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Chapter 1

Introduction

1.1 Toward novel digital application technology

Silicon-based complementary-metal-oxide semiconductor technology has ruled the
semiconducting industry for the last decades. However, pure silicon electronics
is arriving toward its physical limits in terms of traditional transistor operation:
as channel lengths get reduced below L., ~ 30 — 20nm, strong differentiations in
the device operation are expected due to the presence of quantum confinement,
while problems like leakage currents and dielectric scaling arise. In this sense
the search of alternative materials for nanoscale integration in electronics, sen-
sors and environmental applications that would allow for a further reduction of
transistor dimensions while at the same time increasing clock speeds and reduc-
ing power dissipation becomes eminent. Under this perspective a new concept of
low-dimensionality comes into the picture. Reduced dimensionality can signifi-
cantly advance miniaturization and improve performance of plausible logic and
storage devices. The advantages of small size in nanoelectronics are well known:
devices can become faster, denser and require lower power consumption.

The idea of embedding single molecules between two electrodes and make
molecular devices stands since the mid seventies[2]. However the real revolution
in low-dimensional electronics took place at the early nineties with the discovery
of carbon nanotubes[59], i.e. quasi one-dimensional sp*-bonded carbon allotrope
systems that look like a single rolled sheet of graphite. Carbon nanotube research
grew exponentially in the following years whereas important achievements come
into the picture also to date. This research framework served for the incubation
of the concept of a pure two-dimensional (2D) system. Previously, quasi-2D
electron gas systems existed only in heterostructure junctions like the one that
forms in the GaN/AlGaN interface. However the idea of a pure 2D material was
lacking any consistence whereas serious thermodynamical stability concerns were
raised. At 2004 Novoselov et al.[81] showed the existence and stability of a pure
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1. INTRODUCTION

2D system deriving as a single one-atom thick graphite sheet. Such a discovery
brought an intense interest on the study of this material both from a scientific as
well as from an industrial point of view, being the first one to posses this type of
dimensionality, and consequently, a series of exceptional characteristics. In this
chapter some key structural and electronic properties of graphene-based systems
will be reviewed in order to establish the problematics for this PhD study.

1.2 Graphene: a two-dimensional world

Graphene is a one-atom thick planar sp? carbon allotrope system with partic-
ular electrical, mechanical and optical characteristics[I4, 31}, 44]. Structurally
graphene is a hexagonal honeycomb surface where each carbon atom is cova-
lently bonded with three neighboring atoms at a distance d ~ 1.42 A (see Figure
. The primitive basis vectors of the underlying Bravais lattice read:

i = —(“3) (1)
3 = 5(@ (12)

where a1, as are lattice vectors and a is the in plane graphite lattice constant,
having a value of a = V3d ~ 2.46 A. Since the translation of each one of the
basis vectors gives rise to a triangular lattice, graphene can be thought of as the
superposition of two triangular interpenetrating lattices.

Figure 1.1: Graphene lattice - The atomic structure of a graphene surface
where dj, a3 are lattice vectors and o are the sp?>-hybridized bonds that allow for the
covalent bonding between neighboring atoms. The WignerSeitz cell is highlighted
in yellow.

The sp? hybridization scheme provides for the presence of both ¢ and 7 or-
bitals in the electronic structure of this system. The o orbitals primarily lie along
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1. INTRODUCTION

the structure’s surface and are responsible for covalent bonding between neigh-
boring C atoms that forms the basis of the extremely high mechanical stability
of this material (see figure . On the other hand o bonds have energies that
are too far away from the Fermi level and do not contribute in the electrical,
thermal and optical characteristics of graphene. The remaining 7 orbitals (one
per carbon atom) lie perpendicular to the lattice surface and are responsible for
the peculiarity of its low-energy electronic properties.

Probing for the electronic structure of graphene can be simple and straight-
forward within a next-neighbor Tight Binding (TB) model. Such a description
accounts only for the linear combination of 7w atomic orbitals of graphene, be-
ing sufficient for the low-energy spectrum of this material. We start from the
next-neighbor TB Hamiltonian:

H=—t Z cle; + Hee., (1.3)

<,5>

where ¢;(c]) is the annihilation (creation) operator and ¢ is the hopping integral
with a typical value t = 2.7¢V. The previous Hamiltonian can be rewritten with
a notation that introduces the bipartite nature of the honeycomb lattice[88]:

=t A (ot P + ) + Hec (1.4)

where operator ¢V (c)T) is the annihilation (creation) operator at sublattice
L), = nay + mads, and ¢ (c1) is the annihilation (creation) operator at sub-
lattice ngn = naj + mas + d. By Fourier transforming in momentum space we
get:

e L (1) (1.5)

zk’ Ln m ~(2)
bE,O’ \/_Z Cnma (16)

1 7 P(1)
(1) — Zk'Ln,m (1)
Cn,m,o - \/ﬁs EE € b];p (1'7)
Cfﬁ%m,o‘ E Zk L§12 (2) (1 8)
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1. INTRODUCTION

where k is the electron quasi-momentum, Ny the number of unit cells in the
graphene sheet, and L the cell position index. Substituting back to we get:

k.o

H= Z H(k) = —te~ikd <1 + iR 4 e_iE'O;") : bgc): b2 + He. (1.9)
- :

The energy dispersion relation can be derived from the previous Hamiltonian
by means of a Bogoliubov transformation:

H(R) = £4/3 -+ 2cos(k - 1) + 2e0s(F - (a — a1)) - BB, (110)

where l;,;g is a linear combination of bgi and bgl. By projecting the previous

expression on the graphene plain we have:

k k3
) + 4003(%% - cos( \2/_a

% ), (1.11)

E(ky, ky) = :I:t\/l + 4cos?(

where k,, k, are wavevector components along the x,y directions (see figure
1.2)). Here valence and conduction bands meet exactly at the charge neutrality
level at the high symmetry K and K’ points of the respective Brillouin zone.
Such a band formation gives rise to a density of states that vanishes linearly at
the Fermi level making graphene a half-filled zero-gap semiconductor.

The peculiarity of the band structure of graphene lies in the linear dispersion
near the Fermi level (see figure [1.2|b)) where electrons behave like Dirac massless
chiral quasiparticles (relativistic fermions), making graphene an ideal platform
for the experimental study of quantum electrodynamics phenomena. Indeed, for
the low energy spectrum the dispersion relation reads:

0 k,—ik,

H(k) = thve e o

= +hvpé - k, (1.12)

where k is the quasiparticle momentum, ¢ are the 2D Pauli matrix and vp
is the Fermi velocity. It should be noted that the use of the Dirac-like Hamil-
tonian is valid only for a small part of the energy spectrum (|E| <~ 1leV) of
2D graphene, while it lacks sense for higher energies or other forms of confined
graphene systems.

The electronic, structural and geometrical properties of graphene form the
cornerstone of its physical peculiarity, giving rise to the manifestation of a series
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Figure 1.2: Graphene bandstructure - (a) Energy dispersion relation of two-
dimensional graphene for the 7 and 7* bands. (b) Detail of the energy dispersion
relation of two-dimensional graphene for the m and 7* bands showing band meeting
at the high symmetry K and K’ points of the first Brillouin zone.

of exceptional phenomenal44]: extreme mechanical strength, room-temperature
half-integer quantum Hall effect, high thermal conductivity, huge charge carrier
densities and mobilities, to name but a few. Under this perspective graphene
becomes an outstanding candidate for integration in nanoelectronics, since it
combines both low-dimensionality and exceptional device requested characteris-
tics.

1.3 Where is the gap?

Out of the plethora of the excellent electronic properties that could make graphene
an ideal candidate for post-Si CMOS technology there is still one missing, i.e. the
intrinsic bandgap that could allow graphene to be used as an active component in
semiconducting devices. Indeed, great amounts of research have been spent dur-
ing the last years for such a non-trivial problem. The proposed solutions generally
fall within five main categories: a) the first solution has to do with the lateral con-
finement of graphene in one dimension, i.e. the mechanical transformation from a
quantum well to a quantum wire. It has been shown from atomistic calculations
beyond the next-neighbor TB model that the so-called graphene nanoribbons
(GNRs) with an armchair type of lateral confinement (where armchair refers to
the edges, see figure should bear a semiconducting gap that depends on
the number of dimer lines N, along the ribbon width. If we moreover consider
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1. INTRODUCTION

electron exchange and correlation features in the electronic model, it turns out
that also GNRs with the zigzag-type of confinement exhibit a secondary meV
bandgap due to the presence of edge magnetism[99]. Within this framework lat-
eral confinement has been proposed as a key factor that could engineer intrinsic
bandgaps in graphene structures. b) The second proposal involves Bernel-stacked
bilayer graphene systems, where it has been observed that the application of a
perpendicular electric field (e.g. using a gate electrode) gives rise to a bandgap of
the order of ~ 200meV [43, [119]. Notwithstanding this positive perspective, such
a bandgap is still too small for the high current on/off ratios required for device
operation[3§]. ¢) A third route towards bandgap engineering has been identified in
the interaction between graphene and a substrate. It has been argued, e.g. in the
case of epitaxial graphene, that such interactions can give rise to bandgap open-
ings for the first graphene layer that forms on the substrate[121]. However the
stronger this interaction the more likely is for the 7 bands to get destroyed, giving
rise to a significant loss of graphene’s exceptional electrical properties. d) It has
been shown theoretically that chemical functionalization with reactive atoms or
molecules can act directly on the electronic structure of graphene-based systems
and give rise to direct band gaps [9, 43]. However also in this case the drawback
consists in the possibility to balance between a controllable dopant concentration
and the maintaining of graphene 7 bands. e) Lately and in conjunction with the
lateral confinement, the generation of mobility gaps has been proposed within
a backscattering mechanism from defects and substitutional impurities during
conduction[f]. Such a mechanism could tune the device characteristics and re-
duce the differentiations in the bandgaps based on the exact confinement (e.g. see
figure without being invasive and therefore without compromising the band-
structure of ideal graphene. While all previously mentioned methodologies have
their pros and cons, a mostly plausible route towards bandgap engineering within
a current view of technological advances, which guarantees device-requested func-
tionality, appears to be the one of lateral confinement, with all enhancements
made possible by surface chemistry and engineering.

1 2 3 4 N

z

Figure 1.3: Graphene edges - Armchair (upper) and zigzag (lower) edges pas-
sivated by single hydrogens for graphene nanoribbon structures. The respective
graphene nanoribbons can be categorized on the basis of the dimer lines N, and
zigzag chains N, along the ribbon width.
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1. INTRODUCTION

1.3.1 Armchair confinement

Armchair graphene nanoribbons (aGNRs) are quasi-1D graphene-based struc-
tures, where the lateral confinement consists of left/right terminated armchair
edges. Prevailing definition enumerates the number of dimer lines N, along the
ribbon width[99] (see figure [1.3). Probing for the electronic properties of ideal
aGNRs can take place analytically within the TB schema of eq. by consider-
ing appropriate boundary conditions towards the width of these structures that
nullify the wavefunction out of the structure’s borders[120]:

2 pm
&= N,+1’

where ¢, is the discretized vector in the y direction and p = 1,2,3,...., N,.
Hamiltonian diagonalization here gives the following dispersion relation:

(1.13)

E(ky, qy) = *t <26% : cos% + e%ﬁa) (1.14)

A key characteristic of the TB bandstructure of aGNRs is its dependence on
the number of dimer lines according to the following rule: Vp € N, aGNRs with
N, = 3p+2 dimer lines are metallic while the rest are semiconducting with energy
gaps A given by the following equations[31]:

Ag, = |t (4003 1 ) (1.15)
A =t(2—-4 mp+1) 1.16
sp+1 = [t] —0033 D) (1.16)
Aspia =0 (1.17)

The previous picture is slightly revised when the electronic Hamiltonian is
written beyond nearest-neighbor interactions and with the inclusion of edge effects
towards the uplifting of metallicity and the formation of secondary bandgaps (of
the order of few meV') for aGNRs with N, = 3p + 2 dimer lines (see figure
for the bandstructure of aGNRs according a description that considers further-
neighbor interactions as well as o orbitals).

1.3.2 Zigzag confinement

Zigzag graphene nanoribbons (zGNRs) (see figure are quasi-1D graphen-
based structures identified by the number of zigzag chains N, along the ribbon
width that always have their two edge carbon atoms belonging to the different
sublatices A and B (see eq. [L.4). This characteristic makes the imposition of
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Figure 1.4: Bandstructure of armchair graphene nanoribbons - Energy
dispersion relation of aGNRs within the Extended Hiickel Theory for six different
dimer line widths (N, = 21 — 26). L is the lattice periodicity.

boundary conditions that nullify the wavefunction at the borders separate ac-
cording to a reciprocal scheme where the wavefunction of sublatice A vanishes
at the opposite B-type edge and vice-versa[31]. An analytical expression for the
dispersion relation in zGNRs is not straightforward, however the numerical diag-
onalization of the Fourier-transformed N; x N, blocks of the nearest-neighbor TB
Hamiltonian yields a bandstructure that presents some key characteristics: the
Dirac points of two-dimensional graphene are projected at the k = :I:%7r points of
the first 1D Brillouin zone, and b) from k = j:%7T to k = £, i.e. until the borders
of the Brillouin zone there exist two partially flat degenerate bands with zero en-
ergy. The revisions in the previous picture inferred by higher order Hamiltonians
show that the two degenerate subbands near the borders of the Brillouin zone
slightly bend towards negative energies and do not maintain a zero value (see
figure . A further inclusion of exchange interactions shows that the I' point
wavefunction above and below the charge neutrality level projects highly local-
ized states at the edges of the zGNR with a ferromagnetic/anti-ferromagnetic
order that open a small mel bandgap in between the two quasi degenerate
subbands[99]. This last characteristic has driven a wide discussion on the possi-
bility of spin-related phenomena based on the zigzag edges of GNRs (i.e. zGNRs
as spintronic systems). However it should be noted that some of the conditions
of suppression for edge magnetism are the presence of edge disorder[57], polihy-
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1. INTRODUCTION

drogenation of edge atoms[I13] and finite temperatures, which are all commonly
met in real GNR samples.

Figure 1.5: Bandstructure of zigzag graphene nanoribbons - Energy dis-
persion relation of a 22-zGNR (N, = 22) within the Extended Hiickel Theory. L
is the lattice periodicity.

1.4 Nonideal low-dimensional graphene systems

As an one-atom-thick surface graphene is subject to the interaction with the sur-
rounding environment. This interaction is bound to induce microscopic disorder
in the electronic properties of this material. Already from the growth stage and
notwithstanding the possibility to obtain high crystalline quality for micrometer
scales, all popular growth techniques give rise to local or extended deviations from
the ideal atomic structure: a) Micromechanical cleavage of graphite, also known
as mechanical expholiation or simply the “scotch-tape” technique, is uncontrol-
lable, prohibiting for upscaling and produces samples that suffer point and Stone-
Walles defects, as verified by low-energy transmission electron microscopy[76]. b)
Epitaxial growths (both on SiC[32] and metallic substrates[106]) give origin to im-
portant interactions with the substrate that non-trivially compromise electronic
and transport characteristics. ¢) Finally, chemical expholiation leaves permanent
chemical compounds that can become highly reactive with defects and lattice dis-
locations. A further source of structural disarrangement can be identified within
patterning manipulations: up to date there exists no nanolithographic technique
that imposes lateral confinement without inducing a great amount of edge disor-
der. Finally the step of device integration of graphene-based structures in nano-
electronics enhances perturbations withing a framework of interaction with both
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1. INTRODUCTION

dielectrics and contacts, giving rise to important alterations in the conductance
characteristics of this material[73].

Under this perspective the use of phenomenological approaches (e.g. the An-
derson model[24]) for the inclusion of disorder in electronic transport properties
of graphene-based systems[66] serve as a first approximation in the macroscale,
but lack authoritativeness for the effects of local atomic reconstruction at the
disordered area. The presence of defects and/or impurities, the interface with a
particular substrate, the interaction with a metallic contact, the charge transfer
induced by a local perturbation and in general all the structural/electronic devi-
ations from bulkiness need more sophisticated approximations that consider both
chemistry and electrostatics. It is therefore clear that a thorough understanding
of different types of deviations from the ideal atomic/electronic structure, as well
as their role in the shaping of the transport properties of graphene-based systems
is of a fundamental importance.

1.5 Aims of this project

The goal of this PhD study is to investigate at an atomistic level the role of non-
ideality on the electronic transport properties of systems based on graphene, with
a specific focus on confined structures that could serve for a plausible device oper-
ation. An atomic reconstruction is necessary here for the encapsulation of local-
ized or extended modifications of the structural and electronic symmetry that go
beyond phenomenological approaches. Three different types of atomic/structural
and electronic perturbations will be considered: a) perturbations induced by
defects in the atomic lattice, b) perturbations induced by the interaction with
the substrate, and c) perturbations induced by the coupling with the metallic
contacts. For this study numerical codes will be implemented based on state-of-
the-art Schroédinger/Poisson methodologies for the calculation of the electronic
transport. Computational research will focus on: a) the reference formalism, b)
the model Hamiltonians (both ab initio and semiempirical), and ¢) the numerical
optimization and eventual parallelization techniques. A multiscale bottom-up ap-
proach will be defined for the evaluation and parameterization of semiempirical
Hamiltonians by more accurate ab wnitio ones in order to enhance scaling and
use extended spatial resolution without compromising on the chemical aspects
of the atomic reconstruction for the disordered areas. Such an atomic resolution
will allow considering the relation between the intrinsic geometry of the carbon-
based structure (e.g. type and dimensions of the graphene nanoribbon) and the
corresponding geometry alterations of the system’s symmetry. Moreover electro-
static effects will be considered, e.g. the mechanism that regulates charge transfer
between the metal-graphene junctions and their role in the conduction mecha-
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1. INTRODUCTION

nism. To conclude, this study aims at studying various faults or perturbations in
graphene-based systems in relation with device operation and upscaling.

1.6 Thesis outline

The second chapter of this thesis introduces a general quantum transport formal-
ism that is able to encapsulate atomistic features that respect chemical bonding
between different species as well as dynamic charge-transfer phenomend] The
basics of the non equilibrium Green’s function formalism are derived analyti-
cally and its correlation with the Landauer-Buttiker approach for the calculation
of conductance is presented. Different methods for the description of electronic
Hamiltonians are analyzed with an accuracy/efficiency mismatch. Finally the
insertion of electrostatics in the overall formalism and convergence/optimization
numerical techniques are discussed.

The first part of the third chapter presents a multiscale approach for the
calculation of the electronic structure and quantum transport using hexagonal
graphene quantum dots as a case study. Both first-principles and semiemprirical
Hamiltonians are considered. Using the ab initio calculations as a reference, the
theoretical framework under which semiempirical methods adequately describe
the electronic structure of the studied systems is recognized, thereon proceeding
to the calculation of quantum transport. Attention is paid to the modeling of
defect localization. The second part of the chapter treats electron backscattering
phenomena during conduction for graphene nanoribbons with vacancy scatterers
and dimensions within the capabilities of modern lithographic techniques. The
analysis builds upon ab initio parameterized semiempirical models that break
electron-hole symmetry and non equilibrium Greens function methods for the
calculation of the conductance distribution. The detailed backscattering mecha-
nism is extensively treated and considerations for a finite concentration of defects
in micrometer scales are presented. Local charging aspects of defects are also
discussed.

The first part of the forth chapter calculates quantum transport for metal
and graphene nanoribbon heterojunctions within the atomistic self-consistent
Schrodinger /Poisson scheme.  Attention is paid on both the chemical aspects
of the interface bonding as well the one-dimensional electrostatics along the rib-
bon length. Band bending and doping effects are discussed, that give rise to
conductance asymmetries and a selective suppression of the typical 1D subband
formation. Junction electrostatic effects are presented in the case of high work
function Au, Pd and Pt electrodes, as well as for the low work function Al one. In

IParticularities of the theoretical formalism for the examination of specific problems treated
in each chapter will be locally appended.
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1. INTRODUCTION

the second part of the chapter high-bias nonequilibrium aspects of conductance
are discussed. In particular, the relationship between the device’s local density
of states and the electrochemical potentials of the contacts is examined within a
perspective that has no equivalent in the semiclassical limit.

The fifth chapter treats electronic structure and quantum transport calcula-
tions for epitaxial graphene grown on SiC substrates. In the first part calculations
for few-layer epitaxial graphene nanoribbons on the Si-face of SiC are presented.
An atomistic description of both the graphene layers and the substrate is followed,
while real/momentum space projections evidence the role of the heterostructures
interface. Repercussions for the conducting capacity of the studied systems are
discussed. Interface issues arising from this interaction (e.g. Fermi level pinning
effects) are presented. Finally lateral scaling phenomena are analyzed showing
the reduced role of confinement in these systems. In the second part of the
chapter attention focuses on the structural and electronic properties of C-face
grown epitaxial graphene. Based on ab initio calculations this part probes for
the conducting and the magnetic properties of the graphene/substrate interface
and discusses some fundamental differences with respect to the Si-grown case.

In the sixth chapter conclusions are presented along with a discussion of the
overall results and a general outlook.
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Chapter 2

Quantum transport formalism

2.1 Introduction

As the ongoing miniaturization trend of novel electronic devices reaches the
nanoscale, the semiclassical model of diffusive transport is inadequate in ex-
plaining low-dimensional ballistic conductance aspects, whereas a fully atomistic
and quantum description of the processes that govern conduction is indispens-
able. Indeed, device active component lengths are reaching the 107! m order
and new conceptual issues arise in the theoretical description of transport like
coherence/incoherence, quantum interference, confinement and tunneling. Such
arguments were totally absent from the electronic engineering vocabulary until
the late 80’s. In this continuously evolving framework the need to efficiently ad-
dress transport modeling becomes eminent both in terms of scientific progress as
well as industrial challenge.

This chapter will present a review of the state-of-the-art quantum transport
formalism for problems that diffusive and semiclassical models fail to address.
This model is a combination of the Non-Equilibrium Green’s Function (NEGF)
methodology with the Landauer derivation of transmission and current. The
power of such purely quantistic theory lies in its capacity to describe systems not
only in the diffusive regime, but also systems where transport is ballistic and phase
coherent. This conduction context is the one already prevalent for a number of
active channel candidate materials like graphene (up to a submicrometer scale),
carbon nanotubes, polyynes and other organic/inorganic molecules. It is therefore
crucial for computer aided design techniques to integrate and enhance such theory
for the appropriate study of electronic conduction in present and future nanoscale
systems.

13
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2. QUANTUM TRANSPORT FORMALISM

2.2 Green’s function

A Green’s function represents a response in one point of a conductor within a
multi-terminal geometry from an exitation that takes places in a different point
of the same conductor. Conceptually it is related to a scattering matrix (S-
matrix), albeit its applicability is more general and powerfu]E]. In our case, if the
representation for the time-independent Schroedinger equation is

HHM = €alta), (2.1)

H being the Hamiltonian operator and €, the energy eigenstate corresponding to
wavefunction 1, we can define the Green’s function G as:

A ~ —

(e — H)G(F, 7)) = 6(F — 1), (2.2)

where 0 represents the Dirac delta function and I is the unitary operator. The
usefulness of the Green’s function can be better understood if we consider a
constant perturbation |u) that by acting on Schréedinger’s equation gives rise to
a perturbed wavefunction n:

Hn) = en) + |u) (2.3)

We can rewrite the previous equation with the idea of introducing Green’s
function:

(el — H)|n) = —|u) 2.4)
n) = —Glu) (2.5)

In this sense the Green’s function is the response of a quantum mechanical
system to a constant perturbation[86]. The main advantage of the calculation of
Green’s function with respect to the typical eigenvalue problem is its applicabil-
ity to open systems used for the calculation of quantum transport (e.g. in a two
terminal geometry, where a device part is embedded between two semi-infinite
leads on the left and the right side). On the basis of this function a complete
theory can be built, from which all necessary quantities for the calculation of
transport can be obtained. The derivation of such formalism can take place in
different ways, from the one-electron Schroedinger equation to a second quantiza-
tion formalism[24]. Here, for simplicity’s sake, we will choose the first approach
and derive some inportant aspects of the NEGF formalism starting from a neat
tight-binding picture.

1See ref. [24] for a detailed description of the S-matrix concept
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2. QUANTUM TRANSPORT FORMALISM

2.3 Matrix Green’s function for open systems

We consider an infinite one-dimensional discrete lattice where atoms with mass
m are on lattice positions and are distant from neighboring atoms by a. In this
sense each atom can be found at position x = na, where n is an integer. If we
moreover consider that each atom interacts only with first neighbors and that it
can be described by a single orbital centered at each atom, we can obtain the
tight-binding Hamiltonian for this infinite system:

-t ¢ —t 0 0 0 0 O
0O -t ¢ =t 0 0 0 O
0O 0 -t € —t 0 0 O
H= 0o 0 0 -t €€ —t 0 0 (2:6)
0o 0 0 0 -t € -t 0
0o 0 0 0 0 —t e -t

Here the ¢ and t Hamiltonian values can derive by writing the system’s one-
electron Schroedinger equation with a simple finite difference methodﬂ The dis-
cretization of the Hamiltonian matrix allows for a similar transformation also for

the differential Green matrix of eq. (2.2)):
(EI — H)G(E) = I (2.7)

where F is the energy and [ is the unitary matrixﬂ It would be therefore straight-
forward to introduce in and make the inversion in order to calculate
Green’s function, had the H matrix not been infinite.

If we now consider the generalized transport problem of a two-terminal geom-
etry, where a finite device part is embedded between semi-infinite left and right
contacts, we can write the Hamiltonian of the entire system as[86]:

H L TL 0
— T
H=| . H, 7 (2.8)
0 TR H R
1t = 5 and € = 2t + U,,, for derivation details please see reference [20]

2Equazgon gives in fact two equivalent solutions, which are called the advanced (G4) and
the retarded (G') Green’s functions and physically represent an incoming and an outgoing wave
that are formed due to the same excitation. Mathematically we can obtain only one solution
by imposing correctly the boundary conditions, which in our case is translated in adding or

subtracting an infinitesimal imaginary part to the energy. It is also straightforward to show
that (G®)F = G4,
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2. QUANTUM TRANSPORT FORMALISM

Here, Hj is the device Hamiltonian and Hj p are Hamiltonians relative to the
contact regions. In this way, although contact subspaces are semi-infinite, the
device subspace has a finite character. Similarly, we can separate the Green’s
function that corresponds to the device (Gy) and the contacts (G r), and by
substituting to equation we have:

EI—HL —TL 0 GL GLO GLR I 00
—TI EI — Hy _7'1]; Gor Go Gogr = 0O I 0
0 —TR EI—HR GRL GRO GR 0 0 I

(2.9)
Considering matrix multiplications with the second column of the Green matrix,
we obtain the following equations:

(EI — HL>GLO — TLGO =0 (210)
_TEGLO + (E] — Ho)GO - T;GRO =1 (211)
(E[ — HR)GRO - TRGO =0 (212)

In this set of equations (2.10) and (2.12)) give matrices with (oo, N) dimensions,
whereas (2.10)) has (/V, N) dimensions, where N is the number of device atoms.
If we solve for Gy and Grg we have:

Gro= (Bl — Hy)"'1.Go = grm.Go (2.13)
Gro = (EI — Hg) ™ '7rGo = gr7rGo, (2.14)

where gy, r are the Green functions of the left and right contact respectively. The
next step should be to transform these two (0o, N) matrices into (N, N) ones
and substitute them back to eq. in order to obtain a finite device Green’s
function expression. Such a procedure usually takes advantage of the semi-infinite
lattice symmetry of the two leads in order to make a k-space transformation of
real-space matrices gz z(7) into gz r(k). It is afterwards easy to calculate the new
matrices either analytically in the 1-D case[24] or iteratively in the 3-D case[117]
and backspace substitute them in a real coordinate representation. The gain of
such computationally overwhelming approach is that at the end of the story we
can calculate (N, N) Gy and G o matrices, and by substituting them into eq.
(2.11) we get:

_ngLTLGO + (EI — Hy)Go — T}ggRTRGO =17 (2.15)
If we now define the self-energies of the two contacts as

X = T[J[/gLTL (216)
Yp= T}T{gRTRa (2-17)
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2. QUANTUM TRANSPORT FORMALISM

we can obtain the final version of the Green’s function matrix G of the device
(from now on we will call G the device’s Green function) that takes also account
for the interaction with the two contacts via the two self-energy terms:

G=(El-Hy—%, —Xp)" (2.18)

Conceptually one can think of ¥, r as matrices that by being added to the bare
device’s Hamiltonian result in an effective Hamiltonian that accounts also for the
exact effect of the leads. This concept is very powerful and can be extended to
other types of interaction that take place in the device channel during conduction,
e.g. electron-phonon or electron-electron interactions, although such extension
results only in approximate descriptions, contrary to the ones obtained for the
contacts. At this point, we have fixed a standard procedure for the calculation
of Green’s function of a two-terminal system, which could be easily expanded for
multi-terminal geometries. From here on we can focus on the quantities relevant
to transport that can be withdrawn from this function.

2.4 Device and contact spectral functions

Eq. allows for a plausible computation of a two-terminal system due to its
finite matrix character, even if conceptually the effect of the contacts is that of
semi-infinite leads. Here we will define and discuss two quantities that are called
the spectral functions A and I' of the device and the contact respectively. The
two relations are defined by the anti-Hermitian part of Green’s function and the
Self-energy’s function respectively:

A=1(G -G (2.19)
I =X -0 (2.20)

Conventionally only A is usually referred to as the spectral function and is related
to the density of states of the system, while the I matrix is also called broadening
matrix and physically represents the strength with which the contacts are bonded
to the device.

For the derivation of the relationship between the spectral function and the
density of states we need to expand Green’s function in its eigenbasis. We start
off by considering that the eigenfunctions of eq. form an orthonormal set
(being the eigenvectors of the Hamiltonian operator):

(Ysl¥a) = 0p.a (2.21)

where dg, is the Kronecker delta. This allows us to expand Green’s function on
the basis of the eigenvectors. From eq. (2.7) and considering the retarded Green’s

17

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



2. QUANTUM TRANSPORT FORMALISM

function by adding an infinitesimal imaginary part to the energy we obtain:

|Ya) (Yal
Z Bt (2.22)

_Ea

where 7 is a very small positive number and ¢, is the eigenvalue corresponding

to eigenfunction 1, (7) From egs. (2.19)) and (2.22)) we have:
1 1

A=1) W) Wel (g = ~ =) (223)
_ 21
= LWl gy (2.24)

Since n — 07, by integrating over E with a test function we obtain[86]:

= 27r25 — ) [ta) (Y] (2.25)

We know that the expression for the Density of States of the system is[26]:
D= Z(s — eo)|ta]? (2.26)

From the last two equations we obtain:
21D = Trace(A) (2.27)

Similarly, the broadening matrix can be related with the electronic structure
of the system in two qualitative aspects. As its name suggests, it provokes a
broadening of the energy levels in the channel proportionally to the strength of the
coupling between the device and the contacts. Furthermore, it introduces a finite
lifetime for the electronic states (even if we have started deriving the formalism
from the time-indipendent Schrdedinger equation), suggesting that an electron
introduced into a state at some point escapes to the contact. References [24]
20] propose a detailed mathematical and conceptual derivation of these physical
aspects starting from simple toy models all the way up to second quantization
arguments. Finally, a useful identity between A and I" that can be found easily[24]
is:

A=GIG" =G'TG (2.28)
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2. QUANTUM TRANSPORT FORMALISM

2.5 Electron density matrix

Next we will follow the derivation of the density matrix, whose diagonal elements
give the electron density of the device. Let us start from a basic conceptual point.
When contact reservoirs with different electrochemical potentials are attached to
the device, each one of them tries to 'bring’ the device to its own electrochemical
potential by injecting or subtracting electrons. If we consider the system in
equilibrium (i.e. the device part connected to just one contact) and take into
account that the Hamiltonian is a hermitian matrix, the charge density matrix p
is given by the relation[26]:

p= folH — ul), (2.29)

where 1 is the electrochemical potential of the contact, H the Hamiltonian matrix,
I the unitary matrix and

1

Jo(E—p) = (2.30)

E—p
1+ ekBT
is the statistical Fermi-Dirac distribution of electrons in the contact at energy E.
Using now the fundumental property of the delta function:

/ F(@)8(x — a)dz = f(a), (2.31)
we can obtain from eq. :

p= / dE fo(E — pn)d(EI — H) (2.32)
From a standard property of the delta function we have[25]:
2¢ 7 i
21 (x) = li = — 2.
mo(z) e—1>I(I)1+<x2+62) x+10t x—0F (2:33)
In our case:
S(EI — H) = 21([(E 0N — H™' — [(E —0%)] — H]™) (2.34)
T
From eqs. (2.32)) and ([2.34) we get:
1 (e e]
p=5-| dEf(E— k(G -G (2.35)
1 [e.e]
= — dE fo(E — pn)A 2.
e | dBfE=p) (23
1 [e.e]
=5 / dE fo(E — p)GTGT (2.37)
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2. QUANTUM TRANSPORT FORMALISM

If we generalize now the previous equation for the case of two (and futhermore
easily expand for ) contacts we get the final form for the equation of the density
matrix deriving directly by the NEGF formalism:

1 oo
p = %/ (fLGT LG + frGTRGY)dE (2.38)

2.6 Transmission formalism

The term transmission formalism refers to the theory developed by Landauer[60]
and afterwards expanded by Biittiker for the calculation of current in nanodevices
on the basis of the summation of the transmission probability of each transverse
mode of the device channel[24]. This can be better visualized from the well-known
Landauer formula for the conductance:
2

G = %M T (2.39)
Here G is the conductance, M the number of transverse (or propagating) modes
of the device and T the average probability that an electron injected from the one
contact will transmit to the other. By defining T'(F) = MT as the total trans-
mission probability of the channel for energy E it is straightforward to show[26]
that in the case of coherent transport the total current can derive by the relation:

2 ee

h

Here the contact Fermi functions represent the driving force for the propagation
of current[27] in the sense that only carriers with energies in-between the elec-
trochemical potentials of the two contacts participate in the conduction process.
This implies that the usual idea that considers the electric field acting on all elec-
trons as the primary reason for transport is simply inacurate. Having established
this, the point is to show how we can relate the transmission and the NEGF
formalisms.

Under non-equilibrium, we can think of the current that passes from a contact
to the device as the difference of an influx and an outflux current[25]. We can
write the outflux from the device to the left contact as:

I T(E)[fL — frldE (2.40)

—0o0

Lo, = % / Trace(T1p)dE, (2.41)
and the outflux from the device to the right contact as:
Towty, = % / Trace(Trp)dE, (2.42)
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2. QUANTUM TRANSPORT FORMALISM

where % represent the rate at which electrons escape from the device to the

left (right) contact (considering that I' matrices have the dimensions of energy)
and p is the density matrix given by eq. . Now we can think of the influx
current from the contacts to the device as equal to the outflux current we would
have if the device was in equilibrium with each one of the contacts:

Lin, = %/Z Trace(I'peq)dE (2.43)
Tiny = % / Z Trace(T ppeg)dE (2.44)
where
Peq = % / Z( fL[GT LG + GTrGT))dE (2.45)
= % / Z( frlGT LG + GTrGY))dE, (2.46)
since in equilibrium conditions p;, = pr. The net current for contact L is:
[ =1, — L, = % / Z Trace(TLGT RGN (f1 — fr)dE (2.47)
With a similar procedure for the second contact we can derive that:
[ =1, — Lo, = % /_ Z Trace(TRGT LG (f1 — fr)dE (2.48)

If we multiply equations (2.47) and (2.48) with 2 in order to account for
the spin factor and compare them with (2.40), we can write the transmission
probability in terms of Green’s formalism quantities:

T(E) = Trace(T ,GT zgG) (2.49)
= Trace(TgrGT ,GT) (2.50)
= Trace(I' L AR) (2.51)
= Trace(I'rAyL) (2.52)

The coupling between Green’s and Landauer’s formalism in the coherent limit is
also known as the NEGF-Landauer approach.

2.7 Electronic Hamiltonians

A key issue that precedes quantum transport is the correct treatment of the elec-
tronic structure of the system in study by writing a proper electronic Hamiltonian.
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2. QUANTUM TRANSPORT FORMALISM

This aspect is fundamental since a proper input in the transport formalism is a
prerequisite for correct conduction outcomes. Usually there are two common ap-
proaches to this problem with an accuracy/efficiency mismatch between them, i.e.
ab initio and semiempirical approaches. Ab initio (or first principles) methods
use only fundamental physical constants and calculate self-consistently the wave-
function of the studied system on the basis of a variational principle of energy
minimization. A particular category of ab initio methods is the Density Func-
tional Theory (DFT), where the fundamental quantity is the electron probability
density p and not the electronic wavefunction. Semiemprirical methods on the
other hand use simpler Hamiltonians that are parameterized on the basis of ex-
perimental data or first-principles calculations. In this case no self-consistent loop
is necessary for the calculations, enhancing computational efficiency. However,
the static character of such Hamiltonians imposes limitations in their capability
to describe systems outside the scope of the initial parameterization. In this sense
evaluation or calibration of semiempirical models is necessary prior to their use in
electronic structure and quantum transport calculations of a particular system.
Here we will see the basic concepts of two methods widely used throughout the
this work, i.e. the first principles DF'T method and the semiempirical Extended
Hiickel Theory (EHT).

2.7.1 Density Functional Theory

DFT is founded on the Hohenberg-Kohn theorems and the Kohn-Sham (KS)
formulation that allows for its practical use for the calculation of the electronic
structure. The first Hohenberg-Kohn theorem states that the ground state elec-
tronic energy FEj is a unique functional of the ground-state electron probability
density po, i.e. Ey = Eg[po] (see ref. [71] for the proof). Therefore DFT attempts
to calculate ground-state properties from py. We start by the average energy for
the ground state of a system with n electrons:

E=T+Vye+ Ve, (2.53)

where T is the kinetic energy, Vy. are the electron-nuclear attractions and
V.. are electron-electron interactions. All three terms of the previous equation
are determined by the ground-state wavefunction, which in turn, according to the
first theorem is a functional of pg. Therefore:

Ey = Eu[po] = Tlpo] + V nelpo] + Veelpo]. (2.54)

Considering adiabatically fixed locations for the nuclei (i.e. the BornOppen-
heimer approximation) we have:
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2. QUANTUM TRANSPORT FORMALISM

Ve = (ol D i) = / pol(Fu(F)dF, (2.55)

where u(77;) is the external nuclear attraction potential energy for an electron
located at 7;:

u(ip) = -y ==, (2.56)

and « denotes the atomic sites. The complete formulation of equation [2.54
reads[71]:

By = Eulpo) = [ so®ulr)dr+ Tlon] + Vealon) = [ po(iu(r)a + Fll,
(2.57)

where F[pg] = T[po] + Veelpo] is an unknown functional of the sum of the
kinetic-energy terms and electron-electron repulsions.

The second Hohenberg-Kohn theorem (also known as the Hohenberg-Kohn
variational theorem) states that the exact ground-state electron density minimizes
the energy functional Ey = E,[po] (see ref. [T1] for the proof). In principle, if we
know py it is possible to calculate all the ground-state properties from it without
having to calculate the wavefunction. However, the Hohenberg-Kohn theorems
do not tell us how to calculate Ey from pyg, since F[py] is unknown. The solution
to this problem comes with the Kohn-Sham method that translates a problem
of n interacting electrons in a noninteracting one by the definition of a fictitious
reference system that experiences an external potential u,(r;) that makes the
ground-state probability density ps(7) equal to the exact ground-state density
po(7) of the interacting system. Since the electrons do not interact in the reference
system, single-electron orbitals should derive from:

(37 + ) 469 = ), (259)

where the electron density p; is:

ps(7) = Z PG (2.59)
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2. QUANTUM TRANSPORT FORMALISM

In order to calculate the rest of the unknown quantities of eq. Kohn and
Sham defined

ATp] = Tlp] = Ts[p] (2.60)

as the difference in the ground-state average electronic kinetic energy between
the interacting and the noninteracting systems. The T's[p] term can then be
calculated by the KS orbitals as:

T, = Z/gb (7) (——W) i (7F)dF. (2.61)

They moreover defined:

2 — -
AVeelp] = Veelp] — % / / %’;(mdﬁdﬁ, (2.62)

where 715 is the vector showing two different points in space and the second
term represents the Coulomb energy of the noninteracting system.
Substituting back to equation [2.57] we get:

o= Bl = [ o+ [ (<o) e @
/ / rz drydry + AT[p] + AV cep) (2.64)

With the definition of the exchange-correlation energy functional E,.[p] as:

Erelp] = ATp] + AVl (2.65)

we have just one unknown functional in equation [2.63] From [2.65 we can
define the exchange-correlation potential as:

(2.66)

and the effective potential us(7) as:
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2. QUANTUM TRANSPORT FORMALISM

us(r) = u(r) + ¢ / p;TZ)dFQ + Uge(7) (2.67)
12

During the last decades there have been numerous attempts to approximate
the previous potential, with the majority entering into two general categories
of the Local Density Approximation (LDA) and the General Gradient Approxi-
mation (GGA). It should be noted that once the exchange-correlation potential
has been calculated and the electron density is found within a variational ap-
proach, this is no longer the exact ground-state density of the system, but a
good approximation of it, since the exchange-correlation potential is by itself an
approximation. Moreover KS wavefunctions and eigenstates have an auxiliary
character and do not represent their real counterparts. However it should be
noted that they usually approach the real eigenfunctions/eigenstates. Finally,
a brief remark for the high usability of the DFT theory in state-of-the-art elec-
tronic structure calculations should be made, which outdates most other quantum
chemical theories.

2.7.2 Extended Hiickel Theory

The EHT method is one of the most important one-electron molecular orbital
semiempirical theories for the calculation of the electronic structure. It is based
on the approximation of treating valence electrons separately from the rest and
uses Slater-type atomic orbitals as basis functions for the construction of the
Hamiltonain type:

Fo (01, 02) = N~ le Ym0, 6,), (2.68)

where n,m,l are the principle, azimuthal and magnetic quantum numbers
and Y, are the spherical harmonics. The molecular orbitals are then formed as
a linear combination of the atomic orbitals f:

7

where coefficients ¢; and exponents (; are fitted for the individual basis func-
tions to match bandstructure data[64]. Diagonal Hamiltonian elements are usu-
ally calibrated by experimental or first-principles obtained values of the difference
between ionization potential and electron affinity:
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2. QUANTUM TRANSPORT FORMALISM

Hy = Evm. (2.70)

For the off diagonal elements the following expression is used:

1

where K is the Wolfsberg-Helmholtz constant (usually having values within
1 and 3) and S,,, is the overap matrix between orbitals ¢,, and ¢,:

Sian = /gb;(F)an(F)d‘?’F. (2.72)

The power of the EHT lies its good capacity to describe qualitative character-
istics of more accurate Hamiltonians with a real-orbital localized basis set that
enhances transferability and an overall reduced computational cost.

2.8 Nonequilibrium electrostatics

A key characteristic of conduction is that devices are at a nonequilibrium con-
ditions due to the separation of the electrochemical potentials of the contacts
by the application of bias. Nonequilibrium charging effects are therefore crucial
for the correct description of the transport process. The insertion of charging
effects in the NEGF formalism simply takes places by the addition of a self-
consistent potential U,. that is a functional of the electron density to the bare
device Hamiltonian[26]:

H = Hy+ quca (273)

where Hj is the device Hamiltonian without the presence of electron-electron
interactions and q is the electronic charge. The calculation of U,. takes places by
numerically solving the Poisson equation:

V2U,. = —p;/e, (2.74)

where py are mobile charges that can be easily calculated within the NEGF[40]
and e is the dielectric constant of the material in which the device part is em-
bedded. Computationally, the calculation of eq. takes place within finite
difference/elements methodologies in real or momentum space grids using appro-
priate boundary conditions (usually Neumman and Dirichlet ones) that account
for the different contact configurations (e.g. source, drain or gate contacts).
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2. QUANTUM TRANSPORT FORMALISM

2.9 Numerical optimizations

The underlying structure of a computational code is largely based on iterative ma-
trix algebra operations (e.g. matrix diagonalizations and inversions) that scale
as ~ N3, where N are matrix dimensions. It becomes evident that compu-
tational overloading can easily result for systems of moderate dimensions (e.g.
if we consider a graphene nanoribbon with 1000 atoms and describe the elec-
tronic structure within the EHT using a 2s2p®3d® basis we obtain matrices with
[9000,9000] dimensions). To override related difficulties common computational
techniques usually fall within two general categories, i.e. optimization algorithms
and parallelism.

Most optimization algorithms take advantage of the sparsity in the matrices
used within the transport formalism (e.g. Hamiltonian and Green matrices) in
order to achieve a reduction in the required operations that goes to a linear scal-
ing of matrix operation with the system size, known as O(N) techniques[89, [90].
The underlying algorithms create submatrices with tridiagonal blocks and use
the particular properties of the respective matrices to fasten operations. Fur-
ther optimization can be obtained for particular problems like the calculation
of the surface Green matrix[95] that involves costly iterative operations, while
energy integrals can be enhanced by division between real and complex contour
integration[I1]. Finally, use of optimized computational linear algebra libraries
(e.g. LAPACK and BLAS) sensibly reduces the processing time.

Parallelism can be achieved at different levels within a quantum transport
code. The first level introduces parallelism for the costly matrix operations like
diagonalizations and inversions, since the latter occupy the major part of the
runtime. A second order scaling can be achieved by the introduction of paral-
lelism for energy integrals, i.e. with the assignment of different energy areas to
different processors and linear recombination of the results in the end of each
iterative loop. The main drawback of parallelism lies in the need to operate in
parallel multicore shared or distributed memory architectures, while the different
parallelism protocols (e.g. MPI and OpenMP) give rise to architecture specific
codes that lack transferability.

2.10 Discussion

The real power of the NEGF formalism is that it can also describe inelastic and
incoherent transport. This means that e.g. a description of electron-phonon
scattering interactions is plausible in a neat way by introducing an extra self-
energy term in the calculation of the Green’s function[I]. Also it can be detached
from the Landauer formula and calculate the current for systems where phase-
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2. QUANTUM TRANSPORT FORMALISM

breaking mechanisms are present. The quantities deriving from the NEGF theory
are not limited to the ones seen in the previous paragraphs[24, 26, 27]. This
chapter has been intensionally kept at an introductory level, and this has also
imported conceptual approximations in the derivations of the NEGF formula.
For a thorough and exact insight on the formalism one has to harness the power
of second quantization mathematics[26].

Criticism to the NEGF-Landauer formalism derives from the intrinsic single-
electron picture of the transmission probability that does not take into account
many-body effects that are enhanced in the case of the nanoscale due to the vis-
cous nature of the electron liquid[I10]. This problem is non solved by simply con-
sidering a Hamiltonian that incorporates many-body effects (e.g. a DFT Hamil-
tonian) since the Landauer-Buttiker approach derives the overall conductance by
single-particle contributions. However, post NEGF-Landauer formalisms based
on the time-dependent DFT which do incorporate many-body interactions at all
possible levels[110] give rise to results that rather appear as corrections to the
NEGF-Landauer picture rather than a complete reformulation of the transport
theory.

In summary, the NEGF formalism can be considered a complete and mature
quantum mechanical theory for the calculation of transport in nanodevices that
can incorporate a number of scattering mechanisms (contacts, electron-electron,
electron-phonon) efficiently. Derivation of all relative to transport quantities can
take place with the appropriate writing of the Green matrix for the studied sys-
tem, that involves the electronic Hamiltonian written at an appropriate basis set
along with information on electron-electron interactions (self-cosistent potential
Use), scattering by the contacts (self-energy matrices ¥, i) and other scattering
mechanisms (self-energy matrices X.,;). From the Green matrix derivation of
the density of states, trasmsission probability, charge carrier density and current
becomes straightforward.
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Chapter 3

Vacancies in confined graphene
structures

3.1 Introduction

Graphene is a stable, two-dimensional, sp>-bonded carbon allotrope system with
exceptional electrical, mechanical and optical properties[80), 115]. Particularity
stems from the almost linear dispersion relation in momentum space close to
the Fermi level, where valence and conduction bands meet exactly at the charge
neutrality point. Provided that a viable method of controllable band-gap engi-
neering can be obtained, graphene can also constitute a valid alternative for post-
Si CMOS technology. Graphene’s peculiar conduction properties can be highly
compromised by the presence of disorder in terms of local scattering centers (e.g.
defects[19]) or substrate-induced interference[30}, [32]. On the other hand, disor-
der by means of chemical functionalization has been proposed to enhance device
functionality by controlling the opening of exploitable gaps. Dopants can either
act directly on the electronic structure[9, 43|, or induce backscattering effects
within the transport process[5]. As a consequence, the study of conduction in
disordered graphene systems acquires a double significance: on the one hand it
becomes crucial for performance-related characteristics, while on the other it can
be used to address band-gap tailoring issues.

Vacancies can make part of crystalline graphene as production faults of the me-
chanical or the epitaxial growth process. Their presence has been experimentally
verified by transmission electron microscopy[76], whereas structural, electronic
and magnetic properties have been theoretically investigated at a full quantum
scale[I3], 55, [85), 88, 116]. Modeling within the nearest-neighbor tight-binding
formalism is straightforward: a local point potential U — oo is introduced on the
vacancy site that forbids hoppings to and from neighboring sites[88]. As a result
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

a semi-localized state appears at the Fermi level of the system with a C3 point
symmetry and a local spin[85], [88]. The positioning of this zero-energy mode is
highly related to the electron-hole symmetrical description of the bandstructure
under this approach. By considering a next-to-near neighbor in the same type
of model, valence and conduction band mirror-symmetry breaks, and the defect
state looses its high-symmetry allocation. Accurate ab initio calculations show
that the resonance of this mode is located at energies that do not coincide with
the charge neutrality point[13]. Pereira et al.[88] have argued that the breaking
of electron-hole symmetry in the presence of a point defect can induce further al-
terations in the electronic structure by means of other semi-localized eigenstates,
implying that the perturbation induced by the point defect is not constrained to
a single energy but it expands within the energy spectrum. Unlikely, a clear allo-
cation of the role of such perturbation with respect to the conduction properties
of graphene-based systems still lacks.

This chapter will focus on the problem of defect localization in zero and one-
dimensional graphene structures. The aim here is twofold: investigate the elec-
tronic structure alterations that arise due to the presence of defects in these
systems and establish a clear methodological framework that enables simpler
semiempirical approaches to capture qualititative aspects of more sophisticated ab
initio descriptions for an eventual use in massive quantum transport calculations.
In the second part of this chapter this methodology will be implemented for large-
scale quantum transport calculations in vacancy-damaged graphene nanoribbons.

3.2 Vacancies in graphene quantum dots

We start off by implementing a bottom-up multiscale approach for the model-
ing of defect localization graphene quantum dots with a hexagonal symmetry, by
means of density functional and semiempirical approaches. Using the ab initio
calculations as a reference, we recognize the theoretical framework under which
semiempirical methods describe adequately the electronic structure of the stud-
ied systems and thereon proceed to the calculation of quantum transport within
the non-equilibrium Green’s function formalism. The study’s groundwork focuses
on: (i) the structural characteristics, and (ii) the methodological approach. The
islands under consideration are the coronene molecules[34, 41] with a general
chemical type of Cg,2 Hg,, in a pure, defected (with a single vacancy) and hydro-
gen functionalized form. These can be thought of as planar complexes of benzene
rings that grow rotating around a central benzene ring, forming six hydrogen-
passivated zigzag edges (see fig. . Methodologically, electronic structure
is initially studied with DFT while optical properties are calculated within the
time-dependent density functional theory (TD-DFT). These results serve as a
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

reference for the comparison with similar calculations by means of two parame-
terized semiempirical methods: (i) the extended Hiickel (EH) theory [56] and (ii),
the next-neighbor tight-binding model. As soon as a proper functional framework
is identified for the semiempirical approaches the study proceeds with the calcu-
lation of electronic transport. Particular attention is paid to the effect of defect
localization both within a level of characterization as well as model calibration,
since the computational results indicate impurity-like behavior of single vacancies
in these systems. Conceptually, although the final objective is physical (quan-
tum transport modeling in graphene islands), the basis is founded on chemistry
(multiscale comparative analysis of the electronic structure).

Figure 3.1: Hexagonal graphene quantum dots - Cg,2 Hg, molecular com-
plexes: a) CaqHio (coronene, n=2), b) CssH1s (coronene 19, n=3), c¢) CosHaa
(coronene 37, n=4), d) C150H30 (coronene 61, n=5)

3.2.1 Methodology

Geometry relaxation and electronic structure properties (eigenvalues, eigenfunc-
tions, density of states) of various Cg,2Hg, clusters are extrapolated by DFT
calculations on a split-valence double-zeta (3-21g [7, 45, O1]) and a minimal
(STO-3G [21} [51]) basis set, as implemented in the GAUSSIAN code[33]. The
semiempirical three-parameter hybrid nonlocal exchange and correlation func-
tional of Becke and Lee, Yang and Parr[4, 68, 104, 112] (B3LYP) has been chosen
here for its capacity to predict a large range of molecular properties for aromatic
systems[10, [78]. Additional optical properties (excitation energies, fundamental
optical gaps) are calculated within a TD-DFT approach for comparison between
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

theory and experiment. FElectronic structure results are then confronted with
similar ones obtained by two semiempirical methods[28, [IT7] that also present a
precision/efficiency mismatch among them: (i) the extended Hiickel method, and
(ii) a next-neighbor tight-binding model. In the case of the EH method three
distinct parameterizations are used: (i) the first one considers a standard valence
2s2p-basis set of single-( Slater orbitals for C atoms, principally deriving from
the initial values used by Hoffmann[56](EH-sp from now on)] (ii) The second
one is a 2s2p3d-based parameterization with valence/polarization double-¢ expo-
nents and C parameters fitted to recreate the bandstructure of two-dimensional
graphene as given by DFT calculations[16] [17, 64] (EH2-spd from now on). (iii)
The third parameterization derives in the similar way to the second one, whereas
here the polarization orbitals are absent[17, [64](EH2-sp from now on). For the
first-neighbor TB model a standard ¢y = 2.7eV C-C hopping integral is used,
while vacancies are approximated with the insertion of a local point potential
U — oo (unless explicitly referred to in the text). Although all methods con-
struct the molecular orbitals on the basis of the linear combination of atomic
orbitals there is a distinct difference in the level of accuracy that each method
delivers. In the DFT case the basis set is comprised of Gaussian-type orbitals
with weighting coefficients that are both calculated self-consistently in order to
reproduce the best approximation of the exact ground state density of the sys-
tem. In the EH case the bases are nonorthogonal Slater-type orbitals with fixed
weighting coefficients that have been parameterized on the basis of experimental
data or first principles calculations. Finally in the TB case no real orbitals ex-
ist and the system Hamiltonian is constructed by a next-neighbor scheme that
through a proper choice of the hopping integral is representative of the m-orbital
in the sp? hybridization. Naturally, the level of computational efficiency is the
inverse, ranging from molecular (DFT) to mesoscopic (TB).

Electronic structure results are obtained through a direct diagonalization of
the respective Hamiltonian matrix. Comparisons take place in terms of highest
occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) gaps, energy eigenstates €, and their respective eigenfunctions ¥,. The
local density of states LDOS(7, E') at the positions 7 of the device atoms at energy
E is calculated as:

LDOS(F,E) = Y |Wa(P)*3(E - €a), (3.1)

where ¢ is the Delta function, while summing over all atoms gives the total density
of states (DOS) of the molecular systems at this energy.

Eon — site(Cs) = —21.4eV, Eon — site(C,) = —11.4eV, Eon — site(H) = —13.6eV,
C(Cs) = 1.625, ¢(Cp) = 1.625, ((H) = 1.3, coeff(Cs) = 1, coef f(Cp) = 1, coef f(H) = 1,
K =175
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

Quantum transport is calculated within the non equilibrium Green’s function
formalism[25]. In particular, the method is based on the single particle retarded
Green’s function matrix G = [ES— H —X;, —Xg] ™!, where E is the energy, H and
S are the device Hamiltonian and the overlap matrix respectively (written in an
appropriate basis set), while 3,  are the self-energy matrices that account for the
effect of scattering due to the left (L) and right (R) contacts. In the TB case the
overlap matrix coincides with the unitary one. The X, p terms can be expressed
as ¥ = 7g,7!, where g, is the surface Green function specific to the contact type
and 7 is the Hamiltonian relative to the interaction between the device and the
contact. The calculation of the Green’s function permits for the evaluation of all
the quantities of interest for conduction, e.g. the device spectral function is the
anti-hermitian part of the Green’s function A = +(G —G') from which the Density
of States can be obtained as D(E) = 5-Trace(AS). Moreover in the coherent
transport regime, the expression used for the zero-bias transmission probability
reads T(E) = Trace(I' GTrG"), where ' g = (X1 r — ZLR) are the contact
spectral functions.

In this study CoyHio, Cs4Hig, CosHsoy and Cis50Hsy complexes have been con-
sidered in their pure, defected (with a single vacancy) and hydrogen functionalized
form. All structures have been relaxed by DFT molecular dynamics while relax-
ation information is also used by the EH method. In the case of TB an ideal
reconstruction of the molecular structure is considered since the latter does not
account for interatomic distances. Finally, for the quantum transport calculations
the islands are placed within two semi-infinite Au(111) metallic planes (directly
considered in the case of EH, appropriately fitted in the case of TB[2§]) in a
molecular bridge configuration.

3.2.2 Comparative analysis of structural and electronic
properties

A proper treatment of quantum transport modeling has to take care of both
quantitative and qualitative aspects of the electronic structure of a molecular
system. In this sense, if the value of the HOMO-LUMO gap is a quantitative
feature, the form of the HOMO and LUMO wavefunctions, or similarly, the local
density of states of the structure for energies near the HOMO/LUMO states are
qualitative characteristics. It can be argued that in terms of conduction, although
the former can influence scaling, the latter can affect the shape of the current-
voltage curve. In addition, higher-bias conduction requests accuracy for entire
conduction/valence bands. Such considerations imply that a proper description
of the local density of states of a molecular system by means of a quantum chem-
ical method can be fundamental for the correct modeling in terms of quantum

33

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()
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transport. This section examines electronic configuration aspects one by one.

3.2.2.1 Geometry relaxation

From a numerical point of view, distance between the atomic sites influences the
electronic structure of a molecular system by affecting both overlap and Hamil-
tonian matrix elements. Geometry relaxation with the DFT method has shown
that near the island edges, complex distance polymerization effects can be ob-
served that tend to periodically increase/decrease C-C bonding for about 5% from
the equilibrium distance (C' — Ceguir & 1.42A). Such feature tends to propagate
also in the inner parts of the clusters albeit in a continuously decreasing extent,
while only the central benzene rings result having equal interatomic C distances.
Distance shortenings due to hydrogen passivation have been also observed in the
case of graphene nanoribbons[99], whereas the effect there is localized near the
edges. From a methodological point of view, variable bond-lengths can have a
practical consequence in the parameterization of the hopping integral for the TB
method, where for accuracy’s sake an evaluation of each atomic pair distance
should take place prior to the assignment of the integral value (in this sense the
method becomes similar to the single m-orbital Hiickel one). If such information
is not available inaccuracies in the TB Hamiltonian can occur. It can be argued
that futher complications in the correct estimation of interatomic distances have
to be considered in the case of interaction between the molecular structures and a
substrate (e.g. for the reproduction of laboratory conditions[20} 96, [122]). In this
case combined melecular/substrate atomistic modelling should enlight interface
bonding interactions for both the chemical and the structural characteristics.

3.2.2.2 Energy levels

A well-known aspect of geometrical symmetry is the presence of orbital degenera-
cies. Such feature is captured by all methods for the pure structures, from DFT to
TB. Eventually, symmetry breaking events (e.g. the presence of a single vacancy)
lift such degeneracies and split the respective energy levels. In this subsection
we visualize characteristics of the eigenvalue spectrum in a full quantum scale, in
terms of energy gaps and state alignment over the energy axis. Figure shows
HOMO-LUMO gaps for pure and defected structures by means of DFT (both
3-21g and STO-3G), EH2-spd, EH-sp and TB, while EH2-sp results are similar
to EH2-spd and are not shown. Regarding the pure structures the following ob-
servations can be made: (i) the gap value given by the DFT is bigger than those
obtained by the semiempirical methods. This aspect is not directly related to
the exchange-correlation absence in the semiempirical cases (since parameteriza-
tion can take place on the basis of ab initio calculations) but with the chemical
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

environment considered for the parameterization, which usually considers bulk
structures where the effect of confinement cannot be evaluated. It is moreover
interesting to evidence that the minimal basis set in the DFT method slightly
overestimates this value with respect to the 3-21g case. (ii) The EH2-spd method
with its orbital foundation and sp?-hybridized calibration approximates better
the DFT results with respect to the other semiempirical methods. (iii) Albeit
the clear difference in terms of the methodology, results by EH-sp and TB are
very similar. It should be noted here that a rough method to bring semiempirical
models closer to first principles calculations is by globally fitting the hopping in-
tegral (or similarly the Wolfsberg-Helmholtz K constant for EH). However in this
case the parameterization looses any meaning outside the designated geometrical
environment.

5 a) 25 b)
@@ DFT STO-3G @@ DFT STO-3G
v—v DFT 3-21g v—v DFT 3-21g
4 B EH-sp 2 B8 EH-sp
EH2-spd EH2-spd
A—ATB A—ATB
>3 15
>
2
Q
c 2 1
L
1 0.5
0 0
2 3 4 5 2 3 4 5
n n

Figure 3.2: Energy gaps in hexagonal graphene quantum dots - Cy,2 Hgy,
molecular complexes: a) CoygHis (coronene, n=2), b) Cs4H1g (coronene 19, n=3),
c¢) CogHay (coronene 37, n=4), d) C150Hs3p (coronene 61, n=>5)

The validity of the results obtained by the first-principles B3LYP/32-1g model
for these structures with respect to the semiempirical methods is tested by direct
comparison with experimental data on the fundamental optical gap of the Cyy Hyo
island. For this purpose we follow a TD-DFT approach for the calculation of the
excitation energies of this cluster. The calculated value for the fundamental
optical gap is E,,; = 3.18eV, which is in a good agreement with the experimental
value of E,y = 3.29¢V measured in Ref. [96]E|. The difference between the

'We have confirmed the good TD-DFT estimation of the optical gap with respect to the
experimental value also by calculating excited state energies within the Configuration Interac-
tion Singles (CIS) Method. The optical gap given by the latter is E,,; = 4.19¢V, which is by
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ground state (Fgomo-rumo = 4.13eV) and the excited state (E,; = 3.18¢V) is
also consistent with experimental measurements for similar structures, since the
exciton binding energy in these complexes gives rise to a 0.5 — 1leV reduction of
the optical gap with respect to the ground state HOMO-LUMO gap|[54].

Moving on to the defected structures (with a single vacancy in the central
benzene ring) an expected reduction of the gap value can be observed, while DFT
basis set differences become more pronounced. For the semiempirical methods
the picture changes qualitatively only in the EH2-spd case. Considering spin-
degeneracy, the EH2-spd parameterization assigns the HOMO and the LUMO
states to two quasi-degenerate levels prior to the real gap, which in this case is
represented by the LUMO and LUMO+1. A detailed study of the corresponding
eigenvectors (with respect to eigenvectors given by the DFT and EH-sp) shows
that in the case of the defected structures an incorrect state is inserted at the
energy axis inside the energy gap. In this sense, although the EH2-spd /EH2-sp
parameterizations demonstrate overall optimal characteristics (e.g. see ref. [64]
for a study on carbon nanotube band structure and the next subsection for pure
clusters), a careful use might be necessary for transport calculations in defected
coronene systems.

(b)
HOMO
LUMO HOMO
LUMO
e
< 3 2 2
> i
Q @ HOMO
HOMO LUMO
1 1 1
E-E, (eV)

Figure 3.3: Density of states in pure/defected graphene quantum dots
- Density of states around the Fermi level for pure (black line) and defected (red
line) n = 5 islands by means of (a) DFT (STO-3G), (b) DFT (3-21g) (c) EH-sp
and (d) TB. In all cases, a small smearing has been applied.

far bigger than the experimental and the TD-DFT value.
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

Another important aspect that regards energy eigenstates is their alignment
over the energy axis, moreover when local alterations of the symmetry ‘break’ the
ideal atomic structure. For few-atom molecular complexes a neat way to visualize
this is with their density of states spectrum as a function of energy. Figure |3.3
plots DOS functions for pure and defected n = 5 islands by means of DF'T, EH-sp
and TB. In this case the lifting of the symmetry-induced degeneracy inserts states
that tend to ‘shrink’ the band gap. In the case of TB, a state always appears in
the center of the pure structure’s gap. This well-known effect has its origin at the
bipartite nature of the honeycomb lattice, where the presence of a single vacancy
in one of the two sub-lattices inserts a zero energy mode at the Fermi level of the
system (i.e. at energy E=0)[88]. The key issue though arising from figure |3.3| is
that for the more sophisticated methods the HOMO state is not located in the
center of the pure structure’s gap, but shifted towards lower energies next to the
valence band. Such feature is captured by both DFT and EH-sp, although in a
quantitative disagreement. The analysis therefore implies that TB gives a rigid
picture of the gap state with respect to more sophisticated models. Under this
perspective, this study will try to affront the problem by introducing a further
parameterization for the point defect (see section [3.2.3).

3.2.2.3 Qualitative evaluation: molecular orbitals

A most important aspect for transport in nanostructures is the availability of
states (either full or empty) within the conduction window. In conjunction, a
very important factor for the correct treatment of conduction are the eigenvectors
that correspond to these states, from which topological features can be deduced
(e.g. localization, polarization etc.). In this context the semiempirical methods
have been evaluated on the basis of DF'T results for pure, defected and hydrogen
functionalized structures. Results shown here are for the DFT 3-21g, EH-sp,
EH2-sp and TB models. A qualitative correspondence has been obtained for the
DFT STO-3G and the EH2-spd bases with respect to their method counterpart{].

TB: In the absence of real atomic orbitals and with the restriction of its limited
basis set the TB method demonstrates a progressive wavefunction descriptive
capacity from smaller to larger complexes. In particular TB eigenvectors for
conduction/valence eigenstates have a poor resemblance with the respective DFT
ones for the Cyy H15 molecule, while similarity becomes gradually better for bigger
structures. This behavior is due to the C-C bonding distance polymerization
features discussed earlier, which have a higher impact for the smaller complexes.

!The surprisingly accurate correspondence in terms of molecular orbitals obtained for the
3-21g and STO-3G bases within the DFT scheme indicates that the minimal basis set can
be used in disordered graphene-based systems with only small quantitative compromises (see

paragraph 2).
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Figure 3.4: Molecular orbitals of HOMO/LUMO states in graphene
quantum dots - Molecular orbitals for the HOMO-1, HOMO, LUMO and

LUMO+1 states of the n = 2 complex by means of DFT (upper) and EH-sp
(lower).
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Arriving at the n = 5 complex, DFT-TB matching becomes adequate, hence, the
TB method is qualified for the electronic structure description of these structures
with a respective number of C atoms and onwards.

EH-sp: The method is in a qualitative agreement with the DFT one only
for the energy degenerate HOMO/HOMO-1 and LUMO/LUMO+1 pairs for all
studied structures (see fig. for the coronene molecule). Moving away from
these states towards the valence band accuracy is lost, not in the form of the
wavefunctions whereas in the correct order that these appear. Conduction band
description results poor.

EH2-sp: Matching between EH2-sp and DFT wavefunctions is excellent for
all pure islands and for both valence and conduction energy zones (e.g. see
figure for the valence band of CyyHyy). It is evident here that the chemical
environment in which the parameterization has taken place (bulk graphene) and
the double-exponent Slater orbitals play a crucial role in the representation of
correct molecular orbitals. It is also interesting to note the mismatch in the
results obtained by the EH2-sp and the EH-sp parameterizations, even if the
quantum chemical method is the same.

Finally, magnetism issues that could arise due to the presence of zigzag termi-
nated edges in these complexes are not confirmed by the the ab initio calculations,
contrary to zigzag GNRs[42], 57, [99] or coronene islands above a critical size (based
on mean-field Hubbard model calculations [35]). It can be therefore stated that
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Figure 3.5: Molecular orbitals of valence band states in graphene quan-

tum dots - Molecular orbitals for the HOMO-5, HOMO-4, HOMO-3 and HOMO-2
states of the n = 2 complex by means of DFT (upper) and EH2-sp (lower).

the absence of a self-consistent exchange evaluation in the semiempirical methods
does not compromise the obtained results with respect to the DF'T case in the
present study.

The presence of a single vacancy in these islands provokes a distortion of the
atomic structure since the remaining ¢ dangling bonds tend to recombine by
leaving their equilibrium positions. On the other hand, o-orbital energies are too
far away from the HOMO-LUMO states and do not contribute to the formula-
tion of the respective wavefunctions. Most importantly, apart from a symmetry
breaking effect in topological terms, the presence of the vacancy imposes a local-
ization of the wavefunctions that correspond to the various eigenstates, making
such complexes ‘sensitive’ to the positioning of a nanoprobe. In terms of the
various methodologies we have obtained:

TB: The lack of information concerning distance in the TB method is even
more important for the defected structures, where the smaller the structure the
higher is the effect of the vacancy on its deformation. In this sense the TB method
with its standard parameterization is inadequate for the description of the elec-
tronic structure of these complexes, whereas like in the case of pure structures,
description gradually betters as the complexes grow, with the following particu-
larities: (i) HOMO wavevectors present a succession of zero and non-zero values
for neighboring atomic sites and (ii) for even n-indexed molecules (n =3, n =5
etc.) the hexagonal edge that corresponds to the defected site presents atoms
with zero LDOS for the HOMO eigenstate (fig. [3.6)). This last observation is
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crucial in terms of transport modeling and its implications will be discussed in
the next section.

EH-sp: It describes better the valence (HOMO, HOMO-1, HOMO-2) than
the conduction band. Moreover, moving towards the bigger structures accuracy
is increased and for the n = 5 island description becomes adequate for the valence
and discrete for the conduction band.

EH2-sp: The main drawback of this parameterization has to do with the
presence of an incorrect HOMO eigenstate as discussed in the previous subsection.
Overall it offers a valid alternative to the DFT results, on the other hand though,
the importance of the HOMO state in terms of conduction modeling requires
attention in its use in defected graphene environments.

Finally a remark on the Cj point symmetry of the HOMO wavefunction
around the vacancy should be made[8§] (feature that is captured by all methods),
where clearly a non-zero magnetic moment arises (also obtained with Hartree-
Fock-based calculations on the same complexes[41]).

Results for the complexes where the defected site has been functionalized by a
hydrogen atom that saturates one o dangling bond do not differ substantially from
their nonfunctionalized counterparts. Here the role of hydrogen slightly influences
the structure’s geometrical relaxation whereas wavefunctions are similar to non-
passivated molecules with defects, as o-orbital energies are too far away from the
zone of interest for conduction. Consequently the discussion made in the previous
subsection is valid also in this case for the methods that directly account for the
presence of hydrogen (DFT, EH).

3.2.2.4 Discussion

Semiempirical models in graphene-based quantum dot structures can be success-
fully used within a certain framework that is established by their quantum chemi-
cal limitations. The Extended Hiickel method with its real-orbital foundation can
cope with a great number of qualitative features, whereas the role of parameteri-
zation proves to be fundamental. In this sense EH2-spd /EH2-sp are excellent al-
ternatives to DFT for pure coronene structures, whereas defected /functionalized
complexes are more appropriately treated by the EH-sp model. On the other
hand, TB with the standard parameterization can be used for the study of con-
duction in large defect-free systems, while modeling remains a challenge for de-
fected complexes since results appear too ‘radical’. In this sense a further pa-
rameterization of the defected site within its particular topological environment
is necessary for the correct estimation of the electronic structure, argument that
will be treated in the next section.
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Figure 3.6: Molecular orbitals for the HOMO states for defected
graphene quantum dots - Highest occupied molecular orbitals for a) n=2, b)
n=3, ¢) n=4 and d) n=>5 islands with a single vacancy by means of DFT (left),
EH-sp (middle) and TB (right). The TB orbital representation is purely demon-
strative by assigning Slater type p, orbitals with the same parameters as the EH
method.
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Figure 3.7: Conductance of defected graphene quantum dots by meads
of EHT - Transmission as a function of energy by means of EH-sp for the defected
n = 5 complex, for two equivalent contact configurations that differ only in the
position with respect to the defected site.

3.2.3 Quantum transport

The study’s bottom line is to efficiently model transport phenomena on graphene-
based quantum dot systems respecting the chemical aspects that arise due to
the particularity of the chemical/geometrical environment. The importance of
a proper description of the electronic structure on conduction can be better ap-
preciated in the case of defected islands, where the presence of the vacancy is a
reason for topological asymmetries also on the formation of the molecular orbitals
(see fig. . In this section, a numerical analysis takes place for the defected
n = 5 complex initially with the EH-sp method, while results are used for a crit-
ical evaluation of similar calculations made with the TB model. Two equivalent
molecular bridge configurations are used, where the source-device-drain geome-
try differs only in the position of the contacts with respect to the vacancy site
(fig. . In detail, two opposite edge corners of the aforementioned dot have
been inserted between two semi-infinite Au(111) metallic planes, which model
the metallic probes of an atomic force microscope. The contact Hamiltonian is
also written within the EH theory using an appropriate spd basis[28]. A prereq-
uisite of equivalence for the contact bonding between the two configurations is
explicitly requested for an evaluation of transport without geometrical or bond
strength implications[28]. Here, contacts are 1.7A distant from the edge C atoms
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(avoiding strong invasiveness) and are geometrically symmetrical with respect
to the molecular structure. The transmission probabilities obtained for the two
configurations have a distinct character, whereas differences are not fundamental
for the conduction characterization of the system. Namely, both configurations
give a non-zero transmission value corresponding to the HOMO state, whereas
differences exist both in the valence and conduction band. The divergences can
only be attributed to the different geometrical positions of the contacts with re-
spect to vacancies that reflect unequal interface chemical bondings due to orbital
localization phenomena. The minor impact of such phenomena on the conduc-
tion characteristics is driven by the real atomic orbital foundation of both contact
and device wavefunctions that constitute bonding interactions that exceed next
neighbor distances. Therefore, e.g. if local disorder provokes a nullification of
the LDOS at the contact-device interface at a certain energy, transmission is still
possible if this zero LDOS expands in a smaller area than that of orbital overlap
between contact and further device atoms with a finite LDOS. The same concept
can be described from a quantum mechanical perspective, where the presence of
the contacts induces a constant perturbation on the bare device’s Hamiltonian
and the effective Hamiltonian now writes:
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Figure 3.8: Electronic structure and transport for defected graphene
quantum dots by meads of calibrated TB - Density of states and Transmission
probability of the n = 5 complex by means of the TB method for nonparameterized
(a) and parameterized (b) vacancy values (Eon — siteyq. = 10eV, tg = 1.9eV'). The
DOS figures are represented with a small Gaussian smearing.
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]:Ieff = Hy + Hor, + Hog (3.2)

Here H, corresponds to the molecular Hamiltonian in the absence the contacts
and PAIOLOR are the Hamiltonian components that arise due to the interaction
between the device and the left/right contact. According to EH theory for the
localized HOMO state we get:

< YyomolHor|Vnomo ># 0 (3.3)
and .
< VYyomolHor|Yromo ># 0 (3.4)

This finite value of both integrals makes transport plausible from the HOMO
state.

Albeit its phenomenological simplicity, the TB description of conduction in
the same structures as before generates complexity in the interpretation of the
obtained results. The critical points are two: (i) the first has to do with the zero
mode introduced by the vacancy at the Fermi energy level. The corresponding
HOMO wavefunction, and equally the LDOS at £ = 0, have a succession of
finite and zero values for next-neighbor atoms, that is, for each C atom with
a finite LDOS value the three nearest neighbor atoms have a zero value and
vice versa. Moreover the n = 5 structure (like all even n-indexed ones) has a
hexagonal side with LDOS = 0, as discussed in the previous section. Therefore,
for the standard-parameterized first-neighbor TB model this state represents the
respective molecular orbital in a rigid way, contrary to EH and DFT. (ii) The
second issue reflects TB interface bonding issues between a device and the metallic
leads that in the next-neighbor context present a strongly-localized character (e.g.
only two C atoms in our case are allowed to chemically interact with the leads). In
this case, if the metallic contacts form bonding interactions exclusively with zero
LDOS carbon atoms (configuration 2 in our case), the HOMO eigenstate will
not contribute to the conductivity of the system, yielding a zero transmission
probability at that energy. Indeed, figure [3.8 shows transmission as a function of
energy for the n = 5 complex for the two contact configurations presented before,
where a finite transmission probability for the HOMO state appears only in the
first case, whereas clearly no conduction takes place through this state for the
second. In terms of expectation values, for the HOMO eigenstate of the second
configuration we now get:

< UyomolHorl¥romo >=0 (3.5)

This blocked conduction channel reflects the extreme manifestation of wavefunc-
tion localization obtained by TB and comes to contrast with EH results. It is
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therefore fundamental that a realistic modeling has to take into account that the
tails of the contact wavefunctions penetrate the body of a molecular device for
several A before they decay.

Figure 3.9: Local density of states by means of standard and calibrated
TB for defected graphene quantum dots - Schematic LDOS representation of
the n = 5 complex by means of the TB model for two different parameterizations
of the vacancy site, a) to = 0eV within the vacancy and the neighboring sites, and
b) to = 1.9¢V and Fon — site,q. = 10eV. The radius of each circle is proportional
to the amplitude of the LDOS value on that atomic site.

A possible way to affront the aforementioned problems is by introducing a fur-
ther parameterization of the vacancy site. Figure [3.9 shows a schematic LDOS
real-space representation of the n = 5 island by means of the TB method for
a non-parameterized and a parameterized vacancy site. The vacancy parame-
terization takes place by assigning a finite £ = 10eV energy on the site and a
to = 1.9eV hopping integral within this and the neighboring atoms. The principal
differentiations obtained are: (i) The sites where zero LDOS values corresponded
for the HOMO level now obtain a finite, albeit small density (not visible in fig.
3.9). (ii) The hexagonal edge that corresponds to the vacant site (which for even
n-indexed molecules had zero HOMO-wavefunction components) obtains also a
finite LDOS value that is more similar to the electronic structure by means of the
DFT and the EH methods (see figure [3.6)). (iii) The collocation of the HOMO
eigenstate on the energy axis is in £ < 0, i.e. it moves towards the valance band
leaving the midgap position (see figure . Also in this case the DOS spectrum
comes closer to the ones obtained by DFT and EH (figure . Finally, changes
obtained for wavefunctions that correspond to other than the HOMO level do not
present particular differences from their non parameterized counterparts. Overall,
the parameterization of the vacancy site permits for a clear improvement of the
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qualitative aspects of the electronic structure for defected molecules, respecting
the chemical equilibriums and approaching results obtained by more sophisticated
methods. Indeed, in terms of transport, the HOMO eigenstate now contributes
to conduction for both contact configurations whereas a less ‘radical’ represen-
tation of the transmission probability is sketched. Apart from to the qualitative
gains of TB calibration presented here though, a key conceptual issue arises. Now
the vacancy site becomes similar to a (nominally p-type) impurity, since the local
point potential lowers (from oo to big finite) and the hopping integral raises (from
0eV to finite) [88]. This consideration can have an impact on the way vacancies
are seen in graphene-based systems, both from an applicative as well as from a
methodological point of view. As a conclusion, it should be strongly stated that
the common perception of treating vacancies in graphene-based systems (zero-
energy modes) is not confirmed in this study, whereas an impurity-like behavior
has been obtained.

3.3 Vacancies in graphene nanoribbons

As more relevant system for microelectronics, graphene nanoribbons represent
a meta for bandgap engineering and device integration of graphene-based sys-
tems. The objective here is to extensively investigate the importance of wave-
function localization induced by defects for the electrical transport properties of
quasi one-dimensional systems. We therefore present a systematic investigation
of conduction and charging for vacancy damaged armchair and zigzag graphene
nanoribbons (aGNRs and zGNRs respectively) from the physical effect of the
single scatterer in the nanoscale (for ribbons with dimensions within the capabil-
ities of modern lithographic techniques) up to a statistical analysis of finite defect
concentrations (for ribbons with pgm lengths). The basis of the transport formal-
ism for the single-vacancy scatterers is based on first-principles parameterized
semiempirical Hamiltonian that considers atomic interactions on the evaluation
of distance-dependent overlap integrals, hence, introducing further neighbor in-
teractions in a natural way. The parametrized tight-binding Hamiltonian of the
previous paragraph is used instead for massive quantum transport calculations in
heavily disordered systems. Computational results show that there is a clear re-
lationship between the position of the vacancy, the resonance of the defect-states
and the local eigenvector value of the corresponding unperturbated system. Cou-
pling between such features can give rise to resonant backscattering phenomena
during the conduction process that in the case of the first m# — 7* plateau are
associated with the opening of pseudogaps, similar to ones obtained for p-type
impurities[5]. A further goal is to evidence the charging properties of vacancies
in graphene within self-consistent Schrodinger/Poisson calculations.
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3.3.1 Methodology

We consider the convention of Ref. [99/to classify aGNRs (zGNRs) on the number
of the dimer lines N, (zigzag chains N,) across the ribbon width. We use two ab
initio parameterized semiempirical Hamiltonians with different levels of accuracy
for the correct treatment of defect states in the sp?-hybridization scheme. The
first one is formed on the basis of the extended Hiickel theory, using a double-
¢ sp®d® Slater orbital basis set[64]. Such Hamiltonian acounts for next-to-near
neighbor interactions in a natural way and accurately assigns the resonance of the
vacancy states. The second one is the nearest-neighbor tight-binding Hamilto-
nian with a ¢y = 2.7eV hopping parameter, whereas on-site energies and hopping
integrals for the defected sites have been appositively parameterized in order
to reproduce first-principles and extended Hiickel results, as seen in the previ-
ous paragraph. Energy eigenstates €, and their respective eigenfunctions ¥, are
obtained through a direct diagonalization of the Hamiltonian matrix imposing
periodic boundary conditions in large supercells. Quantum transport is studied
within the non-equilibrium Green’s function formalism (NEGF) coupled to the
Landauer-Buttiker approach for the calculation of the conductance g[24]. Sim-
ulations take place within the ballistic regime. Contacts are ideal, i.e. of the
same width N, (N,) as the device without the presence of vacancies. Edges are
passivated with single hydrogens.

3.3.2 Vacancies in aGNRs

We start this study with electronic structure, conductance and density of states
(DOS) spectra calculated for a semimetallic 38-aGNR. Here the vacancy is intro-
duced in various positions of a chain transversal to the longitudinal axis of the
system (see fig. [3.10h). Electronic structure calculations show that the universal
response of the defect is to give rise to quasilocalized states[88] along nonlocal-
ized ones, that due to electron-hole disparity do not preserve a mirror symmetry
with respect to the charge neutrality point. The level of localization for these
states can vary from strong to weak while their energy resonance highly depends
on the position of the defect site. When it comes to conduction, there are two
distinct groups of behaviors obtained on the basis of the location of the vacancy
sites. For sites of the first group, significant conductance dips and pseudogap
features are present within the valence band of the first # — 7* plateau of the
system. The correspondent DOS interestingly shows a smooth bell-like region
which expands throughout the conductance dip zone. The presence of a non-
negligible DOS where a conduction gap takes place is strongly correlated with
resonant backscattering phenomena during the transport process. Such feature
is strikingly similar to analogous effects calculated for p-type (nominally boron)
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Figure 3.10: Conductance and DOS for a defected 38-aGNR - (a) Con-
ductance g and DOS as a function of energy for a 38-aGNR with single vacancies
at different positions N,. (b) Projection of the wavefunction corresponding to first
state below the charge neutrality level (upper) and the first state above the charge
neutrality level (lower) for a non-defected 38-aGNR.
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impurities[5]. On the other hand, second group sites practically leave the pure
structure’s ¢ = 1 (in units of 2¢%/h) conductance plateau unaltered. Here the
first vacancy state below the charge neutrality point gives rise to a DOS with a
sharp peak that decays exponentially and provokes a strongly localized pertur-
bation in the electronic structure. A systematic analysis for the sum of possible
vacant sites shows that two thirds of the total sites belong to the first group,
while the remaining one third sites conform with the second group. This catego-
rization strictly stands only for the first m — 7* region, since for energies that are
more distant from the charge neutrality point, further divergences occur in the
conduction properties according to purely geometrical criteria.

The 1/3 — 2/3 relationship presented above can be understood with a care-
ful examination of the ribbon’s wavefunctions in the ideal case, i.e. when no
alteration of the atomic structure is present (see fig. [3.10p). The form of the
eigenvectors within the the entire first conductance plateau preserves a 1/3 —2/3
schema where 2/3 of the sites have a finite eigenvector value while the rest 1/3
have an extremely small value instead. If the vacancy is introduced in a position
corresponding to the 2/3 group, eigenvector symmetry breaks and defect-mode
perturbations spread also to neighboring energies. The sum of perturbative be-
haviors due to the quasilocalized states within this plateau gives rise to an in-
creased DOS distribution with respect to the ideal case below the charge neutral-
ity point. This expanded perturbation is the reason for electron backscattering
during conduction. On the other hand, if the vacancy is introduced in the 1/3
group sites, the perturbation induced remains localized since the 2/3 symmetry
does not break, and no generalized repercussions are inferred in the conductive
capacity of the system. This concept can be visualized better through local den-
sity of states distributions LDOS(7, E) at the positions 7 of the device atoms.
In the case of a system with semi-infinite contacts the LDOS can be calculated
within the NEGF[30]. Figures[3.11fa),(b),(c) show LDOS values for different en-
ergies within the first plateau for a 38-aGNR with a vacancy at N, = 19. It is
clear that a perturbation around the vacancy site spreads over the entire range
of energies that corresponds to the conductance dip. Contrary, for N, = 18 no
extended perturbation can be detected (see[3.121) apart from the highly localized
energetic position of the quasilocalized vacancy mode.

This picture is not only present in the previous aGNR but reflects a general
situation for the conduction properties of vacancies in semimetallic nanoribbons
with the armchair confinement (e.g. see fig. [3.12h). A systematic data analysis
for aGNRs up to NV, = 44 dimer lines leads to the following empirical rule (which
is supported by analytical calculations of the first plateau wavefunctions for all
metallic aGNRs[120]): for N, = 3p + 2 dimer lines (Vp € N), vacancies at the
N, = 3q sites belong to the 1/3 group (Vg € N, < p), while the rest make part
of the second group. Apart from the semimetallic ribbons, semiconducting aG-
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LDOS

LDOS

Figure 3.11: Local density of states for a defected 38-aGNR - LDOS as
a function of distance coordinates (in A) and energy (in eV) for a defected 38-
aGNR. Defect position N, and energy E are at (a) N, = 19, F = 0.27¢V, (b)
N, =19, F = 0.17¢V, (c¢) N, = 19, F = 0.07¢V, and (d) N, = 18, E = 0.17eV.
The zero energy level refers to the charge neutrality point.

NRs behave within a similar framework that infers a less pronounced effect on
the transport mechanism due to the intrinsic electronic bandgap (see fig. |3.12b).
Unlike though their semimetallic counterparts, wavefunctions of semiconducting
aGNRs do not globally preserve the 1/3 —2/3 symmetry within the first conduc-
tance plateau (fig. [3.12k). Notwithstanding this, the mechanism that gives rise
to DOS perturbations and therefore to conductance dips remains the same, even
if mainly for vacancies towards the center of the ribbons backscattering effects
are always present and differences are attenuated.

3.3.3 Vacancies in zGNRs

The case of defected zGNRs is intrinsically more complicated than that of aGNRs
due to the presence of edge magnetism (that gives rise to a secondary bandgap[99])
in conjunction with the local spin attributes of vacancies themselves[85]. On
the other hand recent ab initio calculations have shown that the most stable
hydrogen-terminated zig-zag ribbons are not monohydrogenated and loose their
magnetic ground state[113]. Here we neglect spin interactions and focus on the
effect of vacancy-induced pseudogaps within the conduction process, which is
complementary to but of a higher order with respect to the intrinsic bandgap
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Figure 3.12: Conductance of defected armchair graphene nanoribbons -
a) Conductance g as a function of energy for a semimetallic 44aGNR with a single
vacancy at N, = 22 (left) and N, = 21 (right). a) Conductance distribution g as a
function of energy for a semiconducting 34aGNR with a single vacancy at N, = 16
(left) and N, = 17 (right). (c) Projection of the wavefunction corresponding to
first state below the charge neutrality level (upper) and the first state above the
charge neutrality level (lower) for a non-defected 34-aGNR.
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Figure 3.13: Conductance of a defected 22 zigzag graphene nanoribbon
- (a) Conductance g as a function of energy for a 22-zGNR with a single vacancy
at the N, = 11 (up-left), N, = 10 (up-right), N, = 7 (down-left) and N, = 6
(down-right) positions. (b) Bandstructure of an ideal 22-zGNR with periodicity L
within the spin-restricted extended Hiickel model.

(see Ref. R2| for a discussion on spin-polarized transport). Fig. shows
representative conductance results for a 22-zGNR with single vacancies at four
different internal positions of the ribbon along a chain transversal to the longi-
tudinal axis of the system. The 1/3 — 2/3 symmetry seen in the case of aGNRs
is not confirmed, reflecting the different form of zGNR wavefunctions. On the
other hand symmetry effects with respect to parity, as well as important differ-
ences with respect to the positioning of the various defected sites can be obtained.
In detail, vacancies at the central region of the zGNR show a p-type conduction
gap that is greatly compromised by the presence of the g = 3 plateau area due
to band-bending close to the Fermi level near the Brillouin zone boundaries (see
Fig. . Moving towards the ribbon’s edges, even-N, sites become completely
metallic whereas odd- /N, sites give rise to a simultaneous transport gap in both
conduction and valence bands[46]. This behavior is similar to impurity backscat-
tering with both donor and acceptor characteristics, whereas analogous effects
have been calculated for substitutional boron atoms[5]. The key issue for un-
derstanding resonant backscattering phenomena in zGNRs can be traced back
in the high local density of states concentration within the m — 7* plateau that
is not only limited to edge states, i.e. nonlocalized states in an ideal zGNR are
present in this energy zone. The wavefunctions of these states usually maintain a
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

parity symmetry for neighboring sites that can loose balance while moving from
the center towards the edges of the ribbon. According to the exact positioning
of the vacancy site the perturbation induced can be stronger or weaker while it
can affect more than one regions at the entire plateau, giving rise to separate
resonant backscattering phenomena during the conduction process.

3.3.4 Vacancies as charging centers

For a more realistic description of quantum transport and the evaluation of
nonequilibrium aspects of conduction, we have performed self-consistent simu-
lations within the coupled NEGF-Poisson scheme in order to evidence the man-
ifestation of charging effects related to the presence of vacancies in the atomic
lattice. To this purpose, we have extended the open-source NanoTCAD ViDES
code[36], B9] with extended-Hiickel functionality and enhanced matrix operations
with optimized numerical techniques[90]. We consider the 4-terminal geometry
of fig. and 20/22aGNRs with length | = 8.41nm as channel materials. Sin-
gle vacancies are introduced at various positions of the atomic lattice, whereas
the relatively short length of these aGNRs allows for a short-range Coulomb
scattering study within the ballistic limit. Simulation temperatures are set to
T = 300K. Gate voltages are fixed to zero (Vg,s = 0V, Vg,s = 0V) while
drain-to-source bias is gradually raised from Vpg = 0V to Vpg = 0.5V. Maps
of the electrostatic potential ® along the ribbon surfaces at the end of the self-
consistent process can be seen at fig. [3.14b. There are two main charging aspects
related to the presence of vacancies in these samples: on one hand the immediate
region around the defect acquires a charge concentration that manifests as an
electrostatic peak on the GNR topology. This feature appears for all types of
vacancies discussed in the previous paragraphs. Directionality of such potential
is also visible in correspondence to the geometrical orientation of the vacancy. On
the other hand though, an important aspect arises in the cases where vacancies
are associated with impurity-like backscattering issues. Here the presence of the
defect gives rise to a charge-carrier inhomogeneity effect on the GNR topology
(e.g. see the lower panel of fig. ) Moreover, this process is bias-dependent,
i.e. by increasing Vpg a more intense electrostatic inhomogeneity pattern can be
observed. The presence of carrier inhomogeneities on the graphene surface have
been widely attributed to charged impurities, and under this perspective impor-
tant experimental features related to the measured conductivity of graphene have
been justified[I§]. This study indicates that alternatively, also vacancies can cre-
ate similar charging disorder whose extend should ideally be calculated for flakes
of dimensions within the range of the microscale.

93

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()
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22-aGNR, ideal, 0.4V 22-aGNR, Na=13, 0.4V
20-aGNR, Na=4, 0.3V  20-aGNR, Na=6, 0.3V

Figure 3.14: Charging effects in defected graphene nanoribbons - (a)
Schematic representation of the simulated 4-terminal system. Front and back gates
are isolated by a 1.9 nm thick SiO5 layer with a relative dielectric constant x =
3.9. Armchair graphene nanoribbons are used as channel materials with length
[ = 841nm. (b) Maps of the electrostatic potential ® (in V') along the ribbon
surface for an ideal 22-aGNR (Vpg = 0.4V), a 22-aGNR with a single vacancy
at N, = 13,1 = 4.38nm (Vpg = 0.4V), a 20-aGNR with a single vacancy at
N, = 4,1 = 4.28nm (Vps = 0.3V) and a 20-aGNR with a single vacancy at
N, =6,l=4.28nm (Vpg = 0.3V).
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

3.3.5 Statistical conductance analysis for finite defect dis-
tributions

Understanding of single-vacancy scattering forms the basis of the generalized
backscattering mechanism present in confined graphene systems. However trans-
port repercussions for realistic devices within the micro-scale and a finite con-
centration of defects can only be addressed within statistical analyses of large
replicas of equivalent systems. For this purpose we have appositively calibrated
a next-neighbor TB Hamiltonian that reproduces results obtained by more ac-
curate Hamiltonians in the case of single vacancies(see paragraph . Figure
shows statistical averages for the conductance of a 0.84pm long 47 AGNR
with two finite defect concentrations (0.2% and 0.4% respectively), obtained for
more than 500 equivalent replicas of these systems. Like in the single vacancy
case, a mobility gap appears in the hole-band region close to the Fermi level of the
system. We have evaluated if the studied systems are in the localization regime
or the quasi-diffusive one for different energies within and far from the quasigap:
in the first case the average zero temperature resistance < r(E) >=< g(F) >1
dependes exponentially on L:

(Inr(E)) =2L/¢(E) + ¢, (3.6)

where ¢ is a small constant that does not depend on E and {(F) is the energy
dependent localization length. In the second case the mean free path [, can be
calculated as:

r=r.(1+L/l), (3.7)

where r. is the contact resistance. By means of a scaling analysis[23] [66] we found
that the conduction regime varies with the energy of the charge carriers, passing
from the localization regime (the localization length & is ~ 40nm in the center
of the conduction gap for the 0.2% case) to the quasi-diffusive one away from
the conduction gap (the elastic mean free path [, is ~ 0.4um when E ~ 1eV for
the 0.2% case). However, the main issue arising from multiple scatterers is the
significant downgrading of the conductance throughout the energy spectrum that
increases with the defect concentration. It is also evident that for heavily dam-
aged GNRs (defect concentrations of 0.4% here) conductance becomes extremely
low and typical graphene-like properties practically vanish. Crystalline quality is
therefore a fundamental prerequisite for the maintenance of device-related char-
acteristics like high electron mobilities and current densities.
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Figure 3.15: Average conductance distribution for a 47aGNR with a
finite defect concentration - Average conductance < g > as a function of the
energy E, for a vacancy damaged 47 aGNR. Plotted values represent statistical
averages over more of 500 equivalent replicas of the system. Charge neutrality
points of pure and defected systems are aligned at E=0 in the figure.

3.4 Conclusions and discussion

One important aspect of the understanding of impurity induced disorder in graphene

is the possibility of a controllable band gap tailoring for semiconductor applica-
tions [0, 67]. This study evidences that vacancies in graphene complexes actually
behave as impurities. Such consideration can have a big practical impact on the
engineering of mobility gaps in graphene-based systems since vacancies are easier
to obtain (e.g. by ion irradiation [22]) than actual p or n-type doping. Here
we have attempted to affront modeling issues, starting from pure and defected
graphene quantum dots and keeping in mind that the desired computational effi-
ciency for the simulation of large systems should not be in contrast with chemical
accuracy. In this sense a multiscale approach has been introduced with the scope
to identify merits and limitations of semiempirical approaches within a desig-
nated chemical environment prior to their use for the calculation of quantum
transport. Model confrontations have demonstrated that no perfect matching
exists between the results obtained by the ab initio on the one hand and the
semiempirical approaches on the other. The extended Hiickel method with its
real-orbital foundation manages to capture a wide set of qualitative aspects of
the systems, which qualify it as an appropriate method for quantum transport
calculations in graphene-based environments. Moving towards computational
efficiency, the tight-binding model has confirmed its authoritativeness for pure
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3. VACANCIES IN CONFINED GRAPHENE STRUCTURES

large-scale structures, whereas when structural defects have to be accounted a
further parameterization of these sites needs to be considered. Unlikely, such
tuning cannot be generic for all types of complexes/defect-types since chemical
environment influence can be fundamental. E.g. we have to note that by only
adding a second vacancy in the immediate vicinity of the same triangular sublat-
tice of the honeycomb structure, hybridization between the two modes can take
place. In this sense, a model evaluation of TB by a more sophisticated method
should ideally take place prior to its use in disordered graphene-based systems.
It should be pointed out that both theoretical and experimental attention should
be paid to strongly defected systems where topological disorder can be a reason
for wavefunction localizations, whose influence on the electronic properties can
be important.

We have moreover extensively investigated conduction and charging proper-
ties of armchair and zigzag graphene nanoribbons with vacancy scatterers. Focus
has been put on the underlying backscattering mechanism that proves funda-
mental for transport-related features like the appearance of pseudogaps within
the first conductance plateau. A front-end consequence arising from this mecha-
nism is that vacancies can behave as p-type impurities, while additional donor-like
behaviors can be observed in the case of zGNRs. It has been argued that the
positioning of the defect-states within the eigenspectrum in conjunction with ge-
ometrical considerations that shape the system wavefunctions are the origin of
the presented phenomena. Moreover self-consistent quantum transport calcula-
tions have evidenced that during nonequilibrium, vacancies can induce inhomo-
geneities in the electrostatic topology of the ribbons, in accordance with similar
effects often attributed to the presence of charged impurities. On the basis of
such assumptions some key points need to be discussed. From an application
point of view the association of vacancies with conduction gaps can have a big
practical impact on the engineering of mobility gaps in graphene-based systems,
since vacancies are either present in the atomic lattice from the production stage
or can be easily obtained e.g. by ion irradiation. Vacancy-concentration has to
remain low though in order to avoid predominant inelastic electron-phonon scat-
tering processes and consequently high reductions of the electron mobility[19]. A
preferential experimental verification is necessary here. From a methodological
point of view an important issue arises with respect to the resonance of the de-
fect states. An inaccurate positioning of these modes in the first conductance
plateau can lead to a dislocation of the pseudo-gap resonance, or in some cases,
to a complete suppression of such effect. In this sense, second or higher neighbor
atomistic models, or impurity-like calibrations of the vacancy site[67] seem more
appropriate for quantum transport calculations in defected graphene systems.
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Chapter 4

Contact-graphene interaction

4.1 Introduction

Integration of graphene-based nanostructures in electronics, sensors and environ-
mental applications makes necessary a clear understanding of the interaction be-
tween graphene and metallic surfaces[69, [72], [73], [79]. Interface bonding and elec-
trostatics can play a crucial role in the transport characteristics of these systems
since the low-dimensionality and high carrier mobility of the channel material[44]
can enhance the role of the metallic contact with respect to the traditional com-
plementary metal-oxide semiconductor technology. In this sense it can be argued
that the main source of resistivity in graphene-based devices should derive from
the interaction with the metallic electrodes. Characteristics of such interaction
for two-dimensional graphene have been identified both experimentally[8], [69] 79
and theoretically[3, [63], where charge transfer, doping-related phenomena and
near-interface potential fluctuations have been reported. However, as patterning
and lithographic techniques advance towards one-dimensional (1D) confinement
in order to engineer the necessary bandgaps for digital applications, a particular
1D electrostatic response can be expected that should strongly differentiate de-
vice characteristics with respect to the two-dimensional case[7()]. In this chapter
we investigate the role of the mettalic electrodes on the transport properties of
graphene nanoribbons within a double perspective: on one hand we establish the
fundamental electronic, conduction and electrostatic properties of a metal-GNR
heterojunction within the atomistic self-consistent Schodinger /Poisson scheme.
Attention is paid on both the chemical aspects of the interface bonding as well
the one-dimensional electrostatics along the ribbon length, in order to evaluate
the role of band-bending and doping effects on the transport properties of these
systems. In the second part of the chapter we consider an ideal molecular de-
vice based on GNR channels embedded within metallic contacts and focus on the
nonequilibrium aspects of the conduction process toward the high bias regime.
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4. CONTACT-GRAPHENE INTERACTION

4.2 Metal-graphene heterojunctions

We start this chapter by studying the tansport properties metal-graphene nanorib-
bon (GNR) heterostructures within self-consistent quantum transport simulations
on the basis of: a) an atomistic description on both the active device part and
the metallic electrode that respects the interface chemical bonding, b) a proper
treatment of the junction electrostatics and c¢) depletion region length-scales. The
objective of the computational formalism is to evaluate both the charge transfer
phenomena that are present in heterojunctions due to work-function differences
(e.g. band-bending and doping), as well as investigate the electrode-dependent
scattering processes that can block conduction channels in particular cases. More-
over a critical analysis between metal-GNR and metal-carbon nanotube (CNT)
properties takes place in order to point out some common aspects that could
allow for a plausible transfer of metal-CNT know-how in GNR-based devices.

Metal contact

-« Ideal contact

Figure 4.1: Configuration of metal-graphene nanoribbon heterojunc-
tions - Configuration scheme of the simulated graphene nanoribbon systems, where
a GNR is end-contacted by a three-dimensional semi-infinite metallic electrode at
the left side, whereas ideally contacted at the right side.

4.2.1 Methodology

We consider hydrogen-terminated armchair and zigzag graphene nanoribbons
(aGNRs and zGNRs respectively) and use the terminology of Ref. 09/ to categorize
them on the basis of the dimer lines N, (zigzag chains NN,) along the ribbon width.
Fig. shows the two-terminal geometry used throughout this study, where
GNRs with channel lengths L., ~ 17nm are end-contacted at the left side by the
(111) surfaces of three-dimensional semi-infinite electrodes (Au, Pd, Pt and Al).
The right electrode is an ideal ohmic contact[39], i.e. a GNR with the same dimer
lines (zigzag chains) as the device part. In the case of semiconducting aGNRs
this geometry corresponds to a Schottky junction. We employ a self-consistent
Schrodinger /Poisson scheme for the calculation of transport and electrostatics.
Quantum transport is computed within the non equilibrium Green’s function
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4. CONTACT-GRAPHENE INTERACTION

formalism (NEGF) coupled to the standard Landauer-Buttiker approach[24]: the
single particle retarded Green’s function matrix reads § = [ES — H — %, —Xx] 1,
where E is the energy, H (5) is the device Hamiltonian (overlap) matrix and
Yr,r are self-energies that account for the effect of scattering by the contacts
(X = 7g,7", where g, is the surface Green function specific to the contact type
and 7 is the Hamiltonian relative to the interaction between the device and the
contact). From the total transmission probability T = Trace[l';GT'rG'], where
I'rr=1i2LRr— ZEVR], conductance can be calculated as G = (2¢/h)T. The de-
vice spectral function is the anti-hermitian part of the Green matrix A = i(G—G'),
from which the local density of states (LDOS) at energy E and position r,, can be
defined as: LDOS(ro, E) = [gs Trace[AS/(2m)]0(r —r,)dr, where ¢ is the Delta
function and r, shows the positions of the atomic sites. Hamiltonian and overlap
matrices are written within a first-principles-based parameterized model using the
extended Hiickel theory[I5] [64] and a non-orthogonal double-( Slater-type basis
that fits the bandstructure of bulk graphene[64] and fcc metals[I5] from density
functional theory calculations. Metal surface Green functions for the evaluation of
the respective self-energies are calculated for the three-dimensional semi-infinite
contact with a back-and-forth real to k-space Fourier transform exploiting lattice
periodicity[117]. Charging effects are introduced in the formalism with the inclu-
sion of a self-consistent potential Us.(py) that is a functional of the device density
matrix and is added to the bare device Hamiltonian (i.e. H = Hy + Uy (py)).
Within the self-consistent procedure, mobile charges p; deriving from the NEGF
are passed to a three-dimensional numerical Poisson solver V*U,, = —py /e, con-
sidering the device part embedded in SiO5[39]. A Dirichlet boundary condition is
set in the metal-GNR interface of the Poisson box with a value Ul%/" = ¢,, — ¢,
where ¢,,, ¢4 are the experimentally measured work functions for (111) metal-
lic surfaces and grapheneE]. Null Neumann boundary conditions are set for the
other five faces of the Poisson simulation box. Self-consistency is enhanced by a
predictor /corrector Newton-Rapson algorithm[I07] while optimized matrix ma-
nipulation techniques[90] have been implemented throughout the numerical code.
Fermi-Dirac statistics are introduced for room temperatures (300K).

4.2.2 Band alignment

Fig. shows a real-space representation of the band formation along the ribbon
lengths within total/local density of states spectra for a semiconducting N,=16
aGNR and a semimetallic N,=14 aGNR. In the case of the 16 aGNR contacted
with the high work function Au electrode (Fig. [4.2[(a)) the equilibrium Fermi level

Y Auginyy, = 5.31eV[TT, bpag,y,, = 5.6eVITT, dpeyyy, = 5.7€VITT, by, = 4.24eV[T7) and
Ggr = 4.6eV [R4]
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Figure 4.2: Real-space bands for metal-GNR heterojunctions - Total (left)
and Local Density of States spectra along the GNR length (right) for (a) a semi-
conducting N,=16 aGNR contacted with Au, (b) a semiconducting N,=16 aGNR
contacted with Al and (c) a semimetallic N,=14 aGNR contacted with Pt. AEp
in (c) denotes the difference between the Fermi levels of the metal-contacted and
the respective ideal aGNR.
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alignment for the two parts of the heterostructure gives rise to significant upwards
band-bending phenomena near the metal-aGNR interface due to the higher work
function of the metal with respect to the GNR. However, band-bending is not
rigid for both conduction and valence bands as a result of a complex interfer-
ence mechanism: the LDOS distribution clearly shows the presence of wavelike
quantum interference patterns due to the reflection of the incident electron wave
by the non-ideal contact[47]. Near the interface such patterns tend to turn up-
wards for the conduction band and downwards for the valence band and respond
differently in the presence of the electric field induced by the barrier. Hence,
conduction band shifts smoothly while valence band shows localization patterns
in the LDOS distribution. Such patterns become discrete localized states with
a few-nm spatial breadth in the energy region where the bended valence band
is triangularly-like confined inside the bandgap. In addition, metal-induced gap
states (MIGS), i.e. tails of the metallic wavefunctions decaying very fast in the
semiconducting gap, form throughout the interface (visible as a brighter left-
border line for all energies in the LDOS representation of Fig. [4.2(a)). It can
be therefore argued that the interface between a GNR and a metallic contact is
ruled by complex band-bending, interference and localization phenomena whose
influence in the conduction mechanism will be discussed in the following. When
the same aGNR is contacted by a low-work function Al electrode (Fig. [4.2b))
the bands bend downwards (¢4 — ¢anr < 0 here), whereas qualitatively similar
behaviors as before (interference patterns, localized gap states, MIGS) can be ob-
served. In both cases the Fermi level remains within the bandgap although loosing
the midgap position of the respective ideal aGNR. In the case of a semimetallic 14
aGNR contacted with Pt (Fig. [£.2|c)) the main issue arising from the interaction
between the two structures is a p-type doping effect due to the presence of the
high work function metal (see AEy in Fig. [1.2c) for the difference between the
Fermi levels of the metal-contacted and the respective ideal aGNR). Hole carrier
injection has been obtained for all high work function metals on metallic GNRs
in this study while a less pronounced electron doping effect has been observed
in the case of Al. Band-bending is also evident here from the first 7 — 7* bands
and onwards, however the presence of the electrostatic potential does not seem
to affect the states that lie inside the first 7 — 7* plateau (e.g. see the GNR-long
flat line that corresponds to the secondary meV bandgap of the 14 aGNR at the
ideal structure’s Fermi level in Fig. [£.2]c)).

4.2.3 Heterojunction electrostatics

Characteristic 1D junction electrostatics are present in the metal-aGNR case. Fig.
[4.3] shows potential profiles along ribbon lengths for the previously shown N,=14
and 16 aGNRs contacted by all available metals in this study. The main aspect
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of the electrostatic potential for the semimetallic aGNR is a steep potential drop
near the contact interface that decays after few nm to a non-zero flat value. This
finite potential value denotes the presence of carrier accumulation throughout the
GNR length (holes for Au, Pd and Pt and electrons for Al). In the case of the
semiconducting 16 aGNR the Schottky junction behaves qualitatively different.
Screening is smoother and charges tend to vanish away from the metal contact.
However, also in this case long-range depletion tails in the charge distribution
have been obtained, in accordance with previous studies on CNT junctions[70].
In this sense an accurate estimation of depletion length scales becomes difficult in
these systems and “breaks” the traditional metal-semiconductor scheme, giving
rise to novel 1D device design possibilities. The categorization of metal-GNR
electrostatics on the basis of the conductive character of the respective GNR has
been also encountered in the metal-CNT case[29]. It can be argued that as the
width of semiconducting GNRs grows and the respective bandgaps decrease[99]
we can expect an electrostatic response that smoothly shifts from Fig. (b) to

Fig. [4.3](a).

0.4 0.4
0.2 \ @] g2 \ (b)
0 0
S -0.2 -0.2
(<})
~,-0.4 -0.4
=" -0.6 — Al -0.6 — Al
— Au — Au
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-1 Pt -1 Pt
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Figure 4.3: Potential profile for metal-GNR heterojunctions - Electro-
static potential profile U, as a function of the channel length L., for (a) N,=14
aGNR and (b) N,=16 aGNR contacted with Au, Pd, Pt and Al electrodes.

4.2.4 Quantum transport

Fig. shows the influence of chemical bonding and electrostatics in the con-
duction mechanism of the studied systems. High work function Au, Pd and Pt
metals give rise to qualitatively similar transport characteristics that originate
from the electrostatic aspect of the heterojunctions. Namely, p-type conduction
characteristics have been obtained for the 14 aGNR and low Schottky barriers
with respect to the valence band (of the order of 0.2-0.3 ¢V) for the 16 aGNR.
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Figure 4.4: Conductance of metal-aGNR heterojunctions - Conductance
as a function of energy for a N,=14 aGNR (left column) and a N,=16 aGNR (right
column) contacted with: (a-b) Au, (c-d) Pd, (e-f) Pt, (g-h) Al. Dashed lines show
ideal conductances for the respective aGNRs.

Fermi level to conduction band distances increase for the semiconducting ribbon
with respect to the ideal case, arriving at Ec — Ep ~ 1eV for Pd and Pt. In
all cases conduction band charge flow is strongly suppressed, giving rise to a
selective loss of the quantization steps that are typical of the 1D subbands in
GNR structures. This behavior is related with the smooth bending of the con-
duction band that creates a state-free zone near the interface (see Fig. [4.2{(a)).
The combination of p-type characteristics and conductance suppression due to
band-bending gives an asymmetric form to the overall conductance distribution
(as similarly calculated also for CNTs[52]). In terms of chemical bonding only
Au seems transparent near the Fermi level with the conductance arriving at the
1Gj plateau of the ideal case, whereas Pd and Pt demonstrate a slightly lower
transparency. On the other hand, valence band transparency above the first
conductance plateau is enhanced for Pd and Pt, which show a smaller extent
of conductance fluctuations with respect to Au, making them more appropriate
for high bias electrical measurements. A careful comparison between group 10
transition metals Pd and Pt shows that nonetheless the similarities deriving from
their electronic structures, Pd shows a slightly better conductance response in
the quantization steps of the valence band. The case of low work function Al
electrode is distinct, since despite the contact-induced n-type doping (for the 14
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aGNR) and quasi-ambipolar Schottky behavior (for the 16 aGNR), the dominant
aspect that characterizes conduction is the strong scattering by the contacts. Here
contact resistance constitutes the main factor of conductance suppression with
respect to the ideal case, with quasi-blocked conduction channels and overall con-
ductance degradation throughout the energy spectrum. It is therefore clear that
the electrostatics and chemical bonding act complementary in metal-graphene
nanostructures and a categorization of the metallic contacts on the basis of their
transparency to graphene should incorporate a best compromise between these
two aspects. Finally it should be noted that localized gap states that form near
the metal-GNR interface (see Fig. [4.2](a),(b)) do not contribute to the transport
process.

Current-voltage characteristics of the junction in the case of a pure N,=16
AGNR contacted with different metals are reported in Fig. [£.5] Typical Schottky-
diode characteristics are obtained with the high work function Au and Pd elec-
trodes. Larger current values obtained for a negative bias in the case of Pd with
respect Au are due to its slighter more pronounced p-type character. Al instead
does not reproduce diode-like characteristics whilst on-off current ratios are too
small for device operation.
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Figure 4.5: I-V curve for a metal-contacted N,=16 aGNR - Current voltage
ccharacteristics for a N,=16 aGNR contacted with Au, Pd, Pt and Al.

Junctions between metals and zGNRs preserve similar qualitative charac-
teristics with respect to aGNRs. However, the presence of the edge states in
the channel material[99] and the accompanying large DOS near the Fermi level
of these systems strongly enhances the role of localized electron-electron inter-
actions. Hence, contrary to aGNRs, the electrostatic response is not uniform
throughout the zGNR width and gives rise to a faster potential screening near

the borders than in the center of the zGNR (Fig. [4.6(a)). Moreover, the re-
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4. CONTACT-GRAPHENE INTERACTION

duced area of interface overlap between metallic and edge wavefunctions further
hinders the transparent transmission of electrons in these systems (see the lower
conductance with respect to the ideal case in Fig. [4.6(b)). It should be noted
though that by the suppression of the edge state (e.g. due to corrugation from
nanolithographic processes), transport and electrostatic properties are expected
to converge towards the aGNR case.

0 6
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% -0.2 N-E 4

=, -0.4 Qs

@ — edge ~ 9

= -0.6 - middle G

0.8 @ 0

%0 5 10 15 -
L., (hm)

Figure 4.6: Transport and electrostatic properties of metal-zGNR. het-
erojunctions - Electrostatic potential profile Us. as a function of the channel
length L., (a) and conductance as a function of energy (b) for a N,=10 zGNR
contacted with Au. The dashed line shows the ideal conductance of the zGNR.

4.3 High-bias aspects of graphene nanoribbon
conduction

The second part of this chapter sees graphene as a zero-dimensional molecular sys-
tem sandwitched between two metallic semi-infinite contacts. Electron quantum
transport is theoretically studied here for finite-size armchair graphene nanorib-
bons biased within source and drain metallic electrodes, using an extended-
Hiickel-based Green’s function coupled to a three-dimensional Poisson solver. The
analysis evidences dynamic nonequilibrium electron charging phenomena that can
affect the conduction mechanism by inferring electronic structure alterations. The
scope here is to evidence out-of-equilibrium perturbations that give rise to effects
that go beyond the semiclassical limit.

4.3.1 Methodology

The computational model is based on a self-consistent semiempirical approach of
quantum transport developed by Zahid et al.[I18] and extensively discussed in
references 28, 29 The principal differentiation of this formalism with respect to

66

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



4. CONTACT-GRAPHENE INTERACTION

the one presented in the first part of this chapter lies within the description of
electron-electron interactions: Here the self-consistent potential Usc(Ap) reads:

USC(AP) - ULaplace + UPoisson(Ap) + UImage(Ap)a (41)

where Ap represents the change in the charge density between the nonequilibrium
and the equilibrium conditions (Ap = p—p.,), whereas p is given by the expression

below:
1 Foo

p AE[f(E, p)GT1G' + f(B, un) GT G| (4.2)

2 J_
The presence of the Image term here simulates the presence of charges at the
electrode part of the device. Both Poisson and Image terms of the self-consistent
potential are part of the dynamic Poisson field description, with the latter nu-
merically correcting the former on the position of the device contacts. The cal-
culation of the Poisson term can derive in the framework of the complete neglect
of differential overlap theory, using only the Hartree potential for the Coulomb
interaction[118]. This approach has important numerical advantages with respect
to a direct differential derivation since it allows convergences for relatively high
biases. Laplace and Image expressions are determined numerically by solving the
Laplace equation in real space with a finite element method, using the appropri-
ate boundary conditions[I18]. All three potential components are evaluated on
the atomic sites of the AGNRs.

Rectangular armchair graphene nanoribbons have been considered (a semi-
conducting 12-AGNR and a metallic 14-AGNR following the terminology of ref.
[99]) with hydrogen passivated armchair edges and zigzag edges strongly cou-
pled to the two semi-infinite Au(111) contacts (see fig. [4.7). In particular the
widths for the two ribbons are Wis_aanp = 13.6A, Wis_acNnr = 16.07A, their
length L = 41.35A while mean Au-C atom distance has been set to d ~ 2.2A
by bringing the metallic contacts to a d = 1A distance from the AGNRs ends.
This strong metal-AGNR interface coupling along with the relatively large GNR
width (see again ref. [99]) and the T=300K simulation temperature are expected
to minimise spin polarisation effects of the zigzag edges on the conduction mecha-
nism, thus spin-transport phenomena are not accounted for in the computational
model[48]. Moreover a strong coupling regime is more likely to occur in experi-
mental conditions where a wide area of the device sample is superimposed by the
contact metal[58]. Only dynamic nonequilibrium charge transfer phenomena are
being considered (i.e. no Schottky barrier aspects) by imposing the alignment
between the metal’s Fermi energy and the charge neutrality level of the AGNRs
with a rigid shift of the AGNR energy bands with respect to the metallic ones.
This approach is correct for small channel-lengths in a molecular bridge geometry.
Finally simulations have been undertaken in equilibrium as well as with 1V, 2V

and 3V applied biases for both types of AGNRs.
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Figure 4.7: Two terminal metal-GNR-metal geometry - Schematic repre-
sentation of a 14-AGNR end-contacted with source and drain Au(111) contacts in
the two terminal geometry.

4.3.2 Electrostatics of the metal-GNR-metal syytem

The principal aspects of device-electrode interaction are the chemical nature of
the interface bonding and the charge transfer that can take place between them.
Both characteristics have an important influence on the conduction process. The
first is incorporated in the self-energy matrices X, r and gives rise to an increased
local density of states of the device atoms near the contacts [29] while the second
is captured in the current formalism by the self-consistent potential of eq.
and gives rise to a change of the device’s electronic structure. Fig. shows
this potential on the area of the 14-AGNR device when a 2V bias is applied.
There are two features of the Uge that require attention: a) the initial screening
which takes place in the interface area between the device and the contacts (that
corresponds to a screening of charges near the contact edges of the AGNR), which
lowers the total potential value with regard to the static Laplace term, and b) the
local alteration of the potential value at the four corners of the nanorribon, which
gives a three-dimensional conduction aspect in these one-dimensional structures
and that indicates that dynamic charge transfer phenomena are nonuniform and
can be less smooth in corrugate graphene samples than in smoothly terminated
ones. Both quantitatively and qualitatively similar results have been obtained for
the semiconducting 12-AGNR, demonstrating that charge transfer phenomena in
AGNRs are independent from the conduction character of the nanoribbon. This
last observation comes to contrast with equivalent carbon nanotube calculations
where the shape of Uge was found dependent from the chirality and conduction
character of the studied nanotube[29].

68

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



4. CONTACT-GRAPHENE INTERACTION

Figure 4.8: Potential profile for a Au-GNR-Au molecular system - Spatial
distribution of the self-consistent potential Ugc for the 14-AGNR for a 2V applied
bias.

4.3.3 Conduction aspects

The best way to visualise the conducting capacity of finite nanostructures is by
the schematisation of their transmission probability, which can derive directly
from the nonequilibrium Green’s function formalism. It can be expected that the
latter changes with the application of bias since the Ugc term is directly related
to the potential difference applied on the two electrodes. Figure [4.9 shows the
transmission as a function of energy for the two AGNRs when a 0V, 1V, 2V and
3V bias is applied. From the equilibrium diagrams one can draw conclusions on
the conducting character of the two ribbons that comply with previous band-
structure calculations[97, 99], since the 12-AGNR is semiconducting with a gap
of ~ 0.5eV while the 14-AGNR is metallic with an single subband near its Fermi
level. It is also worth mentioning that the finite character of this AGNRs is man-
ifested by the presence of transmission peaks, instead of the bands of the infinite
1D structures. The application of bias provokes an alteration on the transmission
probability of the two systems that has both general and singular characteristics.
The general aspect of these alterations is a total reduction of the transmission
probability with the increase of bias, which can be translated in a diminishment
of the current-carrying capacity of the AGNRs, or equivalently with the increase
of a dynamic resistance that is formed out of the traditional inelastic scattering
mechanism. The singular aspects are related with transmission alterations near
the Fermi level zones of the two ribbons. In the case of the 12-AGNRs, the peaks
near the gap edges of the equilibrium spectrum shrink and tend to diminish at
1V and 2V bias, while a single peak tends to form in the middle of the conduc-
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4. CONTACT-GRAPHENE INTERACTION

tion gap with a 3V bias. On the other hand, in the metallic AGNR’s case no
important change takes place in the onefold degenerate zone near the Fermi level.

12-AGNR 14-AGNR
4 4
ov r ov
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- 2 2
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& 3 3
g 2 2
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Figure 4.9: Bias-dependent transmission coefficients for aGNRs - Trans-
mission as a function of energy for a 12-AGNR (left column) and a 14-AGNR (right
column) with L = 41.35A for 0V, 1V, 2V and 3V applied bias.

4.3.4 Bias-DOS tracking interactions

The physical understanding of the presented phenomena requires an in depth
study of the electronic structure alterations that provoke the aforementioned
current-carrying capacity limitations. In this sense a local density of states
(LDOS) analysis is indicated for a topological determination of the device’s elec-
trical behaviour with regard to the application of bias. This analysis shows similar
generic characteristics with respective ones presented for carbon nanotube molec-
ular bridges[29], namely increased LDOS values in the area near the contacts due
to the tails of the metal’s electron wavefunctions that tend to fade exponentially
while moving towards the internal parts of the AGNRs, and a spectrum respec-
tive to the conducting character of each AGNR with finite LDOS values for the
14-AGNR and a lack of states near the Fermi level for the 12-AGNR in the in-
ner parts of the device. In a single atom level, a representative picture of the
alterations that take place in the process of bias application can be seen in figure
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4. CONTACT-GRAPHENE INTERACTION

[4.10, where the LDOS for two inversely equidistant C atoms from each one of the
two metallic contacts is demonstrated. The two C atoms have an equal distance
d = 11.7A from the electrode that lies closer while their width coordinate W
is common (W¢ = 7.41A with W, = 0A, W, .. = 14.54A for the 12-AGNR
and W¢, = 16.05A for the 14-AGNR). According to quantum transport theory,
when a bias is applied to the contacts, the two electrochemical potentials 17, r
(that in equilibrium have the same value) separate, taking in this case a minimum
and a maximum value respectively. The self-consistent calculations demonstrate
that the LDOS of each atom tends to follow the electrochemical potential of the
contact to which it is better correlated from a chemical /topological point of view.
This bidirectional alteration of the LDOS under bias provokes a localisation of
states that find it more difficult to correlate with states of near atoms. Such
change on the electronic structure of the biased device has the effect seen ear-
lier on the conducting character of the system with the total reduction of the
transmission probability. When it comes to the energy zone near the Fermi level
of the device, even though the LDOS behaviour does not differentiate from the
general picture, the macroscopic outcome is clearly distinct. In the case of the
semiconducting 12-AGNR, the LDOS movement provokes a localisation of the
states that appear within the conduction gap, therefore transmission peaks near
the gap tend to disappear. As the bias gets bigger and reaches the 3V value,
the LDOS shift becomes high enough for the gap states to come close enough for
the reappearance of correlation effects, which give rise to a small mid-gap finite
transmission value in the respective spectrum. On the other hand, in the case of
the metallic 14-AGNR, although the LDOS — iy, g tracking movement is similar,
the continuous presence of states near the Fermi zone makes localisation effects
less influent for the transmission probability and the conducting character of the
system. Finally, although the picture sketched previously considers only two C
atoms, qualitatively similar results have been obtained for the whole of the stud-
ied structures, being in accordance with previous analysis on carbon nanotubes
and organic molecules[29].

4.4 Conclusions and discussion

In this chapter we have investigated various aspects that arise for the conduction
properties of graphene nanoribbons when these are attached to metallic elec-
trodes. In the first part, the study has addressed the problem of metal-GNR het-
erojunctions within an atomistic approach that deals with both the electrostatics
as well as the chemical aspects of the interface. Results have shown that band-
bending, doping and bonding characteristics of this interaction can non-trivially
influence the conduction mechanism, giving rise to conductance asymmetries,

71

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



4. CONTACT-GRAPHENE INTERACTION

12-AGNR 14-AGNR
1 1
ov — closertolL ov
— closertoR
0.5 0.5
’ JM M
0 0 B
v v
0.5 0.5 l
Q LM_M MMJLM
O o o 0 A
a 2V 2V
|
0.5 0.5
0 0 AAA’\_ANM
3V 3V
0.5 0.5
) 1
O-2 -1 0 1 2 0-2 -1 0 1 2

Energy, E-E_ [eV]

Figure 4.10: Bias-dependent local density of states alterations for aG-
NRs. - Local density of states as a function of energy for two inversely equidistant
C atoms from each one of the two contacts, for a 12-AGNR and a 14-AGNR. Each
C atom distances d = 11.7A from the respective nearest metallic contact whereas
their width coordinate W is common. The application of bias, which separates the
electrochemical potentials py, g of the contacts bringing them to a minimum and
a maximum value respectively, provokes also a shift of the LDOS of each C atom
towards energies that are closer to the contact electrochemical potential to which
they are better correlated.
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4. CONTACT-GRAPHENE INTERACTION

Schottky barriers and suppression of ideal transport properties. An important
conclusion is that the electrostatics and the chemical bonding aspects can act
complementary for the determination of contact transparency in graphene. We
have moreover discussed some common characteristics between two similar 1D
sp? carbon allotrope systems, i.e. GNRs and CNTs. Within a certain qualitative
framework, this work argues that theoretical/experimental knowledge obtained
for metal-CNT heterojunctions can be also valid in the case of GNRs. It is
therefore crucial to understand the pros and cons of the two systems in terms of
fabrication/growth/patterning methods and electrical/mechanical /optical char-
acteristics in order to distinguish the ideal candidate for post-Si nanoelectronic
applications.

The second part of this chapter dealt with dynamic nonequilibrium conduc-
tion phenomena for GNR molecular bridges in the high-bias regime. Attention
was paid on the role of charge transfer on the conduction mechanism while lo-
cal density of states alterations have been revealed under bias application. The
main aspects of this self-consistently calculated procedure can be summed up
in the three-dimensional characteristics of the potential profile due to a nonuni-
form charging manifestation, the reduction in the current-carrying capacity of the
GNRs under bias due to the localisation of the electronic wavefunctions and the
distinct (according to the conducting character) transmission probability response
of the two structures near the Fermi energy level. All these features are highly
interrelated and derive from a tracking device-DOS and contact electrochemical
potential interaction revealed under bias. It can be expected that the presence of
the aforementioned processes is not confirmed in the semiclasical case. There, the
device can be thought of as the sum of numerous nanosize discretised units where
quantum rules can be implemented. In such case, the potential profile that each
of this units perceives is flat and therefore no bidirectional LDOS modifications
are expected, rather than a unified movement of all states towards the respective
potential level. Finally, considerations have to be made from an engineering point
of view, since bias-induced electronic structure alterations should be taken into
account in the projection of nanoscale graphene devices.
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Chapter 5

Epitaxial graphene on SiC
substrates

5.1 Introduction

Epitaxial graphene has emerged as a highly attractive alternative for CMOS
graphene integration by providing a combination of characteristics that consti-
tute a significant advantage with respect to complementary/antagonistic growth
technology: wafer size scales[32), [74] and direct growth on semi-insulating sub-
strates. The growth process is based on the sublimation of Si atoms starting
from both on[I11] or off axis [I2] SiC substrates in ultra high vacuum or ambient
pressure furnaces[61]. Accurate control of the growth process allows for the for-
mation of graphene films, as thin as a monolayer, from the remaining C surface
atoms. The structural, electronic and transport properties of epitaxial graphene
strongly depend on the the polarization of the SiC surface: Si-face epitaxial
graphene (i.e. graphene on the (0001) surface) is characterized by the formation
of a first carbon-rich interface layer (buffer layer) with a 6v/3 x 64/3R30° surface
reconstruction, over which AB (Bernel) stacked graphene layers grow. Interface
interaction imposes significant n-type doping while scatterers reduce mobility
values with respect to the SiOy deposited case[32]. Typical graphene character-
istics (e.g. half-integer quantum hall effect) are recovered by the application of
a gate voltage that lowers the Fermi level around the Dirac point[62] or by the
decoupling of the buffer layer from the substrate via oxidation[83] or hydrogen
intercalation[04]. C-face epitaxial graphene (i.e. graphene on the (0001) surface)
is subject to a less stringent rotational ordering with respect to the substrate[102]
whereas the presence of an interface buffer layer, although predicted by theoreti-
cal calculations[75], 87, [109], is still a matter of debate[12, [49] [53] T03]. A complex
rotational symmetry of subsequent graphene layers other than the AB stacking
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5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

sequence is present [102] that allows for the manifestation of single-layer proper-
ties even in the case of a multilayer structure[50), 101]. C-face monolayers show
higher mobilities with respect to the (0001) case and the typical half-integer quan-
tum hall effect at low temperatures[12] [114]. Doping is also present here, however
significantly smaller with respect to the (0001) case. Both electron[I05] and hole
carrier injection[I2], [114] has been reported in the literature for C-face graphene
structures.

This chapter will study the effect of both Si and C-face SiC substrates on the
electronic and transport properties of epitaxially-grown graphene. In the first
part we will focus on Si-face-grown graphene. Here the theoretical /experimental
understanding of the interface is well-established and the scope is to discuss the
role of lateral confinement in these systems for bandgap engineering and device
integration issues. To this purpose an appositively parameterized semiempirical
Hamiltonian will be used that allows for scaling, giving at the same time an
atomistic description of both the device and the substrate. In the second part
of the chapter we will focus instead on the C-face-grown graphene. In this case
there are still important structural and electronic issues to be answered from a
theoretical point of view and the methodological treatment will be fully ab initio.

5.2 Epitaxial graphene nanoribbons on SiC(0001)

It is nowadays commonly accepted that epitaxial graphene on silicon carbide
substrates represents a viable method of controllable growth for the fabrication
of high-quality graphene wafers [32]. The universally accepted concept for the
(0001) surface is that the process of graphitization takes place with the formation
of an interface carbon layer (buffer layer) which decouples the electronic proper-
ties of the substrate from those of the subsequent graphene layers[93]), allowing
the formation of both covalent and unsaturated bonds in the heterostructure’s
interface area. In the first part of this chapter we focus on Si-face grown films,
where although the theoretical /experimental framework seems in agreement (e.g.
n-type doping effects[32], [75]), there are still open questions concerning the impact
of one-dimensional (1D) confinement as well as the measured mobilities found to
be lower (2000cm?V ~1s~1 at low temperatures [32]) than respective ones for films
deposited on Si10;.

5.2.1 Methodology

We start off by studying the electronic structure of 1D armchair graphene nanorib-
bons (AGNRs) with one or more layers grown on SiC(0001), considering an atom-
istic description of the epitaxial layers and the substrate. The quantum chemistry
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is used within the extended Hiickel Theory on an sp3d® Slater-type basis that con-
siders both valence and polarization orbitals. This approach has been followed
for the electronic structure study of 1D carbon allotrope structures [64, [92] and
allows for the study of relatively large complexes (up to 4.4 nm wide in this work)
respecting at the same time the chemical environment. The Slater parameters
used here have been extracted from DFT calculations on SiC [I5] and have been
extensively tested to reproduce well also the bandstructure of sp?-hybridized AG-
NRs (see fig. . Results show that the role of the buffer layer is not limited in
the separation of the electronic properties of the substrate from that of graphene,
but becomes an active component of the heterostructure’s electronic behavior
through energy states that are introduced from the dangling bonds of the SiC
surface. These states pin the Fermi level of the system even in the case where the
AGNR consists of up to three graphene layers, while such behavior is independent
from the width of the considered nanoribbons.

a)

Figure 5.1: Geometrical representation of an epitaxial 17 AGNR - Ge-
ometrical representation of a 17 AGNR: (a) unit cell of the SiC(0001)/graphene
interface with a v/3 x v/3R30° surface reconstruction (top view) and (b) single-layer
AGNR (side view).

We consider graphene nanoribbons on SiC substrates on the basis of relaxation
information of ref. [75] obtained by ab initio molecular dynamics within the spin
local density approximation. The surface here is reconstructed in a numerically
more convenient v/3 x v/3R30° basis that does not significantly alter the physics
with respect to the experimental case. In this study, the substrate is formed
by a single bilayer of SiC which is responsible for all bonding interactions with
the carbon buffer layer, while hydrogen saturation has been imposed towards the
bulk (fig. . The buffer layer stands at d = 2.58A over the SiC substrate,
while interface atoms that covalently bond relax at d = 2A. We will consider the
composite substrate-buffer system as the base system from now on. Subsequent
graphene layers follow graphite’s ideal planar interlayer relaxation(d = 3.35A).
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Considering a unit cell n of the 1D periodic structure, we calculate the band-
structure of various AGNRs by direct diagonalization of the k-space Hamiltonian
matrix

(HE)] = Y [H ™ =), (5.1)

m

where £ is the Block wavevector within the first Brilouin zone. The summation
over m runs over all neighboring unit cells with which unit cell n has any overlap
(including itself) [26], while matrices [H],,, are written in real space on the previ-
ously discussed set of orbital function. Vectors d,, and d,, show the position of
two equivalent points of unit cells m and n. The generalized eigenvalue equation
reads [64]:

[H (k)] Wi(k) = Ei(k)[S(F)]W:(k), (5.2)

where [S(k)] is the k-space overlap matrix calculated in an analogous to eq.
way, and W,;(k) (E;(k)) is the eigenvector (eigenvalue) of the i'" subband.

5.2.2 Electronic structure

The study will built up on an ideal reconstruction of the epitaxial process, from
the SiC substrate up to 5-layer nanoribbons, considering various semimetallic
and semiconducting AGNRs (consistent with the terminology of ref. [99]). The
single-SiC-bilayer 1D substrate presents a dispersion relation with an indirect gap
of Ey = 3.53eV for all cases, closer to the a-SiC polytypes. Such deviation from
the 3D bulk case can be strictly attributed to the perpendicular confinement and
results in a shift of the conduction band towards higher energies. The first step
towards graphitization is achieved by the formulation of the interface buffer layer.
Here, the breaking of symmetry for the two complementary triangular sublatices
that constitute the ideal graphene structure results in a complete alteration of the
typical AGNR bandstructure, with the presence of a wide energy zone that for
the most part is not crossed by any subband, while the Fermi level of the system
is captured by weakly dispersive midgap bands (fig. . It is interesting to note
that due to deviation from planarity and selective covalent bonding, the buffer
layer looses also the typical characteristic of 1D-confined graphene, that is the
dependence of its electronic structure from its width. The process continuous with
the successive addition of extra graphene layers on the systems that contrary to
the buffer layer are Van der Waals bonded and preserve their sp? planar topology.
The first layer upon the buffer one restores typical AGNR behavior [99], namely
an almost linear dispersion curve with a secondary confinement-induced bandgap

For n # m, [H],m are interaction matrices between neighboring unit cells, whereas in the
case of n = m, [H]|p, refers to the Hamiltonian matrix of unit cell n.
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Figure 5.2: Bandstructure of SiC(0001)/graphene interface systems.
- Bandstructure of an ideal (a) 11 AGNR, (b) 17 AGNR and (c) 35 AGNR.
SiC(0001)/graphene interface systems corresponding to a (d) 11 AGNR, (e) 17
AGNR and (f) 35 AGNR. Tj denotes the translation vector of the respective 1D
periodic structure.

78

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

for the semimetallic AGNRs, and the presence of wider gap in the semiconducting
case (see fig. for a 17 and a 19 AGNR). The fundamental concept thought
is that the Fermi level remains pinned by the almost flat subbands of the base
system, imposing and overall metallic character and n-type doping for all types
of nanoribbons. This trend continuous with the addition of a second layer, with
ribbons showing the typical parabolic dispersion curve below the trapped Fermi
level. Results show that such behavior continues for up to three layers of confined
graphene, while from the forth layer and onwards, the highest occupied subband
gradually disperses towards graphite’s Fermi level position for small values of
the wavevector. This picture brings to discussion two important aspects: a) the
main electronic properties of two-dimensional epitaxial graphene on SiC [75] are
confirmed also in the case of 1D graphene nanoribbons. b) The important role of
confinement for suspended or Si0s-deposited graphene is strongly compromised
in the case of SiC substrates due to the Fermi level pinning effect and the intrinsic
metallic behaviour of all AGNRs.

E-E.[eV]

Figure 5.3: Bandstructure of single and double layer epitaxial graphene
nanoribbons. - Bandstructure for AGNRs grown over the SiC(0001)/graphene
interface system: (a) a single-layer 17 AGNR, (b) a double-layer 17 AGNR, (c) a
single-layer 19 AGNR and (d) a double-layer 19 AGNR. T; denotes the translation
vector of the respective 1D periodic structure.
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5.2.3 Quantum transport

We now move forward to better understand the importance of Fermi level posi-
tioning for the conductive characteristics of SiC grown AGNRs. For this purpose
we follow a real-space approach with the objective of identifying the topologi-
cal distribution of the density states for energies around the Fermi level. We
use the non-equilibrium Green’s function formalism for a 1D device with ideal
semi-infinite contacts. The Green matrix reads:

(G] = (E[S] = [H] = [Siept] — [Srignt]) ", (5.3)

where E is the energy, [H| ([S]) is the Hamiltonian (overlap) matrix written in
real-space on the same basis as before, and the [ s ign¢] matrices introduce the
role of scattering due to the left and right semi-infinite contacts. The latter are
calculated within an optimized iterative scheme [95]. The device spectral function
is the anti-hermitian part of the Green matrix [A(FE)] = i([G] — [G']), from which
the local density of states (LDOS) at energy E and position 7, can be defined
"~ Trace[A(E)][S]
2T

where ¢ is the Delta function and r, shows the positions of the atomic sites.
Integrating eq. over all the atomic positions results in the total density
of states of the system. Finally, transport calculation can be introduced in
the formalism by the definition of the zero-bias transmission coefficient T' =
Trace([iesi][G][Crignt] [GT]), where [Tiepirigne] are the contact spectral functions
[26].

We consider an 11 AGNR with a singe graphene layer over the base system and
calculate the LDOS for energies around the Fermi level position (fig. [p.4)). Results
show that the almost flat subbands around the Fermi level are primarily projected
in the zyz space on the highly localized positions of the substrate’s non-saturated
Si-bonds. Such phenomenon raises a key issue for the conductive capacity of
these systems, since it implies that the substrate becomes an active component
of the conduction process, whereas the unsaturated Si atomic sites constitute
conductive interface defects. Moreover such implication suggests that electrical
conduction through epitaxial SiC nanoribbons can lead to a great reduction of
the carrier mobility with respect to the SiO,-deposited case and could be also
related to the different conducting characteristics observed for epitaxial graphene
on (0001) and (0001) substrates. It is worth mentioning that as soon as we leave
the energy zone of the weakly dispersed interface subbands and move towards
lower energies that restore the typical nanoribbon bandstructure, LDOS is located
on the single graphene layer. It can be therefore argued that by perpendicular
electric field modulation (e.g. using a gate electrode) the system’s Fermi level

LDOS(r,, E) = / 5(F — r2)dF, (5.4)
R

30

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()



5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

can be detached from the substrate states and electrical conduction can recover
the typical graphene characteristics.

(a) (b)
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Figure 5.4: Qauntum transport and local density of states for an epitax-
ial 11 AGNR. - (a) Bandstructure and transmission as a function of energy for
an 11 AGNR. (b) Schematic real-space representation of the LDOS corresponding
to the grey energy region of figure (a). The radius of each sphere is proportional
to the amplitude of the LDOS value on that atomic site. Ty denotes the translation
vector of the respective 1D periodic structure.

5.3 Epitaxial graphene on the C-fase of SiC

The importance of the interface in every heterostructure is fundamental for the
determination of the electrical properties of the composite material, since this
is often accompanied with defects, stresses and further alterations of the ideal
atomic structure that can comport dominant structural, electrical and quantum
transport implications. In the case of epitaxial graphene this concept becomes
even more important, since the interface by itself forms almost the one out of
the two composites of the heterostructure. This situation is clear in the Si-
face case, where e.g. Fermi level pinning effects have been identified in the
SiC(0001)/graphene interface both theoretically (see the first part of this chap-
ter) and experimentally[I00]. However the apparent diversity of the electronic
and transport properties of C-face epitaxial graphene makes necessary a clear
explanation of interface properties that reconciles to the best way possible the
mismatch of experimental data (see paragraph . In the second part of this
chapter we perform first-principles calculations for single and double graphitic lay-
ers epitaxially grown on 4H-SiC(0001) surfaces. The scope here is to investigate
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5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

the fundamental structural and electronic properties of C-face grown graphene
and confront them with those of the Si-face one. A particular attention will be
paid to the presence interface-driven phenomena like magnetism and Fermi-level
pinning effects.

5.3.1 Methodology

We perform ab initio calculations based on the density functional theory (DFT)
within the Local Spin Density approximation (LSDA) as implemented in the
SIESTA computational code[98]. The 4H-SiC epitaxial graphene structures com-
prise of four bilayers of a (4 x 4) SiC substrate over which R0° single and dou-
ble layers of graphene grow (194 and 244 total atoms in the slab respectively),
forming a (5 x 5) supercell that satisfies lattice commensuration and minimizes
non-physical stresses. Epitaxial graphene samples on SiC(0001) with an angular
distribution around 0° with respect to the SiC (2130) direction are often seen in
experiments[I02]. A basis set of double-( valence (plus polarization) orbitals has
been used for C and H (Si) whereas Troulier-Martins pseudopotentials[I08] are
used to model ionic cores. Basis set sensitivity and pseudopotentials have been
tested to accurately reproduce the bandstructure of hexagonal SiC polytypes and
graphene. Sampling of the Brilouin zone takes place by a 2 x 2 x 1 I'-centered
Monhorst-Pack grid, while a mesh cutoft energy of 500 Ry has been imposed for
real-space integration. All structures have been relaxed until forces were less than
0.04 eV/A.

Figure 5.5: Graphene monolayer on a (4 x 4) SiC(0001) substrate - (a)
Side view of a graphene monolayer on a (4 x 4) SiC(0001) substrate. The SiC
slab comprises of silicon/carbon bilayers that are passivated with H at the bottom.
The graphene layers forms with a 0° angle with respect to the (2130) direction
of the SiC substrate. (b) Color map view of the first graphene layer showing
the bonding characteristics of this layer with the substrate. Gradual red to blue
coloring indicates bigger to smaller distances from the substrate and sp? to sp?
bonding respectively. Dashed lines show the periodically reproduced unit cell.
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5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

5.3.2 Structural and electronic properties

Fig. (a) shows the geometrical configuration of a graphene monolayer at the
end of the relaxation process. This layer presents an important corrugation and
has a thickness ¢t ~ 1 A with a structural relaxation that presents some funda-
mental differences with respect to the buffer layer of the SiC(0001) case[65], [75]. A
periodic reproduction of the unit cell (Fig. [5.5(b)) shows the presence of ~ 3 x 3
A islands that represent the areas of the layer that are more distant from the
substrate (d ~ 3 A) due to a particular surface reconstruction of the SiC sub-
strate where also substrate carbon atoms strongly sp® hybridize (see the next
paragraphs fo a detailed discussion). These islands are weakly coupled to the
substrate and strongly preserve a m-type hybridization in their atomic orbitals.
Such graphitic quantum dots are terminated by carbon atoms that are strongly
coupled to the substrate and loose their sp? hybridization for the sp® one, form-
ing covalent bonds with the substrate carbon atoms. It should be noted that
in this geometrical configuration for the graphene layer stresses are minimized,
since sp? bonds have a mean distance of C' — Cy,2 ~ 1.42 A whereas sp?® ones
relax at C' — Cys =~ 1.67 A, which slightly exceeds that of pure diamond. This
model has similarities and some significant differences with the previous one based
on the v/3 x v/3R30° surface reconstruction[75]. It still implies that there can
be no single graphene layer that grows directly on the (0001) surface without
some kind of covalent bonding with the substrate, however, the smooth corruga-
tion and island-like relaxation is beyond the previous model and consistent with
experiments[53], [103].

Fig. shows the electronic bandstructure of the first graphenic layer on 4H-
SiC(0001). The key point is that this layer preserves a purely metallic character
with 7 bands that prevail within the SiC-substrate bandgap, in a clear contrast
with the zeroth carbon-rich layer grown on the Si-face[109]. The metalicity of this
first graphene layer is also consistent with electrical measurements performed
on single graphene layers on C-face SiC[53]. However the interaction with the
substrate, notwithstanding weak, smoothens the Dirac cones and the m bands
do not preserve the typical free-standing graphene linearity near the Fermi level.
A careful view of the spin polarized bandstrucute (Fig. [5.6(b-c)) in this system
shows some important differentiations with respect to the spin unpolarized one
(Fig. p.6{a)). In both faces of epitaxially grown graphene, the presence of quasi-
flat bands near the Fermi level of these systems derives from dangling bonds states
in the interface between the substrate and graphene. In the Si-face, such dangling
bond states pin the Fermi level of the heterostructure at energies above the charge
neutrality point of ideal graphene (i.e. giving rise to an n-type doping of the
system)[30]. From the spin-unpolarized bandstructure one can deduce that the
same effect takes place also in the case of C-face graphene, with the only difference
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Figure 5.6: Bandstructure of a single graphene layer on a SiC(0001)
- Bandstructure of a single graphene layer on a SiC(0001) substrate. Both spin
unpolarized (left) and polarized (1 middle, | right) configurations are shown.

that the dangling bond states have energies that lie near the Fermi level. However
the spin-polarized structure shows a different picture: here dangling bond states
are half-filled and the presence of strong exchange interactions makes them split
by ~ 0.7 —0.8eV above and below the Fermi level respectively. Hence, the Fermi
level of (0001) systems remains unpinned by the interface, which is consistent
with the very low carrier concentrations found experimentally[114].

5.3.3 Magnetic properties

The presence of significant exchange interactions makes necessary a more careful
analysis of magnetism issues in the interface of these systems. Fig. majority
(1) and minority ({) spin density of states and electronic density configurations
for the graphene/4H-SiC(0001) system. The total DOS (Fig. [5.7(a)) reveals the
presence of a very big concentration of 1 states from 0.3eV to 1eV below the
Fermi level, and similarly for the | states from 0eV to 0.5¢V above the Fermi
level. A careful analysis of the orbital-resolved projected density of states on
the carbon atoms of the first SiC bilayer below the graphene layer (Fig. [5.7(b))
shows that a major component of these two peaks derives from the those carbon
atoms that are not covalently bonded with the graphene overlayer. Moreover, the
contributions of the 7 orbitals are almost exclusive in these peaks (the remaining
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Figure 5.7: Density of states of a single graphene layer/4H-SiC(0001) -
(a) Total 1 and | density of states of a single graphene layer /4H-SiC(0001) system.
(b) Projected 1 and | density of states (PDOS) on the carbon atoms of the first SiC
bilayer below the graphene layer (lines). The contribution of the 7 bands on the
PDOS is also shown (symbols). (c) Local magnetization (py — p) for the previous
system, where yellow isosurfaces indicate an excess of 1 electrons.
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5. EPITAXTAL GRAPHENE ON SIC SUBSTRATES

7 orbitals that can be found in the system are localized at the monolayer). This
picture implies that the interface carbon atoms of the substrate that do not bond
covalently with the first graphenic layer strongly sp? hybridize and tend to form
a graphitic interface with the overlying carbon atoms that correspond to the
graphenic quantum dot islands of the monolayer. Moreover, the 1 and | band-
splitting gives rise to local magnetization phenomena at the heterostructure’s
interface (Fig. [5.7(c)) where due to the excess of 1 electrons a ferromagnetic
order is present. This magnetic aspect of the interface influences the electronic
bands of the graphenic layer where a shift of ~ 0.1eV between 1 and | bands can

be observed (Fig. [5.6)).

5.3.4 C-fase epitaxial bilayer systems

As in the case of Si-face epitaxial graphene, typical free-standing graphene char-
acteristics and the presence of the Dirac cone are recovered with the second
graphene layer (Fig. . This layer interacts weakly with the first graphenic
layer maintaining a distance that is similar to that of Bernel-stacked graphite
and shows a smaller corrugation with a layer thickness ¢t ~ 0.4 A, in accordance
with XRD measurements[49] that indicate that also the second graphene layer
should maintain a small level of corrugation. This deviation from perfect pla-
narity also gives rise to a small separation of the Dirac cones of ~ 0.02¢V. It
should be noted that previously seen, the Fermi level remains unpinned by the
interface and the Fermi level is determined by the presence of the Dirac cone.
According to this picture, the presented theoretical model implies that typical
graphene characteristics like the half-integer quantum hall effect should be only
recovered by the second graphene layer and onwards, in contrast with experi-
mental measurements[I2, [114]. In such cases a careful examination of the real
interface structure should take place in order to evaluate the presence of high
concentrations of adatoms or impurities that fully passivate the substrate (e.g.
as in the case of graphene deposited on SiC[100]).

5.4 Conclusions and discussion

The first part of this chapter presented bandstructure and local density of states
calculations of armchair graphene nanoribbons epitaxially grown on SiC (0001).
The main aspect of the presented results had to do with the importance of the
SiC(0001)/graphene interface dangling bonds, which introduce states that pin
the Fermi level of the system even in the case of few-layer AGNRs. Such effect
can have an adverse impact on the conductive capacity of these systems since
it creates an electron transport channel through interface defects, compromising
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E-E, (eV)

Figure 5.8: Bandstructure of two graphene layers on SiC(0001) - Band-
structure of two graphene layers on a SiC(0001) substrate for at (left) and a |
(right) spin polarization.

in an non-trivial way device-related properties like high-carrier mobility. This
feature also brings to attention the role of confinement, since in the absence of
gate modulation, structures are always expected to behave in a metallic way,
notwithstanding the wide bandgap of the interface layer.

In the second part of this chapter we have presented ab initio electronic struc-
ture calculations for monolayer and bilayer epitaxial graphene systems grown on
4H-SiC(0001). Contrary to Si-face epitaxial graphene, we have seen that the
first graphenic layer that grows on the C-face of SiC maintains a purely metallic
character and an important presence of 7 electrons along with a non-negligible
coupling with the substrates. The particularity of its geometrical configuration
consists in a corrugated surface where small sp>-bonded graphene quantum dots
are terminated by carbon atoms that covalently bond with the surface. Be-
low these quantum dots also the surface carbon atoms sp?-hybridize, while their
7w bands a half-filled and present a ferromagnetic ordering due to an increased
DOS concentration. Typical graphene-like characteristics are recovered with the
addition of a second graphene layer. According to this picture C-face epitaxial
graphene should maintain some important advantages with respect to Si-face one,
like the absence of a Fermi-level pinning effect that could allow plausible device
operation starting from an off state. However more research should focus on the
interface transport properties in order to clear if typical free-standing graphene
characteristics can be recovered (or not) in an epitaxially grown monolayer.
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As a general conclusion, the present study implies that a thorough under-
standing of surface reconstruction is necessary for the conductive properties, and
hence, for determining the device application of graphene on SiC substrates.
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Chapter 6

General conclusions and outlook

As a vastly expanding field, carbon-based electronics present a series of ad-
vantages with respect to the current semiconductor technology: intrinsic low-
dimensionality, mechanical stability and elasticity, exceptional electrical, optical
and thermal properties to name but a few. Within this picture, one of the most
promising materials for both active and passive device integration is two or quasi-
one-dimensional graphene, a flat sheet of carbon atoms arranged in a honeycomb
lattice. As a suspended material, graphene should be metallic with a relativis-
tic fermion gas that almost nullifies its electron mass. A direct consequence is
that electron mobilities in this system are the highest measured to date. If we
consider a gap opening by means of lateral confinement, graphene nanoribbons
should be ideal candidates for nanoelectronic device integration. However in am-
bient conditions a graphene-based device cannot be neither ideal nor suspended.
This PhD thesis has dealt from a modeling and simulation point of view with
the transport properties of confined graphene structures that are not ideal, i.e.
that suffer defects, interact with the metallic contacts and with the substrate.
Indeed, results have shown that these external factors can nontrivially influence
the electronic transport properties of this material.

Defects as a source of electronic perturbation and their repercussions on the
conduction mechanism was the first subject that has been studied here. For this
purpose we implemented a bottom-up multiscale approach for the modeling of de-
fect localization in Cg,2 Hg, islands, i.e. graphene quantum dots with a hexagonal
symmetry, by means of density functional and semiempirical approaches. Using
the ab initio calculations as a reference, we recognized the theoretical framework
under which semiempirical methods describe adequately the electronic structure
of the studied systems and thereon proceeded to the calculation of quantum trans-
port within the non-equilibrium Green’s function formalism. The computational
data revealed an impurity-like behavior of vacancies in these clusters and evi-
denced the role of parameterization even within the same semiempirical context.

39

0T0¢ ‘erueje)) Jo AJsIoAtu) ‘elotRdng ®IoNOg ‘SeduasourN Ul ([UJ ‘SiZjara(] stuuro] ()
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In terms of conduction, failure to capture the proper chemical aspects in the
presence of generic local alterations of the ideal atomic structure resulted in an
improper description of the transport features. We thereon presented a system-
atic study of electron backscattering phenomena during conduction for graphene
nanoribbons with single and multiple vacancy scatterers, for ribbon dimensions
within the capabilities of modern lithographic techniques. Our analysis built
upon ab initio parameterized semiempirical models and nonequilibrium Green’s
function techniques. The underlying mechanism was based on wavefunction lo-
calizations and perturbations that in the case of the first 7 — 7* plateau gave rise
to impurity-like pseudogaps with both donor and acceptor characteristics. Con-
finement and geometry were crucial for the manifestation of such effects. Moving
towards the statistical limit of finite defect concentration we saw that significant
conductance degradation and loss of typical graphene-like characteristics can take
place. Finally, self-consistent quantum transport calculations showed that vacan-
cies act as local charging centers that can induce electrostatic inhomogeneities on
the ribbon topology.

The second argument treated in this thesis was the conduction implications of
the interaction between graphene nanoribbons and metallic probes. We started
by calculating quantum transport for metal-graphene nanoribbon heterojunctions
within the atomistic self-consistent Schrédinger/Poisson scheme, paying atten-
tion on both the chemical aspects of the interface bonding as well as the one-
dimensional electrostatics along the ribbon length. We saw that bandbending
and doping effects can strongly influence the transport properties, giving rise to
conductance asymmetries and a selective suppression of the subband formation.
Within a complementary context, we saw that junction electrostatics and p-type
characteristics drove the conduction mechanism in the case of high work function
Au, Pd and Pt electrodes, whereas contact resistance became dominant in the
case of Al. We thereon proceeded with the calculation of purely nonequilibrium
charging effects in the high-bias regime for finite-size armchair graphene nanorib-
bons biased within source and drain metallic electrodes. The analysis evidenced
dynamic electron-electron interactions that affected the conduction mechanism
by provoking electronic structure alterations. The origin of such process was
traced in a tracking relationship between the device’s local density of states and
the electrochemical potentials of the contacts. We finally discussed why such
effects have no equivalent in the semiclassical limit.

The third argument treated in this thesis was the interaction between graphene
and SiC substrates. We started by evaluating latteral confinement in Si-face
grown films within electronic structure calculations of few-layer epitaxial graphene
nanoribbons. Using an atomistic description for both the graphene layers and the
substrate and real/momentum space projections we argued that the role of the
heterostructure’s interface can become crucial for the conducting capacity of the
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studied systems. The key issue that arose from this interaction was a Fermi level
pinning effect introduced by dangling interface bonds. Such phenomenon was in-
dependent from the width of the considered nanostructures, compromising the im-
portance of confinement in these systems. We thereon performed first-principles
calculations based on the density functional theory for the determination of the
structural and electronic properties of epitaxial graphene on 4H-SiC(0001). Our
approach was based on the principle of lattice commensuration using appropri-
ate supercells that minimize non-physical stresses. Results showed that contrary
to Si-face epitaxial graphene, the first graphitic layer of the C-face has a purely
metallic character while 7 bands are partially preserved. However Dirac cones
appeared only with the second graphitic layer denoting a non-null interaction
with the substrate. Moreover we showed localized surface magnetic properties at
the interface and an absence of the Fermi-level pinning effects seen in the case of
SiC(0001).

A further theoretical investigation on the sources of non ideality in graphene-
based devices should take place in the future, since experimental evidence indi-
cates that disorder and environmental interactions are the most important factors
that hinder the ideal transmission of electrons in this material. From a method-
ological point of view an important improvement toward this goal could be the in-
troduction of purely ab initio Hamiltonians in the transport formalism for a more
precise determination of the structural and energetic properties of defects, impuri-
ties, metallic contacts etc. On the other hand a multidisciplinary approach could
evidence important aspects of device operation for graphene-based systems. As an
example, answers to simple questions like, “how stable is a graphene nanoribbon
device?”, could be affronted within combined high-temperature molecular dynam-
ics and quantum transport calculations for the verification of defect metastability
and conductance fluctuations. Finally it should be noted that a further effort in
order to implement scaling and optimization techniques in quantum transport
codes is necessary for a more efficient application of theoretical models over ex-
perimental data.
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Appendix A

The computational code

The main technical product of this PhD period is a fully optimized and versa-
tile quantum transport code based on the self-consistent Schrodinger/Poisson
scheme. This code combines the capabilities of the open-source NanoTCAD
ViDES software[37] and the in-house CNR-IMM transport code in order to de-
liver a three-dimensional quantum transport simulator with the following char-
acteristics: versatile geometry, metallic and ideal contacts, Schottky and ohmic
contacts, multiple gates, different dielectrics, optimized one-dimensional scaling
within order-N techniques, optimized convergence within a Newton-Rhapson pre-
dictor corrector algorithm, a wide range of channel materials, electron-electron
interactions, multi-scale semi-empirical Hamiltonians, and the possibility of ex-
pansion in order to incorporate fully ab initio Hamiltonians.

The main enhancements with respect to the open source version consist in the
inclusion of the NEGF formalism based on an extended Hiickel Hamiltonian[56]
and all the optimizations therein: iterative techniques for a fast calculation of the
surface green functions[95], block tridiagonal decomposition of the Green matrix
even for non-equivalent block dimensions[89] [00], real to k-space expansions for
the calculation of the surface green function of semi-infinite metallic leads[I17],
optimized matrix algebra operations with the use of LAPACK/BLAS libraries,
real-space user-defined single and double-( Slater-type non-orthogonal basis sets,
atomically-resolved calculation of the quantities of interest for conduction (DOS,
transmission probability, etc) and the possibility to directly introduce ab initio
Hamiltonians. The extended Hiickel method, although computationally heavier
with respect to the next-neighbor tight-binding one, allows for a series of new
features: simulation of numerous channel materials (practically all the materials
for which a parametrization exists), introduction of realistic metallic contacts and
direct evaluation of local chemical/structural disorder. In other words it allows
for a first-approximation chemical and spatial resolution to the description of the
electronic problem.
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A. THE COMPUTATIONAL CODE

Moreover, a series of auxiliary programs have been developed for the calcula-
tion of the bandstructure in one-dimensional periodic systems, the visualization
of the wavefunctions as well as of the energy bands in real space.
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