (because ”x.opc.device” define its

Required Resource using this name) and the identifier of the Resource

(”id”) is not used as it is not mandatory. The properties ”rt” is filled

with ”x.opc.object”, obviously. Finally, ”if” is filled as mandated by

the Device implementation. The property ”OPCNodeType” is filled

with ”Folder” because this mandatory Resource acts as aggregator for

the OCF Resources representing OPC UA Nodes.

118

Chapter 6. Integration between OPC UA and OCF

6.1.4 ”x.opc.datavariable” Resource Type

OPC UA DataVariable Node is mapped as an instance of the OCF

Resource Type “x.opc.datavariable”, which is defined in this proposal

and shown by Table 6.4.

Table 6.4: OCF Properties defined by ”x.opc.datavariable” Resource

Type

Property

Name

OCF data

type
Mandatory Description

Common

Properties
See ”oic.core” Resource Type in Table 4.1

value-type string Yes

It specifies the OCF data type

used for the representation of

the Value attribute of the OPC

UA DataVariable Node.

OPCValue <type> Yes

The Representation of the

Value attribute of OPC UA

DataVariable Node. Its OCF

data type <type> is specified

by ”value-type” property.

enum-values
array of

objects
No

It contains the enumeration

values if the OPC UA Value

attribute mapped is an

enumeration.

num-

dimensions

array of

numbers
No

If the OPC UA Value attribute

mapped is an array, this

property specifies the relevant

dimensions

119

Chapter 6. Integration between OPC UA and OCF

Table 6.4 Continued

Property

Name

OCF data

type
Mandatory Description

innermost-

type
string No

If the OPC UA Value attribute

mapped is an array, this

property specifies the OCF

data type mapping the OPC

UA DataType of the elements

of the array.

OPCProperties
array of

objects
No

An array of JSON objects

representing OPC UA

Property Nodes

links
array of

OCF Links
No

An array of OCF Links

mapping OPC UA References

Common properties of the ”oic.core” Resource Type are filled as

explained for ”x.opc.object”. The property ”links” is present to con-

tain the OCF Links mapping OPC UA HasComponent References

starting from the modelled OPC UA DataVariable Node. The consid-

erations done in the previous subsection for the properties ”href” and

for the Observable flag of the parameter ”p” are valid in this case too.

A mandatory property named ”OPCValue” will contain the rep-

resentation of the Value attribute of OPC UA DataVariable Node

according to the OCF data type mapping the OPC UA DataType of

the Value attribute. Section 6.1.6 will point out how this mapping of

data types is realised and how the representation of the Value attribute

is realised. The OCF data type used for the representation of OPC

UA DataVariable Node Value attribute is declared in the ”value-type”

120

Chapter 6. Integration between OPC UA and OCF

property. If the Value attribute is an array, the ”value-type” property

contains the string ”array”: in this case, the OCF data type of each

element is specified by the ”innermost-type” property. Furthermore,

always in this case, the ”OPCValue” property contains the represen-

tation of the original OPC UA array according to the OCF data type

specified by the ”innermost-type” property.

The property ”num-dimension” is present only if ”value-type” is

array and it specifies the relevant dimensions.

The property ”enum-values” is present only if ”value-type” is num-

ber, hence the ”OPCValue” is the index of the enumeration; if present,

the property is realised as a JSON array containing the enumeration

values coded as objects.

As for ”x.opc.object”, a property named ”OPCProperties” is

defined in order to represent each OPC UA Property Node con-

nected to the relevant OPC UA DataVariable Node through the OPC

UA HasProperty Reference. The same considerations made for the

”x.opc.object” are valid also for ”x.opc.datavariable” Resource Type.

6.1.5 ”x.opc.method” Resource Type

Before description of the mapping of OPC UA Method Nodes, it is

important to clarify what may be mapped and what is lost in the

mapping. An OPC UA Method is an entity that is always associated

with an Object whose presence is similar to a declaration of a function

prototype in a high-level language. In order to invoke the method, it

is necessary to use a specific OPC UA Service, named Call, where

actual parameters are passed [26]. The concept of method does not

exist in OCF. In OCF everything is intended as an interaction with

121

Chapter 6. Integration between OPC UA and OCF

the state of an OCF Resource, performing both reading and/or writing

operations. For this reason, the proposed mapping must be limited to

map information about the existence of an OPC UA Method and its

relevant properties (among which input/output parameters).

For the mapping of OPC UA Method Nodes, ”x.opc.method” Re-

source Type has been defined in order to represent this kind of OPC

UA Nodes as OCF Collection Resources. The properties of the Re-

source Type ”x.opc.method” are summarised in Table 6.5.

Table 6.5: OCF Properties defined by ”x.opc.method” Resource Type

Property

Name

OCF data

type
Mandatory Description

Common

Properties
See ”oic.core” Resource Type in Table 4.1

OPCInputArg
array of

objects
No

An array of JSON objects

representing the input

arguments of the Method.

OPCOutputArg
array of

objects
No

An array of JSON objects

representing the output

arguments of the Method.

executable boolean Yes

It indicates if the Method is

callable inside OPC UA

environment.

OPCProperties
array of

objects
No

An array of JSON objects

representing OPC UA

Property Nodes

122

Chapter 6. Integration between OPC UA and OCF

Table 6.5 Continued

Property

Name

OCF data

type
Mandatory Description

links
array of

OCF Links
No

An array of OCF Links

mapping OPC UA References

Common properties are filled as explained for ”x.opc.object”. As

done for the other Resource Types, the ”links” property includes the

list of OCF Links mapping OPC UA References starting from the

OPC UA Method Node. The same setting descriptions about ”href”

and ”p” properties done for the other Resource Types are applied also

for this one.

Properties named ”OPCInputArg” and ”OPCOutputArg” are de-

fined in order to represent the InputArgument and OutputArgument

Properties of the OPC UA Method Node, respectively.

A boolean property named ”Executable” is used to specify whether

the OPC UA Method can be invoked by an OPC UA Client, based on

the current value of the Executable and UserExecutable attributes of

the OPC UA Method Node. As said at the beginning of this subsec-

tion, this property does not mean that the method is executable in the

OCF ecosystem; it allows only to highlight if the Method is currently

callable inside OPC UA environment.

As for ”x.opc.object” and ”x.opc.datavariable”, a property named

”OPCProperties” is defined in order to represent the OPC UA Prop-

erty Nodes linked to the OPC UA Method Node by HasProperty

References. As said, it is made up by a list of JSON objects, each

representing an OPC UA Property Node. Description of each JSON

123

Chapter 6. Integration between OPC UA and OCF

object is the same done for the other Resource Types seen before.

6.1.6 Mapping OPC UA DataType and OPC UA

Variable Node Value attribute

Two important issues were left unsolved in the previous subsections.

The first one is about how the OPC UA DataType relevant to the

Value attribute of an OPC UA Variable Node is mapped into an OCF

data type. The second issue is the representation of the Value attribute

according to the OCF data type just found.

As said in Section 2.1.5, OPC UA DataTypes may be Built-in,

Enumeration and Structured; array of elements belonging to these

DataTypes may be defined too. It has been assumed that mapping

of Built-in, Enumeration, Structured DataTypes and array into OCF

data types is done by a two-steps process.

At the first step, the mapping is done from OPC UA DataType

to JSON base type, according to the JSON DataEncoding defined by

[27]. The two leftmost columns of Table 6.6 summarise this mapping;

for each OPC UA DataType and array the relevant the JSON base

type is given. For the definition of OPC UA DataTypes found in the

Table please refers to [24].

Table 6.6: Mapping OPC UA DataTypes and array into JSON base

types and OCF data types

OPC UA DataTypes

and array

JSON base

types
OCF data types

Built-in: Integer, Float,

Double, StatusCode
Number Number

124

Chapter 6. Integration between OPC UA and OCF

Table 6.6 Continued

OPC UA DataTypes

and array

JSON base

types
OCF data type

Enumeration Number Number

Built-in: String,

DateTime, Guid,

ByteString, XmlElement

string string

Built-in: Boolean

literal names

true and

false

boolean

array array array

At the second step, the JSON base types shown in Table 6.6 are

mapped to the relevant OCF data types according to [37]. As said

in Section 4.1, OCF adopts all the JSON base types shown in the

Table 6.6, with the exception of the JSON base type literal names

true and false which are mapped into OCF data type boolean. Ta-

ble 6.6 shows the final mappings into OCF data types in the rightmost

column.

In the following, the overview about the representation of the Value

attribute of the OPC UA Variable Node according to the OCF data

type achieved as explained before, will be given for each kind of OPC

UA DataType.

125

Chapter 6. Integration between OPC UA and OCF

6.1.6.1 Built-in DataType

The current value of the Value attribute of OPC UA Variable Node

(both Property and DataVariable) is encoded according to the OCF

data type corresponding to the OPC UA DataType of the Value at-

tribute, found on the basis of the content of Table 6.6. The value so

obtained is assigned to the property ”opc-property-value” in the case

of OPC UA Property Node or to the property ”OPCValue” in the

case of OPC UA DataVariable Node. In both cases, the ”value-type”

property is set to the OCF data type found as said before.

6.1.6.2 Enumeration DataType

According to Table 6.6, the ”value-type” property in Tables 6.3 and 6.4

is set to ”number”.

OPC UA Enumeration Value is mapped as an OCF data type num-

ber; the value so obtained is assigned to the property ”opc-property-

value” in the case of OPC UA Property Node, or to the property

”OPCValue” in the case of OPC UA DataVariable Node. This value

is the integer representation of the enumeration.

The property ”enum-values” in Tables 6.3 and 6.4 is filled with an

array of JSON objects containing the enumeration values. It has been

assumed to define the JSON object shown by Table 6.7 to this aim.

Table 6.7: JSON object representing a single enumeration value

Property Name
OCF data

type
Description

enumeration-index number
The integer representation

of an Enumeration

126

Chapter 6. Integration between OPC UA and OCF

Table 6.7 Continued

Property Name
OCF data

type
Description

enumeration-value string

A human-readable

representation of the Value

of the Enumeration

As shown, this object is made up by two properties named

”enumeration-index” and ”enumeration-value”; the first contains the

integer representation of the enumeration and the second is the rel-

evant value of the enumeration. The values of these two properties

are obtained from the mutual exclusive EnumStrings or EnumValues

Properties of the OPC UA Enumeration DataType. For example,

let us assume that the OPC UA Enumeration DataType features the

EnumValues Property; as said in Section 2.1.5, it is an array of ele-

ments each of which has a structure given by Table 2.1. This elements

are used to fill the JSON object shown in Table 6.7. In particular,

the value of the property ”enumeration-index” is obtained from the

content of Value encoded as OCF number data type; the value of the

”enumeration-value” property is obtained by the content of Display-

Name encoded as OCF string data type. It has been assumed to not

take into account the Description element shown by Table 2.1, as it

may be empty.

6.1.6.3 Structured DataType

According to Table 6.6, the OCF data object is used to map the OPC

UA Structured DataType. For this reason, the content of ”value-type”

127

Chapter 6. Integration between OPC UA and OCF

property in Tables 6.3 and 6.4 is a string containing the value ”object”.

As seen in Section 2.1.5, an OPC UA Structured DataType is made

up by several Fields each featuring the FieldName and TypeName

properties, specifying the name and the type of an OPC UA Field,

respectively(see Figure 2.3). For this reason, the content of the prop-

erties ”opc-property-value” and ”OPCValue” in Tables 6.3 and 6.4 is

a JSON object made up by a single property named ”fields” which

represents the Value attribute of the Variable Node. This property

is an array of JSON objects, each of which is made up as shown by

Table 6.8. Each JSON object models a single OPC UA Field of an

OPC UA Structured DataType.

Table 6.8: JSON object representing a field of a Structured DataType

Property

Name

OCF data

type
Mandatory Description

field-name string Yes
It contains the Field Name

value of the OPC UA Field.

value-type string Yes

It specifies the OCF data type

used for the representation of

the OPC UA Field value.

field-value <type> Yes

The Representation of the

OPC UA Field value. Its OCF

data type <type> is specified

by ”value-type” property.

enum-values
array of

objects
No

It contains the enumeration

values if the OPC UA Field

value mapped is an

enumeration.

128

Chapter 6. Integration between OPC UA and OCF

Table 6.8 Continued

Property

Name

OCF data

type
Mandatory Description

num-

dimensions

array of

numbers
No

If the OPC UA Field value

mapped is an array, this

property specifies the relevant

dimensions

innermost-

type
string No

If the OPC UA Field value

attribute mapped is an array,

this property specifies the OCF

data type mapping the

TypeName of the elements of

the array.

Figure 6.3 shows an example of the representation of a Value be-

longing to the MyType Structured DataType (shown by Figure 2.3).

In the example the current values of the fields ”var1”, ”var3” and

”var4” are 10, 12 and ”hello”, respectively.

Figure 6.3: Example of Value of MyType DataType

Figure 6.3 assumes that the current values of the fields ”var1”,

129

Chapter 6. Integration between OPC UA and OCF

”var3” and ”var4” are 10, 12 and ”hello”, respectively. The figure

points out that the representation of the Value attribute is contained

into a property named ”fields” shown on the left of the figure. It is

an array containing two elements, one for each of the two fields of the

MyData Structured DataType (i.e. ”var1” and ”var2”). In particular,

each field is represented as a JSON object containing the properties

defined in Table 6.8.

According to the example considered, the field ”var1” is mapped

filling the ”field-name” with the name of the field (i.e. ”var1”) and the

”field-value” with its current value (i.e. 10). Furthermore, the OCF

data type used for the representation of current value of the OPC

UA field is used to fill the third property named ”value-type”. For

this reason, in the case of the field ”var1”, the ”value-type” contains

”number”.

Considering the field ”var2”, its representation is a little bit more

complex as ”var2” belongs to a Structured DataType (i.e. VarType, as

shown by Figure 2.3). For this reason, the JSON object representing

the field ”var2” contains the ”field-name” property filled by the name

of the field (i.e. ”var2”) and the ”value-type” property set to ”object”.

Furthermore, the value contained in the ”field-value” will be a JSON

object made up by only one property, named ”fields”. As seen before,

this property is an array of JSON object, each of which represents a

field of the Structured DataType defining the value. Table 6.8 shows

the properties of the two JSON objects relevant to the fields ”var3”

and ”var4”.

130

Chapter 6. Integration between OPC UA and OCF

6.1.6.4 Array

OPC UA Property and DataVariable Nodes can feature an array Value

attribute. In this case, the ”value-type” property specified in Ta-

bles 6.3 and 6.4 assumes the value ”array”.

The OCF data type of each element is obtained as explained in

the previous subsections, and it is used to fill the content of the

”innermost-type” property.

The ”num-dimensions” property is present and it is filled with the

array dimensions obtained by the ValueRank and ArrayDimensions

attributes of the OPC UA Variable Node. This property is an array of

integers where the length of the array maps the number of dimensions

of the OPC UA Value attribute (i.e. ValueRank), and each element

specify the length of the relevant dimension (i.e. ArrayDimensions).

Finally, the ”opc-property-value” (in case of OPC UA Property

Node) or the ”OPCValue” (in case of OPC UA DataVariable Node)

will contain the representation of the original OPC UA array; each

element of this array is encoded according to the OCF data type found

for the ”innermost-type” property.

6.1.7 Case Study

This section provide an example of the mapping from OPC UA to

OCF in order to improve the understanding of the proposal.

Figure 6.4 shows a subset of an OPC UA AddressSpace. It is made

up by an OPC UA Object named OrdersFolder belonging to the Fold-

erType ObjectType. This Node organises the DataVariable Order1

(through an Organizes Reference) and features the OPC UA Prop-

ertyMaxOrderNumber (linked through a HasProperty Reference). For

131

Chapter 6. Integration between OPC UA and OCF

each OPC UA Node, Figure 6.4 shows the attributes and the relevant

values involved in the mapping example. It is possible to see that Or-

der1 DataVariable Node features a Value belonging to the OrderType

DataType, for which the NodeId is specified (i.e. ns=2 and i=17).

Figure 6.5 shows the description of the OrderType DataType

assumed to be present in the AddressSpace; such description has

been named OrderDescription (as shown by the Variable Node of

DataTypeDescriptionType type in Figure 6.5). Analysing the con-

tent of the MyDictionary Variable in the figure, it is clear that this

DataType is a Structured DataType made up by two fields named

”OrderID” and ”Client”. The former is an integer, the latter a nested

structure described by the Structured DataType PersonType.

Description of PersonType DataType is contained in the MyDic-

tionary Variable. It is made up by two string fields named ”Name” and

”Surname”. The structure of the OrderType DataType described so

far clarifies the content of the Value attribute of the Order1 DataVari-

able shown by Figure 6.4. This attribute contains the two current

value of the fields ”OrderID” and ”Client”, i.e. 1234 for the first field

and the couple of strings “John” and “Smith” for the other field.

The subset of OPC UA AddressSpace shown in Figure 6.4 is

mapped into OCF ecosystem by an OCF Device of ”x.opc.device”

Device Type. As said, this OCF Device must include the mandatory

Resource named ”AddressSpaceSubset” of ”x.opc.object” type, used

to aggregate the OCF Resources mapping the OPC UA Nodes shown

by Figure 6.4.

The mapping of the OrdersFolder Node is shown in Listing 6.1.

{

132

Chapter 6. Integration between OPC UA and OCF

Figure 6.4: Subset of OPC UA AddressSpace to be mapped to OCF

Figure 6.5: Description of OrderType DataType

133

Chapter 6. Integration between OPC UA and OCF

"rt" : "x.opc.object" ,

"if" : [. . .] ,

"id" : "2-12" ,

"n" : "OrdersFolder" ,

"OPCNodeType" : "folder" ,

"OPCDescription" : "A folder containing orders" ,

"OPCProperties" : [

{
"opc-property-name" : "MaxOrderNumber" ,

"opc-property-value" : 10 ,

"value-type" : "number"

}
] ,

"links" : [

{
"href" : "/Order1" ,

"rt" : "x.opc.datavariable" ,

"if" : [. . .]

}
]

}

Listing 6.1: JSON document representing the OPC UA

OrdersFolder Node

The mapping of OrdersFolder Node is realised using an OCF Re-

source belonging to the ”x.opc.object” Resource Type.

Concerning the common OCF properties of the JSON docu-

ment shown by Listing 6.1, the ”rt” property is filled by the string

”x.opc.object”, the ”id” property contains the string representation

of the NodeId identifying the OPC UA OrdersFolder Node (i.e. the

couple ns=2 and i=12 which becomes the string ”2-12”) and the ”n”

134

Chapter 6. Integration between OPC UA and OCF

property is set to the DisplayName of the same Node (i.e. ”Orders-

Folder”). It is worth noting that the ”if” property is not filled because

strictly related to OCF Services, as explained in Section 6.1.3.

Regarding the additional properties defined by the ”x.opc.object”

Resource Type and shown by Table 6.2, ”OPCNodeType” is set to

”folder” (as the OPC UA Node represented is of the FolderType Ob-

jectType). The ”OPCDescription” property is filled with the value

contained in the OPC UA Node attribute Description (in this case it

was assumed that this attribute contains the value ”A folder contain-

ing orders”, as shown by Figure 6.4).

The ”OPCProperties” property in Listing 6.1 is an array contain-

ing JSON objects representing the OPC UA Properties relevant to

the Node represented. Figure 6.4 shows that OrdersFolder Node fea-

tures a single OPC UA Property named MaxOrderNumber. Hence,

”OPCProperties” is an array containing a single JSON object repre-

senting the OPC UA MaxOrderNumber Property Node. This object

is made up by the properties ”opc-property-name”, ”opc-property-

value” and ”value-type” as defined in Table 6.3. The ”opc-property-

name” is filled with the value of the BrowseName attribute (i.e. ”Max-

OrderNumber”). The ”opc-property-value” is filled by the representa-

tion of the Value attribute of the OPC UA Property Node according to

the OCF data type relevant to the OPC UA DataType of the Value

attribute. Figure 6.4 shows that this attribute is of Int32 Built-in

DataType. Applying the conversion specified in Table 6.6, the rele-

vant OCF data type is number. On account of what just said, the Int32

Value attribute of the OPC UA Property Node will be represented as

a number. As consequence, ”value-type” and ”opc-property-value”

properties are filled by ”number” and 10, respectively.

135

Chapter 6. Integration between OPC UA and OCF

Figure 6.4 shows that OrdersFolder is the source of an Organizes

Reference targeting the OPC UA Order1 DataVariable. As explained

in Section 6.1.3, each Organizes Reference of an OPC UA Folder Node

is mapped as an OCF Link. For this reason, the ”links” property

of Listing 6.1 is an array with a single OCF Link representing the

Organizes Reference shown in Figure 6.4. It specifies the URI of

the pointed Resource (i.e. ”/Order1”) and its Resource Type (i.e.

”x.opc.datavariable”) through the ”href” and ”rt” properties, respec-

tively.

The state of the OCF Resource representing the OPC UA Order1

DataVariable is shown by Listing 6.2.

{
"rt" : "x.opc.datavariable" ,

"if" : [. . .] ,

"id" : "2-20" ,

"n" : "Order1" ,

"value-type" : "object" ,

"OPCValue" : {
"fields" : [

{
"field-name" : "OrderID" ,

"field-value" : 1234 ,

"value-type" : "number"

} ,
{

"field-name" : "Client" ,

"field-value" : {
"fields" : [

{
"field-name" : "Name" ,

136

Chapter 6. Integration between OPC UA and OCF

"field-value" : "John" ,

"value-type" : "string"

} ,
{

"field-name" : "Surname" ,

"field-value" : "Smith" ,

"value-type" : "string"

}
]

} ,
"value-type" : "object"

}
]

}
}

Listing 6.2: JSON document representing the OPC UA Order1 Node

Concerning the common OCF properties of the JSON document

shown by Listing 6.2, ”rt” is filled by the string ”x.opc.datavariable”,

”id” contains the string representation of the NodeId identifying the

OPC UA Order1 Node (i.e. ”2-20”), and ”n” contains the Display-

Name of the Node represented (i.e. ”Order1”).

Regarding the additional properties defined by the

”x.opc.datavariable” Resource Type and specified by Table 6.4,

the ”value-type” specifies the OCF data type used to represent the

Value attribute of the OPC UA Order1 Node and ”OPCValue” is

filled with this representation. In this example, the DataType of the

Value attribute is the Structured DataType named OrderType and

shown in Figure 6.5. Applying the conversion specified in Table 6.6,

the ”value-type” property is set to ”object”.

137

Chapter 6. Integration between OPC UA and OCF

Applying the mapping described in Section 6.1.6, ”OPCValue”

property is filled by a JSON object with a single property named

”fields”. This property is an array containing an object for each field

present in the Structured DataType. For this reason, the property

”fields” in Listing 6.2 is an array containing two objects representing

the fields OrderID and Client shown by Figure 6.5. Each object is

made up by the properties defined by Table 6.8.

Considering the object representing the field OrderID, the ”field-

name” is set to field name value, i.e. ”OrderID”. Applying the con-

version rules defined in Table 6.6, the ”value-type” property is filled

with ”number”. The ”field-value” contains the representation of the

current value of the OPC UA Field according to the type specified by

the ”value-type”, i.e. ”number”; according to the current value shown

by Figure 6.4, the ”field-value” is set to 1234.

Considering the object representing the field Client (which is speci-

fied by another Structured DataType named PersonType), the ”field-

name” is set to ”Client”. The ”value-type” property is filled with

”object”, as its ”field-value” property contains an object created ap-

plying the rules just explained for ”OPCValue”. This object features

the property ”fields” which is an array containing two objects rele-

vant to the fields ”Name” and ”Surname”. Both objects feature the

”value-type” property set to ”string”. Listing 6.2 shows that for the

the JSON objects represeting the fields Name and Surname, the values

of ”value-type” property are set to ”John” and ”Smith”, respectively.

138

Chapter 6. Integration between OPC UA and OCF

6.2 Mapping from OCF Resource Model

to OPC UA Information Model

This section presents the mapping from OCF Resource Model to OPC

UA Information Model. The mapping proposed is able to represent

the element of the OCF Resource Model in the OPC UA ecosystem.

6.2.1 Mapping idea

The mapping from OCF Resource Model to OPC UA Information

Model has the aim to enable the representation of fundamental OCF

elements in OPC UA ecosystems.

As said in Chapter 4, the OCF Resource Model is based on the

concepts of OCF Device and OCF Resource. An OCF Device is used

to represent real physical devices and their components which are

represented as OCF Resources inside the OCF Device. In order to

model these concepts and the relevant information, the OCF Resource

Model defines several elements (i.e. OCF Device Type, OCF Resource

Type, ect.).

Integration of physical entities like devices is present also in OPC

UA. In fact, OPC foundation has defined an information model to en-

able the representation of devices and their integration in the OPC UA

ecosystem. As said in Chapter 2, this information model is described

in the specification OPC UA for Devices - Companion Specification

[30] and is called OPC UA Device Model.

On the basis of what said and taking into account the goal of

the mapping proposed, the OPC UA Device Model has been consid-

ered the starting point for the definition of a novel information model,

139

Chapter 6. Integration between OPC UA and OCF

called OCF OPC UA Information Model. It is built on top of standard

OPC UA Information Model and OPC UA Device Model as graphi-

cally represented in Figure 6.6.

Figure 6.6: OCF OPC UA Information Model

The proposed OCF OPC UA Information Model mainly offers sev-

eral novel OPC UA ObjectTypes. Their definition was done in or-

der to allow the mapping of fundamental elements of OCF Resource

Model, i.e. Device Type, Resource Type, Resource, Collection. Most

of the novel ObjectTypes inherit from the types of the OPC UA De-

vice Model (i.e. TopologyElementType and DeviceType ObjectTypes)

which in turn extends the types defined in the OPC UA Information

Model.

The highest level represented in Figure 6.6, represents the set of

OPC UA Nodes, instances of the novel ObjectTypes, used to map

the actual OCF elements of the OCF Resource Model, e.g. the OCF

Device and the OCF Resources there contained.

The novel ObjectTypes defined in the research work here

presented, are: OCFResourceType, OCFResourceInstanceType and

140

Chapter 6. Integration between OPC UA and OCF

OCFDeviceType. Before deepening the description of these Object-

Types, it is important to point out the main assumptions assumed in

this research.

First of all, it is worth noting that OCF Resource Model allows

multiple inheritance. In fact, an OCF Resource can be instance of one

or more OCF Resource Types. Each OCF Resource Type defines a

set of properties owned by the OCF Resource. Mapping of each of the

OCF Resource Types has been realised defining the abstract Object-

Type named OCFResourceType. A subtype of OCFResourceType is

used to define a new OPC UA ObjectType mapping an OCF Resource

Type. Each subtype of OCFResourceType features components made

up by OPC UA DataVariables, mapping all the properties of relevant

OCF Resource Type.

The obvious mapping of an OCF Resource in OPC UA ecosys-

tem should consist of defining an OPC UA ObjectType subtype of

OCFResourceType for each of its OCF Resource Type and create an

OPC UA Object instance of all these ObjectTypes. Although a so-

lution of this kind, graphically represented in Figure 6.7, seems to be

perfect to realise the mapping of an OCF Resource, in the OPC UA

ecosystem multiple inheritance is forbidden and a different approach

must be researched.

141

Chapter 6. Integration between OPC UA and OCF

Figure 6.7: Prohibition of multiple inheritance in OPC UA

To overcome this problem, the solution adopted in this proposal

is the definition of a particular OPC UA ObjectType, called OCFRe-

sourceInstanceType. For each OCF Resource, an instance of OCFRe-

sourceInstanceType is created; the goal is to use this instance to ag-

gregate instances of the OCFResourceType subtypes modelling OCF

Resource Types relevant to the OCF Resource. For this reason, it has

been assumed that these instances contain the actual values of the

properties relevant to the OCF Resource represented. In this way, the

solution adopted allows to distribute the state of a Resource among

these instances.

This aggregation is realised using the Configurable Component

pattern defined in [30], as explained in the following. The instance of

OCFResourceInstanceType created for each OCF Resource contains

an OPC UA Object of ConfigurableObjectType ObjectType, named

in this paper Aspects. In turn, Aspects contains an instance of each

OCFResourceType subtypes modelling the OCF Resource Types rel-

142

Chapter 6. Integration between OPC UA and OCF

evant to the OCF Resource. Finally, due to the features of the Con-

figurableObjectType, Aspects owns a folder named SupportedTypes;

it is used to organise the subtypes of OCFResourceTypes. In this way,

the aggregation is able to overcome the lack of multiple inheritance.

In the following, a simple example will be presented to better un-

derstand the main assumptions just explained.

Consider an OCF Resource representing a real bulb. The state of

this OCF Resource is shown by Listing 6.3.

/a/bulb

{
"n" : "bulb" ,

"rt" : ["oic.r.switch.binary" ,"oic.r.light.brightness"] ,

"if" : [. . .] ,

"value" : true ,

"brightness" : 80

}

Listing 6.3: OCF Resource representing a bulb

As specified by the ”rt” property, the OCF Resource is in-

stance of two OCF Resource Types called ”oic.r.switch.binary” and

”oic.r.light.brightness”. The former, described by Table 6.9, defines

a boolean property named ”value” indicating if the bulb is on or off.

The latter, described by Table 6.10, defines an integer property named

”brightness” indicating the brightness level. Both ”value” and ”bright-

ness” property are part of the state of the OCF Resource shown by

Listing 6.3.

143

Chapter 6. Integration between OPC UA and OCF

Table 6.9: OCF Properties defined by ”oic.r.switch.binary” Resource

Type

Property

Name

OCF data

type
Mandatory Description

Common

Properties
See ”oic.core” Resource Type in Table 4.1

value boolean Yes Status of the switch.

Table 6.10: OCF Properties defined by ”oic.r.light.brightness” Re-

source Type

Property

Name

OCF data

type
Mandatory Description

Common

Properties
See ”oic.core” Resource Type in Table 4.1

brightness integer Yes

Quantized representation in

the range 0-100 of the current

sensed or set value for

Brightness.

Based on what said above, Figure 6.8 shows the mapping of the

OCF Resource of Listing 6.3.

As shown in Figure 6.8, the instance of OCFResourceInstance-

Type created for the OCF Resource representing the bulb contains

an OPC UA Object of ConfigurableObjectType ObjectType, named

Aspects. In turn, Aspects contains an instance of each OCFRe-

sourceType modelling the OCF Resource Types relevant to the OCF

144

Chapter 6. Integration between OPC UA and OCF

Figure 6.8: Example of OCFResourceInstanceType and OCFRe-

sourceType

Resource, i.e. Switch.BinaryType and Light.BrightnessType repre-

senting ”oic.r.switch.binary” and ”oic.r.light.brightness”, respectively.

Furthermore, both Switch.BinaryType and Light.BrightnessType Ob-

jectType are target of an Organizes Reference starting from Support-

edTypes Node.

Figure 6.8 shows that both OCFResourceInstanceType and

OCFResourceType has been defined as subtypes of the TopologyEle-

mentType ObjectType. This choice will be better explained in the

following, when the novel ObjectTypes defined in the proposal will be

145

Chapter 6. Integration between OPC UA and OCF

great detailed.

It is worth noting that the solution just presented for the multi-

ple inheritance problem is not the only one possible but it has been

chosen as it is able to avoid loss of information in the mapping. In

fact, through the OPC UA Folder SupportedTypes it is possible to

expose the information about each OCF Resource Type defining the

OCF Resource represented, included the properties and the relevant

actual values. Furthermore, it is possible to easily retrieve informa-

tion about the OCF Resource Types defining an OCF Resource: all

the OCFResourceTypes supported by the OCFResourceInstanceType

instance are reachable just following the Organizes References start-

ing from the SupportedTypes Node instead of retrieving this informa-

tion following the HasTypeDefinition starting from each instance of

OCFResourceType.

The last novel ObjectType defined in this mapping is OCFDevice-

Type. It is a subtype of the OPC UA DeviceType ObjectType and its

instances will be used to represent OCF Devices. As an OCF Device

contains OCF Resources, the instances of OCFResourceInstanceType

will be component of an OCFDeviceType instance.

In the following subsections, all the novel ObjectType just defined

will be described in depth.

6.2.2 OCFResourceType ObjectType

This ObjectType has the aim to represent OCF Resource Types in

OPC UA. It is abstract: this means that an ObjectType extending

OCFResourceType shall be created for each OCF Resource Type (e.g.,

Switch.BinaryType and Light.BrightnessType in Figure 6.8).

146

Chapter 6. Integration between OPC UA and OCF

OCFResourceType is a subtype of TopologyElementType Object-

Type and inherits each component of this last type, among which

ParameterSet Object. All the properties defined by an OCF Resource

Type are mapped as OPC UA Parameters and grouped by the Pa-

rameterSet Object.

As for example, consider the OCF Resource Type

”oic.r.light.brightness” defined in Table 6.10; it defines an inte-

ger property named ”brightness”. As shown by Figure 6.8, this

OCF Resource Type is mapped in OPC UA using a subtype of

the OCFResourceType ObjectType called Light.BrightenessType.

Figure 6.9 shows in more details this ObjectType.

Figure 6.9: Light.BrightnessType ObjectType details

As said before, Light.BrightnessType ObjectType is subtype of

OCFResourceType ObjectType which in turn is subtype of Topolo-

gyElementType ObjectType: for this reason, it inherits the compo-

147

Chapter 6. Integration between OPC UA and OCF

nent of this last one ObjectType. Among these component there is

the Object named ParameterSet, shown by Figure 6.9. This Object is

an InstanceDeclaration as it features a Mandatory ModellingRule Ob-

ject (the notation [Mandatory] specifies that the Node is the source of

a HasModellingRule Reference targeting a Mandatory ModellingRule

Object as described in Section 2.1.6). This means that an instance of

the Light.BrightnessType ObjectType must contains an HasCompo-

nent Reference targeting a ParameterSet Object. Furthermore, Fig-

ure 6.9 shows that the ParameterSet Object contains an OPC UA

Parameter realised as an OPC UA DataVariable. The aim of this

Parameter is to represent the ”brightness” property defined by the

”oic.r.light.brightness” OCF Resource Type. It is worth noting that

this DataVariable is a InstanceDeclaration too (it features the Mod-

ellingRule Mandatory) and for this reason the ParameterSet Object

contained in an instance of Light.BrightnessType ObjectType must

contain this DataVariable Node. As said before, the Value attribute

of this Node will contain the actual value of the ”brightness” prop-

erty: assuming the mapping of the OCF Resource representing a bulb

shown by Listing 6.3, the Value attribute of this DataVariable Node

will contain the value 80.

As said in Chapter 4, OCF specifications foresee several basic

OCF Resource Types; some of them are: ”oic.wk.d”, ”oic.wk.p” and

”oic.wk.col”. Three OPC UA ObjectTypes extending the OCFRe-

sourceType have been defined to represent them. They has been called

DType, PType and ColType and will be used to map ”oic.wk.d”,

”oic.wk.p” and ”oic.wk.col” OCF Resource Types, respectively, as de-

scribed in the following subsections.

148

Chapter 6. Integration between OPC UA and OCF

6.2.3 OCFResourceInstanceType ObjectType

Instances of OCFResourceInstanceType ObjectType are used to map

OCF Resources. It is a concrete ObjectType, subtype of TopologyEle-

mentType ObjectType and defined as shown by Figure 6.10.

Figure 6.10: OCFResourceInstanceType ObjectType

An instance of this ObjectType is made up by several components.

One of them is the Aspects Object. It is a ConfigurableObject ag-

gregating instances of OCFResourceType subtypes, one for each OCF

Resource Type defining the OCF Resource represented. As said in the

previous subsection, each of these instances will contain Parameters

representing the properties of the OCF Resource.

Another component is ParameterSet Object, inherited from Topol-

ogyElementType. All the Parameters of every component of Aspects

149

Chapter 6. Integration between OPC UA and OCF

will be grouped by the ParameterSet of the instance of OCFResource-

InstanceType. This grouping, not shown in Figure 6.10 due to the lack

of space, allows to provide all the OCF properties composing the OCF

Resource as Parameter of the Node representing the OCF Resource

itself, resolving the problem of the prohibition of multiple inheritance

in OPC UA.

It is worth noting that with the solution proposed is possible to ob-

tain entire set of Parameters (i.e. reaching the Parameter through the

ParameterSet Object of the instance of OCFResourceInstanceType) or

to filter the Parameter by the OCFResourceType subtype (i.e. reach-

ing the Parameter through the Aspects Object).

ParameterSet groups also other Parameters, among which Fig-

ure 6.10 shows URI (that is mandatory and it is used to map the

URI of the OCF Resource represented) and ID (that is optional and it

is used to map the ”id” common property of the OCF Resource state).

Since URI and ID identify the OCF Resource, they shall be grouped

by the FunctionalGroup called Identification as explained in Section

2.4.1.1.

6.2.4 OCFDeviceType ObjectType

OCFDeviceType ObjectType is an abstract ObjectType subtype of

OPC UA DeviceType. A subtype of OCFDeviceType ObjectType shall

be created for each OCF Device Type; an instance of such subtype

maps an OCF Device and the information it gathers. OCFDeviceType

is graphically described in Figure 6.11.

As explained in Chapter 4, an OCF Device must expose OCF Re-

sources and, eventually, subdevices. It has been assumed that map-

150

Chapter 6. Integration between OPC UA and OCF

Figure 6.11: OCFDeviceType ObjectType

ping of the relationships between an OCF Device and its Resources

is achieved through the use of an ad-hoc defined OPC UA Reference-

Type, named HasResource. The other relationship with the subdevices

is modelled by another ad-hoc defined reference called HasSubDevices.

HasSubDevice is subtype of HasResource which in turn is subtype of

HasComponent ReferenceType. The definition of these Reference-

Types is shown in Figure 6.12.

HasResource and HasSubDevice References requires an instance

of OCFDeviceType subtype as source, modelling the OCF Device as

said. An HasResource Reference targets an instance of OCFResource-

InstanceType ObjectType modelling an OCF Resource owned by the

OCF Device whilst HasSubDevice targets the instances of an ad-hoc

151

Chapter 6. Integration between OPC UA and OCF

Figure 6.12: HasResource and HasSubdevice ReferenceTypes

subtype of OCFResourceInstanceType ObjectType named SubDevice-

InstanceType and modelling a subdevices of the OCF Device.

Among the Resources exposed by an OCF Device, the three ones

addressed by the URIs ”/oic/p”, ”/oic/res” and ”/oic/d” are manda-

tory.

The OCF Resource addressed by ”/oic/p” is mapped as an in-

stance of OCFResourceInstanceType, named Platform in Figure 6.11.

For this reason, Platform Node features an Aspects Object as a com-

ponent. In order to map the properties of the OCF Resource addressed

by ”/oic/p” (which are defined by ”oic.wk.p” Resource Type) an in-

stance of the PType ObjectType is used. It is defined as a component

of Aspects and exposes a Parameter for each property of the OCF Re-

source (i.e. each property defined by the ResourceType ”oic.wk.p”).

The OCF Resource addressed by ”/oic/res” provides the list of

OCF Links pointing the OCF Resources exposed by an OCF Device.

It has been assumed to avoid the use of an OPC UA Node to repre-

152

Chapter 6. Integration between OPC UA and OCF

sent the OCF Resource addressed by ”/oic/res” and to map only the

OCF Resources linked. These Resources are represented as instances

of OCFResourceInstanceType and are targeted by HasResource Refer-

ences starting from the instance of the relevant OCFDeviceType sub-

type. In Figure 6.11, they are represented by the InstanceDeclaration

named <Resource>.

As said, the OCF Resource addressed by the URI ”/oic/d” is used

to provide information about the relevant OCF Device through its

properties (defined by ”oic.wk.d” Resource Type). It has been as-

sumed to avoid the mapping of the Resource by means of an OPC UA

Node. Instead, the properties of this OCF Resource are mapped by

OPC UA Properties (inherited by OPC UA DeviceType) and OPC

UA Node Attributes of the instance of an OCFDeviceType subtype as

specified by Table 6.11.

Table 6.11: Mapping rules for OCF Resource addressed by ”/oic/d”

”/oic/d” properties

defined by

”oic.wk.d”

OPC UA Property

of OCFDeviceType

OPC UA Attribute

of OCFDeviceType

Name (n) - DisplayName

Localized Description

(ld)
- Description

Software Version (sv) SoftwareRevision -

Manufacturer Name

(dmn)
Manufacturer -

Model Number (dmno) Model -

153

Chapter 6. Integration between OPC UA and OCF

As said in Chapter 4, subdevices must be represented as OCF

Resources of the relevant Device. The properties of the Resource rep-

resenting a subdevice are defined by the ”oic.wk.d” Resource Type.

Alongside this Resource Type, a Device Type is defined. Furthermore,

if the Resource representing a subdevice is also a Collection (i.e. it is

also defined by the ”oic.wk.col” Resource Type), it shall link manda-

tory Resource specified by the Device Type.

In order to map an OCF Resource representing a subdevice, a sub-

type of OCFResourceInstanceType, named SubDeviceInstanceType,

has been defined and it is graphically represented in Figure 6.13.

Figure 6.13: SubdeviceInstanceType ObjectType

Since SubDeviceInstanceType extends OCFResourceInstanceType,

its instances expose an Aspects Object. In order to map the properties

of the subdevice (which are defined by ”oic.wk.d” Resource Type) an

154

Chapter 6. Integration between OPC UA and OCF

instance of DType ObjectType is used. It is defined as a component

of Aspects, named DeviceAspect, and exposes a Parameter for each

property defined by ”oic.wk.d”.

If the subdevice is a Collection (i.e., ”rt” property contains

”oic.wk.col”), the instance of SubDeviceInstanceType will expose an

instance of ColType ObjectType named MandatoryResources as com-

ponent of Aspects. This Object is used to group the Resources of the

Collection.

ColType is shown in Figure 6.14. It is a subtype of OCFResource-

Type and has been defined to represent ”oic.wk.col” Resource Type.

Figure 6.14: ColType ObjectType

Each instance of this type contains an Object named Links aggre-

gating all the OCFResourceInstanceType instances representing OCF

Resources belonging linked by the Collection. The aggregation is re-

155

Chapter 6. Integration between OPC UA and OCF

alised through OPC UA References. Two kind of Resources can be

aggregated.

The first kind are the Resources target of a Link without the ”an-

chor” parameter set. In this case, the Link indicates that the OCF

Collection owns directly the OCF Resource linked: for this reason, it

has been assumed to use the HasComponent Reference which in OPC

UA express a relationship of owning. In Figure 6.14 these Resources

are specified by the InstanceDeclaration <Resource>.

The second kind are the Resources target of a Link with the ”an-

chor” parameter set. In this case, the Link indicates that the OCF

Resource is a part of the OCF Collection but without the relation-

ship of owning: for this reason, it has been assumed to use the Ag-

gregates Reference which in OPC UA express a similar semantics.

As Aggregates is an abstract ReferenceType, Contains ReferenceType

has been defined in order to use it for the reason just explained. In

Figure 6.14 these Resources are specified by the InstanceDeclaration

<ResourceAnchored>. Figure 6.15 shows the definition of Contains

ReferenceType.

Figure 6.15: Contains ReferenceType

156

Chapter 6. Integration between OPC UA and OCF

As an example consider a Resource representing a floor containing

OCF Links pointing to the Resources representing the rooms in the

floor. If each room contain lights, these may be defined in the Resource

representing the floor as OCF Links having the ”anchor” parameter

set to the URI of the Resources representing the rooms containing the

lights. In this case, the instance of OCFResourceInstanceType map-

ping the OCF Resource representing the floor contains a component

of Aspects relevant to the ColType ObjectType; the OPC UA Nodes

mapping the Resources representing the rooms will be target of Has-

Component References starting from OPC UA Links Object whilst

the OPC UA Nodes mapping the Resources representing the light will

be target of Contains References starting from the OPC UA Links

Object too.

6.2.5 CaseStudy

The aim of this Section is to provide an example of the mapping from

OCF to OPC UA. The example is based on the mapping of an OCF

Device belonging to the OCF Device Type ”x.customdevice” described

by Table 6.12.

Table 6.12: OCF CustomDevice Device Type

Device Name Device Type
Required

Resource Name

Required

Resource Type

CustomDevice ”x.customdevice” Bulb
[”oic.r.switch.binary”,

”oic.r.light.brightness”]

Table 6.12 points out that each OCF Device instance of the

157

Chapter 6. Integration between OPC UA and OCF

CustomDevice Device Type must expose an OCF Resource named

Bulb belonging to the Resource Types ”oic.r.switch.binary” and

”oic.r.light.brightness”, defined by Tables 6.9 and 6.10, respectively.

The OCF Device is graphically shown by Figure 6.16.

Figure 6.16: OCF Device belonging to the CustomDevice Device

Type

As shown by Figure 6.16., the OCF Device contains the OCF Core

Resources addressed by ”/oic/d”, ”/oic/res” and ”oic/p”. Further-

more, the OCF Device contains the OCF Resource mandated by the

OCF Device Type: it has been assumed that this Resource is the one

specified by Listing 6.3.

Figure 6.17 shows the OPC UA representation of the OCF Device

of Figure 6.16.

In order to map the CustomDevice DeviceType, a new subtype of

158

Chapter 6. Integration between OPC UA and OCF

Figure 6.17: Mapping of the OCF Device of Figure 6.16

OCFDeviceType ObjectType, named CustomDeviceType, has been

defined. The OCF Device of Figure 6.16 is mapped as an instance of

CustomDeviceType ObjectType named CustomDevice. As shown by

the figure, this Object feature a DisplayName set to the name property

of the OCF Device represented. It has been assumed that the optional

properties localized description, software version, manufacturer name

and model number of the OCF Resource addressed by ”/oic/d” are

not present: for this reason their mapping is not present in the Figure.

The CustomDevice Object features two HasResource References:

the first points to the Platform Object, representing the OCF Re-

source addressed by ”/oic/p”. The second HasResource points to the

representation of the OCF Resource of Listing 6.3. For space reason

mapping of the instances of OCFResourceInstanceType owned by the

159

Chapter 6. Integration between OPC UA and OCF

CustomDevice Object is not provide.

However, the mapping relevant to the OCF Resource of Listing 6.3

will be deepened: it is shown by Figure 6.18.

Figure 6.18: Mapping of the OCF Resource of Listing 6.3

160

Chapter 6. Integration between OPC UA and OCF

The OPC UA ObjectTypes (Switch.BinaryType and

Light.BrightnessType) model the two OCF Resource Type mentioned

above as subtypes of OCFResourceType ObjectType. For each of the

two subtypes, the figure shows the ParameterSet components and

the relevant properties (value and brightness, respectively) defined as

InstanceDeclarations.

The OCF Resource is mapped by an OPC UA Object of

OCFResourceInstanceType. This Object has two components: As-

pects and ParameterSets. The former is used to collect both

the subtypes of OCFResourceTypes through the SupportedTypes

Folder and the instances of these two subtypes. These instances

are named Bulb SwitchBinary and Bulb LightBrightness of types

Switch.BinaryType and Light.BrightnessType, respectively. For each

instance, the actual values of the properties are shown (i.e. value

and brightness). These values are directly accessible from Bulb Ob-

ject through the ParameterSet component of the same Object or from

each component of Aspects.

6.3 Contribution of the proposal inside

the OCF standardisation activity

OCF specifies a particular Device, named OCF Bridge, with the aim of

representing devices that exist on the network but that communicate

using bridged protocol rather than OCF Protocol [59]. The overall

goals of the OCF Bridge are to make Bridged Servers appear to OCF

Clients as if they were native OCF servers, and to make OCF Servers

appear to Bridged Clients as if they were native non-OCF servers.

161

Chapter 6. Integration between OPC UA and OCF

Figure 6.19 shows the main components foreseen for the OCF Bridge

Device [59].

Figure 6.19: OCF Bridge Device Component

Translator is responsible for translating to or from a specific

Bridged Protocol; more than one translator can exist on the same

OCF Bridge Device, for different Bridged Protocols.

Virtual Bridged Client is the logical entity that accesses data via

a Bridged Protocol, representing the OCF Client on the other side

of the OCF Bridge. Likewise, Virtual Bridget Server is the logical

representation of an OCF Server, which an OCF Bridge Device exposes

to Bridged Clients.

Virtual OCF Client and Virtual OCF Server are the logical repre-

sentations of a Bridged Client (which an OCF Bridge Device exposes

to OCF Servers) and a Bridged Server (which an OCF Bridge Device

exposes to OCF Clients), respectively.

When translating between a Bridged and OCF protocols, [59] fore-

sees for two possible types of translation named deep translation and

on-the-fly translation.

In deep translation, information models used with the Bridged Pro-

162

Chapter 6. Integration between OPC UA and OCF

tocol are mapped to the equivalent OCF Resource Types and vice-

versa, in such a way that a compliant OCF Client or Bridged Client

would be able to interact with the service without realising that a

translation was made. Realisation of such translation requires dedi-

cated effort and study of the data schema used on both sides to store

information. The burden of this translation is on the Translator which

is expected to dedicate most of its logic to realise the deep translation.

On-the-fly translation does not require any prior knowledge of the

specific schema on the part of the translator. Instead, the burden is

on one of the other participants in the communication, usually the

client application.

It is very important to point out that, at the moment, OCF does

not provide for an OCF Bridge Device realising translation between

OPC UA and OCF for both deep and on-the-fly translations.

According to what said until now about the Bridge Device, the

proposed mapping may be used for the Translator, in order to realise

the deep translation between OPC UA and OCF.

163

CHAPTER

SEVEN

CONCLUSION

The objective of this thesis is to investigate about the enhancement

of interoperability in Industry 4.0, IoT and IIoT and to propose some

improvements based on OPC UA. In particular two proposal are de-

scribed.

The first proposal, called Integration between OPC UA and the

Web and described in Chapter 5, is a proposal of interoperability open-

ing OPC UA to the Web. The proposal is based on the definition of a

novel data model mapping the OPC UA Information Model and based

on common web data-formats (e.g. JSON). This data model has been

used in the implementation of a RESTful web platform called OPC

UA Web Platform, able to offer access to OPC UA Servers through the

Web in a resource-oriented manner. The main feature of the proposed

platform is its capability to limit the number of messages exchanged

between user and platform and to simplify the view of the OPC UA in-

formation model from the user’s perspective, requiring the user to have

165

Chapter 7. Conclusion

a very limited knowledge of basic concepts detailed in the thesis. Plat-

form may be accessed by a common application which is constrained

neither to be compliant to OPC UA specification nor to implement

OPC UA communication stack. The entire set of information main-

tained by an OPC UA Server continues to be accessible in the web by

a common user; but it can be retrieved in a more user-friendly way

limiting the data exchange and the number of accesses to the infor-

mation model. Furthermore, it is able to update values of OPC UA

Variables without being compliant to the OPC UA protocol. This

is the key point that make the difference between the proposal here

presented and the other REST-based solutions available in literature,

as pointed out in Chapter 5.

The second proposal, called Integration between OPC UA and OCF

and described in Chapter 6, is a proposal of interoperability based

on the integration of OPC UA and IoT/IIoT World through a bidi-

rectional mapping between OPC UA Information Model and OCF

Resource Model. The mapping from OPC UA to OCF enables the

mapping of each OPC UA Node and Reference of the AddressSpace

into an element belonging to the OCF Resource Model. The mapping

from OCF to OPC UA enables the mapping of each OCF fundamental

element (i.e. OCF Device, OCF Resource, ect.) in OPC UA using an

ad-hoc defined information model called OCF OPC UA Device Model.

The main advantage of the proposal is the capability to enhance the

interoperability of OPC UA in the IoT domain. In fact, each infor-

mation maintained by an OPC UA Server may be used to populate

an OCF device acting as server, and each information provided by an

OCF Device may be used to populate the AddressSpace of an OPC

UA Server. In this way is possible to enable publication of informa-

166

Chapter 7. Conclusion

tion between OPC UA and OCF-compliant devices. The proposal is

original as the issue has not been treated until now, due to the very

recent definition of the OCF specifications. Furthermore, OCF spec-

ifications define a particular Device, named Bridge, with the aim of

representing devices that exist on the network but that communicate

using bridged protocol rather than OCF Protocol. According to the

Bridging specification, a main component of the Bridge Device is the

Translator. Translator is expected to dedicate most of its logic to a

so-called ”deep translation” types of communication, in which infor-

mation models used with the Bridged Protocol are mapped to the

equivalent OCF Resource Types and vice versa, in such a way that a

compliant OCF Client or Bridged Client would not realise that a trans-

lation was made. At this moment, deep translation between OPC UA

and OCF does not exist. The proposed mapping may be used as a

component of the Translator to realise a part of the deep translation,

relevant to the mapping of the information models between OPC UA

and OCF.

167

BIBLIOGRAPHY

[1] T. Guarda, M. Leon, M. F. Augusto, L. Haz, M. de la Cruz,

W. Orozco, and J. Alvarez, “Internet of Things challenges,” in

12th Iberian Conference on Information Systems and Technolo-

gies (CISTI), IEEE, 2017.

[2] Y. Liao, F. Deschamps, E. de Freitas Rocha Loures, and L. F. P.

Ramos, “Past, present and future of Industry 4.0 - a systematic

literature review and research agenda proposal,” International

Journal of Production Research, vol. 55, no. 12, pp. 3609–3629,

2017.

[3] L. D. Xu, E. L. Xu, and L. Li, “Industry 4.0: state of the art

and future trends,” International Journal of Production Research,

vol. 56, no. 8, pp. 2941–2962, 2018.

[4] S. Jeschke, C. Brecher, H. Song, and D. B. Rawat, Industrial

Internet of Things. Springer, 2017.

[5] S. Weyer, M. Schmitt, M. Ohmer, and D. Gorecky, “To-

wards industry 4.0 - standardization as the crucial challenge

169

BIBLIOGRAPHY

for highly modular, multivendor production systems,” IFAC-

PapersOnLine, vol. 48, no. 2, pp. 579–584, 2015.

[6] V. Vyatkin, “Software engineering in industrial automation:

State-of-the-art review,” IEEE Transactions on Industrial Infor-

matics, vol. 9, no. 3, p. 1234–1249, 2013.

[7] OPC Foundation, OPC Specification - Part 1: Overview and Con-

cepts, 2017. Version 1.04.

[8] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Archi-

tecture. Springer Verlag, 2009.

[9] P. Adolphs, H. Bedenbender, and D. Dirzus, “Reference Archi-

tecture Model Industrie 4.0 (RAMI4.0),” tech. rep., VDI – The

Association of German Engineers and ZVEI – German Electrical

and Electronic Manufacturers’ Association, 2015.

[10] S.-W. Lin, B. Miller, J. Durand, G. Bleakley, A. Chigani, R. Mar-

tin, B. Murphy, and M. Crawford, “The Industrial Internet of

Things Volume G1: Reference Architecture (IIRA v1.8),” tech.

rep., Industrial Internet Consortium (IIC), 2017.

[11] R. T. Fielding, Architectural styles and the design of network-

based software architectures. PhD thesis, Dept. Information and

Computer Science, University of California, USA, 2000.

[12] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly

Media, 2007.

170

BIBLIOGRAPHY

[13] S. Grüner, J. Pfrommer, and F. Palm, “RESTful Industrial Com-

munication With OPC UA,” IEEE Transactions on Industrial

Informatics, vol. 12, no. 5, pp. 1832–1841, 2016.

[14] “Prosys OPC UA Web Client.” https://www.prosysopc.com/

blog/prosys-opc-ua-web-client-released.

[15] T. Paronen, “A web-based monitoring system for the Industrial

Internet,” Master’s thesis, School of Science, Aalto University,

Finland, 2015.

[16] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and

K. Kim, “TinyREST—A protocol for integrating sens. networks

into the Internet,” in Workshop Real-World Wireless Sens. Netw.

(REALWSN), 2005.

[17] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented archi-

tecture for the web of things,” in 2010 Internet of Things (IOT),

2010.

[18] “Open Connectivity Foundation (OCF).” https:

//openconnectivity.org.

[19] ETSI, “Cross Fertilisation through Alignment, Synchroni-

sation and Exchanges for IoT. Strategy and coordination

plan for IoT interoperability and standard approaches.”

https://european-iot-pilots.eu/wp-content/uploads/

2017/10/D06_01_WP06_H2020_CREATE-IoT_Final.pdf, 2017.

[20] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “OPC-

UA and DPWS interoperability for factory floor monitoring using

171

https://www.prosysopc.com/blog/prosys-opc-ua-web-client-released
https://www.prosysopc.com/blog/prosys-opc-ua-web-client-released
https://openconnectivity.org
https://openconnectivity.org
https://european-iot-pilots.eu/wp-content/uploads/2017/10/D06_01_WP06_H2020_CREATE-IoT_Final.pdf
https://european-iot-pilots.eu/wp-content/uploads/2017/10/D06_01_WP06_H2020_CREATE-IoT_Final.pdf

BIBLIOGRAPHY

complex event processing,” in 9th IEEE International Conference

on Industrial Informatics, 2011.

[21] Object Management Group (OMG), “OPC UA/DDS Gateway.”

https://www.omg.org/spec/DDS-OPCUA/.

[22] OPC Foundation, OPC Specification - Part 14: PubSub, 2018.

Version 1.04.

[23] R.Baldoni, M. Contenti, and A. Virgillito, Future Directions of

Distributed Computing, vol. 2584, ch. The Evolution of Publish/-

Subscribe Communication Systems, pp. 137–141. Springer, 2003.

[24] OPC Foundation, OPC Specification - Part 3: Address Space

Model, 2017. Version 1.04.

[25] OPC Foundation, OPC Specification - Part 5: Information

Model, 2017. Version 1.04.

[26] OPC Foundation, OPC Specification - Part 4: Services, 2017.

Version 1.04.

[27] OPC Foundation, OPC Specification - Part 6: Mappings, 2017.

Version 1.04.

[28] OPC Foundation, OPC Specification - Part 6: Data Access, 2017.

Version 1.04.

[29] OPC Foundation, OPC Specification - Part 2: Security Model,

2015. Version 1.03.

[30] OPC Foundation, OPC Unified Architecture for Devices Com-

panion Specification, 2013. Version 1.01.

172

https://www.omg.org/spec/DDS-OPCUA/

BIBLIOGRAPHY

[31] IETF, “The JavaScript Object Notation (JSON) Data In-

terchange Format.” https://tools.ietf.org/html/rfc8259,

2017.

[32] L. Bassett, Introduction to JavaScript Object Notation: A To-

the-Point Guide to JSON. O’Reilly Media, 2015.

[33] IETF, “JSON Schema: A Media Type for Describ-

ing JSON Documents.” https://tools.ietf.org/html/

draft-handrews-json-schema-01, 2018.

[34] “JSON Schema.” http://json-schema.org.

[35] M. Droettboom, “Understanding JSON Schema.” http://

json-schema.org/understanding-json-schema/index.html,

2018.

[36] “Open Connectivity Foundation Specification.” https:

//openconnectivity.org/developer/specifications.

[37] Open Connectivity Foundation, OCF Core Specification, 2018.

Version 1.3.1.

[38] S. Cavalieri, D. D. Stefano, M. G. Salafia, and M. S. Scroppo,

“Integration of OPC UA into a Web-based Platform to enhance

interoperability,” in 26th IEEE International Symposium on In-

dustrial Electronics (ISIE 2017), 2017.

[39] S. Cavalieri, D. D. Stefano, M. G. Salafia, and M. S. Scroppo,

“A Web-based Platform for OPC UA integration in IIoT envi-

ronment,” in 22nd IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA 2017), 2017.

173

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/draft-handrews-json-schema-01
http://json-schema.org
http://json-schema.org/understanding-json-schema/index.html
http://json-schema.org/understanding-json-schema/index.html
https://openconnectivity.org/developer/specifications
https://openconnectivity.org/developer/specifications

BIBLIOGRAPHY

[40] S. Cavalieri, D. D. Stefano, M. G. Salafia, and M. S. Scroppo,

“OPC UA integration into the Web,” in 43rd Annual Conference

of the IEEE Industrial Electronics Society (IECON 2017), 2017.

[41] S. Cavalieri, M. G. Salafia, and M. S. Scroppo, “Integrating OPC

UA with web technologies to enhance interoperability,” Computer

Standards & Interfaces, 2018.

[42] “OPC UA Web Platform.” https://github.com/OPCUAUniCT/

OPCUAWebPlatformUniCT, 2017.

[43] IETF, “HTTP Over TLS.” https://tools.ietf.org/html/

rfc2818, 2000.

[44] K. Nayyeri and D. White, Pro ASP.NET SignalR -Real-Time

Communication in .NET with SignalR 2.1. Apress, 2014.

[45] Andrew Banks and Rahul Gupta, Message Queue Telemetry

Transport (MQTT) - OASIS Standard, 2014. Version 3.1.1.

[46] M. Collina, “MOSCA MQTT.” https://github.com/

mcollina/mosca.

[47] S. Tilkov and S. Vinoski, “Node.js: JavaScript to build high-

performance network programs,” IEEE Internet Computing,

vol. 14, no. 6, pp. 80–83, 2010.

[48] OPC Foundation, OPC Specification - Part 7: Profiles, 2017.

Version 1.04.

[49] M. Masse, REST API Design Rulebook. Designing Consistent

RESTful Web Service Interfaces. O’Reilly Media, 2011.

174

https://github.com/OPCUAUniCT/OPCUAWebPlatformUniCT
https://github.com/OPCUAUniCT/OPCUAWebPlatformUniCT
https://tools.ietf.org/html/rfc2818
https://tools.ietf.org/html/rfc2818
https://github.com/mcollina/mosca
https://github.com/mcollina/mosca

BIBLIOGRAPHY

[50] C. Nagel, Professional C# 7 and .NET Core 2.0. Wrox, 2018.

[51] Microsoft, “.NetCore Source Code.” https://github.com/

dotnet/core.

[52] O. Foundation, “OPC UA .NetCore Stack.” https://github.

com/OPCFoundation/UA-.NETStandardLibrary.

[53] IETF, “JSON Web Token (JWT).” https://tools.ietf.org/

html/rfc7519, 2015.

[54] S. Cavalieri and M. S. Scroppo, “A proposal to make OCF and

OPC UA interoperable,” in 19th IEEE International Conference

on Industrial Technology (ICIT 2018), 2018.

[55] S. Cavalieri, M. G. Salafia, and M. S. Scroppo, “Mapping OPC

UA AddressSpace to OCF resource model,” in 1st IEEE Indus-

trial Cyber-Physical Systems (ICPS 2018), 2018.

[56] S. Cavalieri, M. G. Salafia, and M. S. Scroppo, “Towards inter-

operability between OPC UA and OCF,” Journal of Industrial

Information Integration, 2018. Pending Review.

[57] S. Cavalieri, M. G. Salafia, and M. S. Scroppo, “Interoperability

between OPC UA and OCF,” in 20th IEEE International Con-

ference on Industrial Technology (ICIT 2019), 2018. Pending

Review.

[58] S. Cavalieri, M. G. Salafia, and M. S. Scroppo, “Realising In-

teroperability between OPC UA and OCF,” IEEEAccess - The

Multidisciplinary Open Access Journal, 2018. Pending Publica-

tion.

175

https://github.com/dotnet/core
https://github.com/dotnet/core
 https://github.com/OPCFoundation/UA-.NETStandardLibrary
 https://github.com/OPCFoundation/UA-.NETStandardLibrary
https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

BIBLIOGRAPHY

[59] Open Connectivity Foundation, OCF Bridging Specification,

2017. Version 1.3.0.

176

	Introduction
	OPC UA - IEC 62541
	OPC UA AddressSpace and Information Model
	OPC UA NodeClass
	OPC UA Events
	OPC UA References
	OPC UA Graphical Notations
	OPC UA DataType
	OPC UA ModellingRules

	OPC UA Services
	OPC UA Discovery Service Set
	OPC UA Session Service Set
	OPC UA Browse, Read and Write Services
	OPC UA Subscription and MonitoredItem Service Sets

	OPC UA Security
	OPC UA for Devices
	OPC UA Device Model
	TopologyElementType ObjectType
	DeviceType ObjectType
	ConfigurableObjectType ObjectType

	JavaScript Object Notation (JSON) Data Interchange Format
	JSON base types
	JSON Example

	JSON Schema

	Open Connectivity Foundation (OCF)
	OCF Resource Model

	Integration between OPC UA and the Web
	OPC UA Web Platform Architecture
	Web User’s basic knowledge needed to access the OPC UA Web Platform
	Web User’s communication technologies needed to access the OPC UA Web Platform

	Improvements of the proposal over the related work present in literature
	OPC UA Web Platform versus RESTful OPC UA solution
	OPC UA Web Platform versus Prosys solution
	OPC UA Web Platform versus OPC UA PubSub Specification

	RESTful Interface
	Web User Authentication
	Information about Data Sets
	Information about Nodes
	Decoding Procedure of the OPC UA Variable Value
	Fulfilling GET request through OPC UA Services
	Case Study

	Updating value of Variable Nodes
	Monitoring Variable Nodes
	Case Study

	Stop Monitoring Variable Nodes

	OPC UA Web Platform Implementation

	Integration between OPC UA and OCF
	Mapping from OPC UA Information Model to OCF Resource Model
	Mapping idea
	"x.opc.device" Device Type
	"x.opc.object" Resource Type
	"x.opc.datavariable" Resource Type
	"x.opc.method" Resource Type
	Mapping OPC UA DataType and OPC UA Variable Node Value attribute
	Built-in DataType
	Enumeration DataType
	Structured DataType
	Array

	Case Study

	Mapping from OCF Resource Model to OPC UA Information Model
	Mapping idea
	OCFResourceType ObjectType
	OCFResourceInstanceType ObjectType
	OCFDeviceType ObjectType
	CaseStudy

	Contribution of the proposal inside the OCF standardisation activity

	Conclusion

