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Wir diirfen nicht denen glauben,

die heute mit philosophischer Miene

und tiberlegenem Tone

den Kulturuntergang prophezeien

und sich in dem Ignorabimus gefallen.

Fiir uns gibt es kein Ignorabimus,

und meiner Meinung nach auch

fir die Naturwissenschaft iiberhaupt nicht.
Statt des torichten Ignorabimus

heifle im Gegenteil unsere Losung:

Wir missen wissen - wir werden wissen!

David Hilbert

We must not believe those,

who today, with philosophical bearing
and deliberative tone,

prophesy the fall of culture

and accept the ignorabimus.

For us there is no ignorabimus,

and in my opinion

none whatever in natural science.

In opposition to the foolish ignorabimus
our slogan shall be:

We must know - we will know!

David Hilbert
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Abstract

Various complex systems such as the Internet and the World WideWeb, neural networks,
the human society, chemical and biological systems are composed of highly interconnected
dynamical units. Such systems can all be described as complex networks where the nodes
represent the dynamic units, and two nodes are connected by an edge if the two units interact
with each other. For most networks, the complexity arises from the fact that the structure
is highly irregular, complex and dynamically evolving in time and that the observed pat-
terns of interactions highly influence the behaviour of the entire system. However, despite
this complexity, a large number of networks from diverse fields such as biology, sociology,
economics or technology has been found to exhibit similar topological and dynamical fea-
tures. In this thesis we study different aspects of the structure and dynamics of complex
networks by using approaches based on Markov and high-order Markov models. Regarding
the structure of complex networks, we address the problem of the presence of three-body
correlations between the node degrees in networks. Namely, we introduce measures to eval-
uate three-body correlations by using a third-order Markov model, and we study them in
a wide range of real datasets. Then, we investigate how these correlations influence vari-
ous dynamical processes. Specifically, we focus on Biased Random Walks (BRW), a class
of Markovian stochastic processes which can be treated analytically and which extend the
well-known concept of Random Walk on a network. In a BRW, the motion of walkers is
biased accordingly to a generic topogical or dynamical node property. In particular, we in-
vestigate the connection between node-correlations in a network and the entropy rate that
can be associated to the BRWs on the network. We also show how it is possible to rephrase a
BRW process on a network as a plain RW on another network having the same topology but
different weights associated to the edges, and we propose a number of applications where this
conversion proves to be useful. In the final part of the thesis we apply the theory of complex
networks and high-order Markov models to analyze and model data sets in three different
contexts. First, we introduce a method to convert ensembles of sequences into networks. We
apply this method to the study of the human proteome database, to detect hot topics from
online social dialogs, and to characterize trajectories of dynamical systems. Second, we study
mobility data of human agents moving on a network of a virtual world. We show that their
trajectories have long-time memory, and how this influences the diffusion properties of the
agents on the network. Finally, we study the topological properties of networks derived by
EEG recordings on humans that interact by playing the prisoner’s dilemma game.
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Introduction

Science is a wonderful thing if one does
not have to earn one’s living at it.

ALBERT EINSTEIN

Several systems in nature and in technology astonish us for their remarkable com-
plexity. For example even the simplest form of life relies on hundreds of intricate
biochemical reactions, with the product of one reaction acting as a substrate for an-
other one. Larger organisms are characterized by thousands of cells communicating
with each other, and the complexity becomes overwhelming if one considers the human
brain, made up of approximately 10> — 107 connections between billions of neurons.
Other examples of natural systems where complexity is a striking feature are ecosys-
tems, where vegetal and animal species depend on the existence of each other, or the
genetic information encoded in their DNA. Complexity however is not just a feature
of life, but can be found also in many manmade systems. Among these systems there
is for example the WorldWideWeb, consisting of webpages interlinked in a nontrivial,
complex structure and whose complexity every internet surfer experiences daily. Even-
tually, the most intriguing and amazing complex system is probably the one where we,
human beings, are the fundamental constituents: the human society.

Complex systems are commonly understood as systems composed of a large number
of elementary units which as a whole exhibit properties not obvious from the proper-
ties of the individual parts. The microscopic interactions in the system lead to the
emergence of macroscopic properties. The complexity of a system emerges from the
behaviors of the numerous interacting simple elements, and the behavior of one ele-
ment is usually different in isolation from when it is part of the larger system. Although
many systems around us are complicated, not all are necessarily complex. For example,
a car or an airplane are both objects made of many interacting parts, or the system
of chemical reactions to produce a cleanser, but these systems are perfectly controlled
since the functioning of each constituent, as well as the interactions between their dif-
ferent parts, are completely understood. What makes a system complex, or what at
least all complex systems share, is the fact that an organization is present without any
external organizing principle being applied.
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Introduction

The Importance of Being Correlated

Because of the importance of the interactions between the constituents of such systems,
and because of the intrinsic strong correlations between the elements of the system,
powerful tools for the understanding of complexity are provided by complex network
theory and information theory.

Indeed, one of the simplest approaches to understand complex systems is to model
them as graphs whose nodes represent the dynamical units (e.g. the neurons in a brain,
individuals in a social system) and the links stand for the interactions between the units.
Since the properties of these graphs are much different from the properties of regular
lattices and random graphs, the standard models usually studied in mathematical
graph theory, it is common to refer to complex networks when talking about the graph-
backbone of complex systems. Complex network theory is the discipline studying the
topological and dynamical features of these complex networks. Of course, modelling
a system as a complex network can be a very strong approximation, since it means
translating the interaction between two dynamical units, which is usually depending
on time, space and many other details, into a simple binary number: the existence or
absence of a link between the two corresponding nodes. Nevertheless, in many cases of
practical interest, such an approximation provides a simple but still very informative
representation of the entire system. Also, the large number of studies of real-world
complex networks has revealed the important finding that, despite the inherent different
nature of many networks, most of them are characterized by the same topological
properties, suggesting the existence of universal mechanisms underlying many different
complex systems.

Information theory, instead, is the mathematical framework which helps us to tackle
the amount of information present in a system, making it possible to find hidden regu-
larities in what, from a first approach, can appear to be random or highly disordered.
The starting point of information theory relies on the definition of the concepts of ran-
dom variables, stochastic processes and entropy. As we will see in more detail later, for
example the strings of letters appearing in a text, the chain of aminoacids in a protein
or the sequences of cities a salesman visits can all be seen as stochastic processes. One
goal of information theory is trying to quantify how much memory on the past is needed
in order to predict what will appear next. For instance, information theory is at work
when our mobile phone suggests us how to complete a word while we are writing an
SMS. In the case of complex systems, where interactions between constituents play a
fundamental role, information theory allows us to understand how much information
is encoded in these interactions. We can answer for example questions like “Which
is the range and strength of correlations between aminoacids in proteins?” or “How
random are the connections between nodes in a network?” or also “How much memory
is there in patterns of human movements?”, allowing us to gain a deeper understanding
in many processes and structures underlying complex systems.

The contribution of this thesis to the field of complex systems is twofold: (i) by
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Introduction

widely using the framework of information theory, with emphasis on the concepts of
high-order Markov chain and of entropy, we focus and develop theoretical models and
analytical tools for the characterization of specific structural and dynamical properties
of complex networks, and (ii) we apply some of these models, the framework of complex
networks and in general concepts of stochastic processes, with emphasis on information
theory, for the study and analysis of data of different real systems. In particular, by
means of high-order Markov chains, we can develop tools able to detect particular
patterns of correlations not explored so far, in many different contexts and kinds of data.
High-order correlations, namely third-order correlations, are found in the patterns of
connectivity in a large number of real-world networks (chapter 3). A particular “mix” of
short- and long-range correlations are present in proteomes (chapter 5). Long memory
processes, hence long-range correlations, are at the base of human movements (chapter
6). At the same time, concepts derived from information theory, like the entropy
rate, were at the base of our investigation of the interplay between structure and
dynamics for a class of processes on networks named biased random walks (chapter
4). Finally, we take advantage of the poweful framework of complex network theory to
relate correlations in EEG data from people engaged in cooperative games to selfish
behavior (chapter 7).

Outline of the Thesis

The thesis is divided into three parts.

The first part, made up of two chapters, provides the background concepts we use
in the second and third part of the thesis. Chapter 1 is an introduction to complex net-
works. We give first the formal definition of graph, the mathematical representation
of a network, and introduce the most important measures to characterize the topo-
logical properties of graphs. Successively, we discuss typical properties of real-world
networks, and we conclude with a review of the main models to construct networks. In
chapter 2, we provide the basics of information theory. First we introduce the notions
of stochastic process, as well as of joint, conditional and relative entropy. We then
illustrate the concepts of Markov chain and of high-order Markov chain and focus on
their properties. In particular, we explain the key-concept of ergodicity and show how
this impacts the growth of entropy, as expressed by the so-called entropy rate.

In the second part of the thesis, we focus on the study of the structure and dynamics
of complex networks from a theoretical point of view. In particular, in chapter 3 we
describe the formalism to study correlations between pairs of nodes in a network. As
these two-body correlations have been found to be a particular feature in most real
networks and play an important role in many processes, we address in this chapter
the problem of measuring two-body correlations as well as higher order correlations.
In particular, we illustrate how to extend the mathematical formalism to the study
of three-body correlations, namely correlations in triplets of nodes, by using high-
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Introduction

order Markov chains. We also investigate the existence of three-body correlations in a
number of real-world networks, assessing that they are present in most of them and that
they are not negligible in respect to the correlations of lower order. The dynamics of
networks are instead studied in chapter 4. We focus on a particular class of dynamical
processes on networks, called random walks. After introducing the definition of random
walk, and distinguishing between unbiased and biased random walks, we characterize
them as markovian stochastic processes, and we use information theory to derive their
properties. We also show how to associate an entropy rate to a random walk on a
graph, and we prove the possibility of designing biased random walks with maximal
entropy rate for a given graph by solely using information locally available on the graph
constituents. In the end of the chapter, we also mention how to rephrase the problem of
biased random walks in terms of unbiased random walks by redefining the underlying
graph.

Finally, in the third and last part of the thesis we move to the analysis of real-world
datasets by using approaches based on complex networks and information theory. In
chapter 5, we first propose a method to convert ensembles of symbolic sequences into
networks. This conversion, based on the use of high-order Markov chains, retains the
short- and long-range correlations in the sequences and is shown to have the advantage
to compact the most important information contained in the original data into an easier
to handle object. The usefulness of the method is illustrated by means of applications
in different contexts, namely to the collection of human proteins where we are able to
uncover details on the protein biological function, to a set of short messages in a social
platform with the aim of detecting “hot topics”, and to quantifying chaos in trajectories
of dynamical systems. Further, in chapter 6, we study a data set on mobility of players
in an online game. The analysis of these data provides evidence that mobility is
influenced not only by spatial constraints, but also by socio-economic factors, and that
human mobility patterns exhibit long-range correlations. We construct a long-term
memory model that captures the statistical properties observed in the data. Finally,
in chapter 7, we present results from an experimental study on human interaction,
conducted in collaboration with a neuroscience laboratory. The experiment consists
in recording EEG data of electrical brain activities between pairs of individuals who
are playing the Prisoner’s Dilemma game. Performing an analysis on this EEG data
within the framework of complex networks, we demonstrate the striking possibility to
predict whether a player will cooperate with his/her co-player.

16



Chapter 1
The ABC of Complex Networks

The important thing in science is not so
much to obtain new facts, as to discover
new ways of thinking about them.

WILLIAM BRAGG

Networks can be represented as graphs, and graph theory [12-14] offers the frame-
work for the exact mathematical treatment of complex networks. In the first part
of this chapter, we will introduce definitions and notations for the study of graphs.
We will discuss the most important properties characterizing the graphs of many real-
world networks in the second part of the chapter, while the most important models to
construct graphs will be revised in the third part.

1.1 Definitions and measures

1.1.1 Notation

An undirected (directed) graph G = (N, L) consists of two sets N and £, such that N #
() and L is a set of unordered (ordered) pairs of elements of N'. The elements of N' =
{n1,na9,....,ny} are called nodes or vertices, while the elements of £ = {l3,ls,...,lx}
are links or edges. The number of elements in N and £ is usually denoted by N and
K, respectively. We assume that the graph has no multiple links, meaning that all the
elements of the set £ are different from each other.

A node is usually denoted with a number ¢ = 1,--- , N, which is the order of the
node in the set AV. In a undirected graph, a link is individuated by a couple of nodes
i and j, and it is denoted as (7,7) or {;;. The link is said to connect the two nodes i
and j, or also to be incident in ¢ and j.

Two nodes connected by a link are said to be adjacent or neighboring nodes. In a
directed graph, the order of the two nodes forming a links matters: (i, j) stands for a

17



1. The ABC of Complex Networks

link from i to j, which is different from (j,4), standing for a link from j to 7. Two links
between the same pair of nodes but with different directions may occur simultaneously.
Often links of a directed graph are referred to as arcs. In an undirected graph with N
nodes, the total number of links K is a number between 0 and N (N — 1) /2. In the
case of a directed graph, the maximum number of links is equal to N (N —1). When
a graph has a number of links equal to the maximum, the graph is said to be a fully
connected graph.

1.1.2 Representations of a graph

A graph can be visually represented by drawing dots or small circles, corresponding
to nodes, and by connecting two dots by a line if between the corresponding nodes a
link occurs. In Fig. [1.1, an example of an undirected graph and of a directed graphs
are drawn in panels (a) and (d) respectively. Although the visual representation can
be very helpful to get a first idea of the structure of a graph, it can be used only in a
few cases, when the graph has a small number of nodes and of links. A more powerful
representation is provided by the so-called adjacency matrix A. This is a square matrix
of dimension N, whose generic entry a;; is either one, if a link exists between ¢ and j,
or zero, if no link occurs. In the case of a directed graph, a;; is 1 if there is a link going
from i to j and zero otherwise. In panel (b) of Fig. the adjacency matrix of the
graph in (a) is shown, while the adjacency of the graph in (d) is reported in panel (e).
Notice that the adjacency matrix of the undirected graph is symmetric, while it is not
for the directed graph.

While the adjacency matrix is very convenient for analytical calculations and for
theoretical proofs, it is not practical for numerical computations. In fact, since the
adjacency matrix of most real-world network is sparse, meaning that the number of
non-zero entries of the matrix is of the same order of N, the computer representation
of the graph in terms of adjacency matrix stores also many useless zero-entries. A more
compact representation, saving considerable storage space, is the ij-form, also called
edge list. In this representation, the graph is encoded as a K x 2 matrix, where each
row contains two entries corresponding to the ending nodes i and j of one of the link
(1,7) of the graph. For an undirected graph, the edge list has dimension 2K x 2 if
one considers pairs of nodes has ordered. This is a less compact form, but it avoids
misunderstanding if nothing about the directed/undirected nature of the links is a
priori specified. Notice that in the edge list representation, there is no information
about the presence of isolated nodes, i.e. nodes with no links. In Fig.|1.1j(c) and (f),
examples of edge lists, associated to the graphs of panels (a) and (d), are shown.

1.1.3 Path, walk, cycle

A central concept in graph theory is that of reachability of two different nodes of a
graph. In fact, two nodes that are not adjacent may nevertheless be reachable from

18



1.1. Definitions and measures

a) 1 b) C) /1 2
1 4

2 6 01 0 1 0 1 2 1
100100 5 4

3 N N
O 000000 41

5 100000 4 2

4 3

4 6 1

010101 13
100100 1 6
A_| 000100 2 1
111000 41
00000 0 6 1
100000 6 4

Figure 1.1: Representations of an undirected (upper panels) and of a directed (bottom panels) graph.
In a) an undirected graph of 6 nodes and 5 links is shown, while in (b) we report the corresponding
adjacency matrix and in (c) the corresponding edge list. In this edge list, each pairs of connected
nodes is reported twice, as ordered pairs are considered. This representation is somehow redundant
since a link of an undirected graph can be in principle individuated just by its ending nodes, without
specifying their order. A more compact representation, where each link is specified only once, can be
used if one knows a priori that the graph is undirected. In (d) a directed graph of 6 nodes and 6 arcs
is shown. The corresponding adjacency matrix is reported in panel (e), the corresponding edge list in
panel (f). Notice that in both the graphs node 5 is an isolated node (i.e. a node without links), which
is reflected in the 5th column and 5th row of the adjacency matrixes being made of zeros.

one to the other. A walk from node ¢ to node j is an alternating sequence of nodes and
edges (a sequence of adjacent nodes) that begins with ¢ and ends with j. The length of
the walk is defined as the number of edges in the sequence. A trail is a walk in which
no edge is repeated. A path is a walk in which no node is visited more than once. The
walk of minimal length between two nodes is known as shortest path or geodesic (see
also Sec. . A cycle is a closed walk, of at least three nodes, in which no edge
is repeated. A cycle of length £ is usually said a k-cycle and denoted as C. Cj5 is a
triangle (C3 = K3), Cy is called a quadrilateral, Cs a pentagon, and so on. A graph is
said to be connected if, for every pair of distinct nodes ¢ and 7, there is a path from
1 to j, otherwise it is said unconnected or disconnected. A component of the graph is
a maximally connected induced subgraph. A giant component is a component whose
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1. The ABC of Complex Networks

size is of the same order as N.

1.1.4 Shortest Path

In a graph, the distance between two elements of the network, d;;, is defined as the
length of the geodesic, i.e. the shortest path, that goes from node 7 to j. In a uncon-
nected graph, the geodesic path between two nodes belonging two different component
is said to be infinite. One can then construct the distance matrix D so that its ij-entry
is equal to d;;. This matrix is symmetric in the case of an undirected graph, while it is
in general asymmetric for directed graphs. Based on the distance matrix D, two global
graph measures can be defined: diameter and average path length. The diameter of a
graph is the longest geodesic between any pair of nodes in the graph for which a path
actually exists. The average path length, usually denoted with L, is the mean of the
geodesic path lengths between all the pairs of nodes in the graph, hence

1
L=—" 5S4, (1.1)
REnP I

1.1.5 Degree of a node

The degree or connectivity k; of a node ¢ is defined as the number of edges incident in
i. In terms of the adjacency matrix A, the degree can be defined as:

JEN

In the undirected graph of Fig. for example, k1 = 3 and k5 = 0. If the graph is
directed, the degree of the node is of two different kinds: the out-degree k7" =3 a;;,
i.e. the number of links outgoing from the node, and the in-degree k" = Zj aji, i.e.
the number of links incoming in the node. Then, a total degree k; can be defined as
the sum of the in- and out-degree k; = k%" + k". In the directed graph of Fig.
kgt =2 k" = 3 and k1 = k! + kin = 5.

In the case of undirected graphs, another quantity of interest is the average con-
nectivity of the first neighbors of a node i, denoted as ky, (7). Formally, this quantity
can be written as:

S Y G 1
knn (Z) = I N o = — aijkj . (13)
Zj:l @ij ki ;

In the undirected graph of Fig. the average connectivity of the first neighbors of
node 1 is ky, (1) = f2thaths — 2
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1.1. Definitions and measures

1.1.6 Degree distribution

One of the most basic topological properties of a graph G is its degree distribution
P(k). It is defined as the probability that a randomly chosen node of the graph has
degree k or, equivalently, as the fraction of nodes in the graph having degree k. In this
thesis we will also indicate the degree distribution, with the symbol P, which stresses
the fact that k is a discrete variable.

In the case of directed networks, one has to consider two distributions, P(k™) and
P(k°""). To compute the degree distribution Py of a real network, one has to count the
number of nodes N which have the same connectivity k. Then, it will be P, = Ny /N,
where N is, as usual, the total number of nodes in the graph.

As we will see in following sections of this chapter and in other parts of this thesis as
well, important information on the graph can be derived from the statistical moments
of the degree distribution P(k). The n-moment of P(k) is defined as:

(k") =Y k" P(k). (1.4)

The first moment (k) is the mean degree of G. The second moment measures the
fluctuations of the connectivity distribution.

1.1.7 Degree-degree correlations

The degree distribution completely determines the statistical properties of uncorrelated
networks. However a large number of real networks are correlated in the sense that
the probability that a node of degree k is connected to another node of degree, say k',
depends on k. In these cases, it is necessary to introduce the conditional probability
P(K'|k), being defined as the probability that a link from a node of degree k points to
a node of degree k'. P(K'|k) satisfies the normalization ), P(k'|k) = 1, and the de-
gree detailed balance condition kP (k'|k)P(k) = K'P(k|k")P(k’") [15]. For uncorrelated
graphs, in which P(k’|k) does not depend on k, the detailed balance condition and the
normalization give P(k'|k) = kK'P(k')/ (k).

In general, the computation of the matrix P(k’|k) yields noisy results, mainly due
to finite size effects. Because of this, in order to investigate the presence of correla-
tions, it is convenient to compute other quantities, such as the average degree of the
neighbours of nodes with connectivity k, (k,,) (k). This quantity is in fact related to
the conditional probability P(k’|k) by means of the following formal definition:

(kan) (k) = D K'P(K|k) (1.5)

Although the rigorous definition of (k,,) (k) is the one given above, the average
degree of the neighbours of nodes with connectivity £ is nothing else than the average
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1. The ABC of Complex Networks

connectivity of the neighbors of a node, as expressed by Eq. averaged over all nodes
belonging to the same degree class, i.e. having the same connectivity k:

() () = Ni 3 Fin (18 (s )

where ¢ (k', k") is the kronecker delta and Ny is the number of nodes with the same
degree k.

When a graph has no degree correlations, making use of the relation P(k'|k) =
K P(k")/(k) and of Eq. one can easily prove that (k) (k) = (k?)/(k) and thus that
(knn) (k) does not depend on k. However this is not the case in most real-networks,
which do have degree-degree correlations. In particular, it has been shown [13], [16]
that in many real networks one finds that (k,,) (k) ~ k7. When (k,,) (k) is an
increasing (decreasing) function of k, happening for v < 0 (v > 0), the network is
said to be assortative (dissasortative). The assortativity denotes the tendency of nodes
of similar degree to connect with each other, while in dissasortative networks highly
connected nodes tend to be linked to low degree ones. It has been observed that
social networks tend to be assortative, while technological and biological networks
show usually dissasortative patterns.

Sometimes it is useful to measure the overall degree-degree correlations in a network,
meaning that one summarizes with one value the presence and magnitude of degree-
degree correlations. Such a measure is provided by the assortativity mizing coefficient
r [14, [I7], which is defined as:

Zki,kj klk] (Ekivkj /2K o qqukﬂ)
r =

2
Uq

(1.6)

where Ej, 1. is the number of edges connecting nodes of degree k; and k;, g, is the distri-

bution of the so-called remaining degree and is ¢ = %
k; VHERG

bution and 03 is the variance of the distribution g;. With this definition, r € [—1, 1]. In
a network with no assortative (or disassortative) correlations £y, x, /2K takes the value
Qx;qk;, and the coefficient r = 0. If there are correlations instead, Ej, t; /2K will differ
from this value and r, which is nothing else than the Pearson correlation coefficient of
the degrees at either ends of an edge, will indicate how (dis)assortative a network is. A
positive value of r, indicates that the presence of assortativity, i.e. an overall tendency
of nodes with high (low) degrees connecting to nodes with high (low) degrees. A nega-
tive value of r means instead that the network is disassortative, i.e. there is a tendency
for nodes with high (low) degrees to connect to nodes with low (high) degrees.

, Py is the degree distri-

22



1.2. Topological properties of real networks

1.1.8 Clustering coefficient

Clustering, also known as transitivity, is a typical property of many social networks,
like the acquaintance network, where two individuals with a common friend are likely
to know each other [I§]. In terms of a generic graph G, transitivity means the presence
of a high number of triangles. This can be quantified by defining the transitivity T
of the graph as the relative number of transitive triples, i.e. the fraction of connected
triples of nodes (triads) which also form triangles [19]:

3 x # of triangles in G

T =
# of connected triples of vertices in G

(1.7)

The factor 3 in the numerator compensates for the fact that each complete triangle
of three nodes contributes three connected triples, one centered on each of the three
nodes, and ensures that 0 < T < 1, with T'=1 for Ky.

An alternative possibility is to use the graph clustering coefficient C' [20], defined
as follows. A quantity ¢; (the local clustering coefficient of node i) is first introduced,
expressing how likely a;,,, = 1 for two neighbors j and m of node 4. Its value is obtained
by counting the actual number of edges (denoted by e;) in G; (the subgraph made up
of the neighbors of 7). Notice that G; can be, in some cases, unconnected. The local
clustering coefficient is defined as the ratio between e; and k;(k; — 1)/2, the maximum
possible number of edges in G; [20]:

2e; Qi Qim Ay
G == 2im Oty (1.8)
ki(k; — 1) ki(k; — 1)

The clustering coefficient of the graph is then given by the average of ¢; over all the
nodes in G:

C:(C):%ZQ : (1.9)

By definition, 0 < ¢; < 1, and 0 < C < 1. It is also useful to consider c¢(k), the
clustering coefficient of a connectivity class k, which is defined as the average of ¢;
taken over all nodes with a given degree k.

1.2 Topological properties of real networks

1.2.1 The small-world property

The study of several dynamical processes over real networks has pointed out the exis-
tence of shortcuts, i.e. bridging links that connect different areas of the networks, thus
speeding up the communication among otherwise distant nodes.

In regular lattices in D dimensions, the mean number of vertices one has to pass
by in order to reach an arbitrarily chosen node, grows with the lattice size as N'/<.
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Figure 1.2: An important graph property is the degree distribution function P(k), expressing the
probability that a randomly chosen node of the graph has k edges. A random graph, described in
Sec. has a Poissonian degree distribution P (k) = e~ (% U,i—!k, where (k) is the average connectivity
in the network. A scale-free graph is instead characherized by a power-law degree distribution (P(k) =
Ak~ usually with 2 < v < 3), as described in Sec. and A power-law distribution appears
as a straight line in a double-logarithmic plot. In the figure, we show with red triangles the degree
distribution of an Erdés-Rényi (ER) random graph, while with black circle the degree distribution of
a scale-free graph is reported. Both graphs have the same number of nodes (N = 10%) and the same
average connectivity ((k) = 8). One can easily notice that in the case of a scale-free graph, low degree
nodes are the most frequent ones, but there are also a few highly connected nodes, usually called hubs,
not present in a ER random graph.

Conversely, in most of the real networks, despite their often large size, any two nodes
are usually connected by a relatively short path. This feature is known as the small-
world property and is characterized by an average shortest path length L, defined as
the average length of the shortest paths between any two pairs of nodes in the graph,
that depends at most logarithmically on the network size N [20]. Historically, the
small-world property was first observed in social networks by Milgram [I8, 21], 22],
who conducted a series of social experiments to estimate the actual number of links
in a chain of acquaintances. Milgram’s surprising result was that the number of links
needed to connect two individuals taking part in his experiments and sampled from
the USA population, had an average value of just six. The small-world property has
been later observed in many other real networks, including biological and technological
ones, and is a fundamental mathematical property in some network models, as for
instance in random graphs. However, at variance with random graphs, the small-
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1.2. Topological properties of real networks

world property in real networks is often associated to the presence of high values of the
clustering coefficient, defined as in equation . For this reason, Watts and Strogatz,
in their seminal paper, have proposed to define small-world networks as those networks
having both a small value of L, like random graphs, and a high clustering coefficient
C, like regular lattices [20]. In another formulation, the small-word properties can be
reformulated in terms of the so-called local and global efficiency [23] 24].

1.2.2 Scale-free degree distributions

Until a few years ago, before the extensive exploration of data about real-world net-
works, it was common idea that networks were “homogeneous”. Homogeneity in the
interaction structure means that almost all nodes are topologically equivalent, like in
regular lattices or in random graphs. In these latter ones, for instance, each of the
N(N —1)/2 possible links is present with equal probability, and thus the degree dis-
tribution is binomial or Poisson in the limit of large graph size (see sec. . It is
not startling then that, when the scientists approached the study of real networks from
the available databases, it was considered reasonable to find degree distributions local-
ized around an average value, with a well-defined average of quadratic fluctuations. In
contrast with all the expectancies, it was found that most of the real networks display
power law shaped degree distribution P(k) ~ Ak™7, with exponents varying in the
range 2 < v < 3. The average degree (k) in such networks is therefore well defined and
bounded, while the variance o = (k?) — (k)? is dominated by the second moment of
the distribution that diverges with the upper integration limit k., as:

max

kmaz
<K >= / 2P(k) ~ k5 (1.10)
k

‘min

Such networks have been named scale-free networks [25] 26], because power-laws have
the property of having the same functional form at all scales. In fact, power-laws are
the only functional form f(z) that remains unchanged, apart from a multiplicative
factor, under a rescaling of the independent variable z, being the only solution to
the equation f(ax) = Bf(x). Power-laws have a particular role in statistical physics
because of their connections to phase transitions and fractals. In the following, when
referring to scale-free networks, we will denote the class of graphs with power-laws in
the degree distribution. Of course, this does not necessarily implies that such graphs
are scale-free with respect to other measurable structural properties. These networks,
having a highly heterogenous degree distribution, result in the simultaneous presence
of a few nodes (the hubs) linked to many other nodes, and a large number of poorly
connected elements.
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1. The ABC of Complex Networks

1.2.3 Community structure

Real networks display large inhomogeneities, revealing a high level of order and or-
ganization. The distribution of edges is not only globally inhomogeneous, as shown
by fat-tailed degree distributions, but also locally, with high concentrations of edges
within special groups of nodes, and low concentrations between these groups. This
feature of real networks is called community structurd27]. Communities, also called
clusters or modules, are groups of nodes which probably share common properties
and/or play similar roles within the graph. In Fig. a schematic example of a graph
with communities is shown.

The aim of community detection in graphs is to identify the modules and, possibly,
their hierarchical organization, by only using the information encoded in the graph
topology. However, finding communities within an arbitrary network can be a difficult
task. The number of communities, if any, within the network is typically unknown
and the communities are often of unequal size and/or density. However, despite these
difficulties, in the last years, tons of methods for community finding have been pro-
posed, and many of them have been proved to be successful at various levels. Below
we describe just two of the several methods to detect communities, which will be re-
called and applied later on in this thesis: the Markov Clustering (MCI) and modularity
optimization. A complete review on community structure in networks, together with a
detailed analysis of different algorithms to detect communities, is provided in [27].

MCI Algorithm

The Markov Clustering algorithm [28], shortened as MCI, is based on the behavior
of random walkers (see Sec. for more information about the concept of random
walk) moving on the network. For this reason, this algorithm can be used also for
directed and weighted graphs. The algorithm works as follows: (i) start constructing
the operator B = A + I, where A is the adjacency matrix of the network and I is the
identity operator, and normalize each column of B to obtain a stochastic transition
matrix II = {m;;}: m;; = %, (ii) compute IT? (this operation is also called expansion);
(iii) take the ry;, power (with r > 1) of every single entry p;; of II (this operation is also
denoted as inflation), then normalize again to one each column of the new computed
matrix; and (iv) go back to step ii. After several iterations MCL converges to a matrix
[IMC (r) which is invariant under expansion and inflation transformations. Only a
few rows of IIM“! (r) have some nonzero entries: the non-zero entries belonging to
the same row correspond to the nodes belonging to the same community. The role of
the expansion operation is to let random walkers to explore the network, moving in
each expansion step from one node to its neighborsﬂ The inflation operation, instead,

'Sometimes, as an alternative to the expression community structure, also the term clustering is
used. However, we prefer not to use this term to avoid misunderstanding with the concept of clustering
coefficient, introduced in Sec. which has nothing to do with the idea of community structure.

2Notice that the addition of the identity matrix in (i) makes a node neighbor of itself.

26



1.2. Topological properties of real networks

Figure 1.3: Example of a graph made up of 4 communities, indicated in the figure by dashed circles.
Nodes belonging to the same community have the same colour. The density of links between nodes
within the same community is larger than that of links between members belonging to different
communities.

reinforces the high-probability walks at the expense of the low-probability ones. The
parameter r tunes then the granularity of the clustering. If r is large, the effect of
step becomes stronger and the random walks are likely to end up in small “basins of
attraction” of the network, resulting in several small clusters. On the other hand, a
small r produces larger clusters. In the limit of » — 1, only one cluster is detected.

Modularity and its optimization

One of the most widely used methods for community detection is modularity maxi-
mization. The Modularity of a graph partition, i.e. the division of the graphs into
modules, is the fraction of the edges that fall within the given modules minus the
expected fraction if edges were distributed at random. For a given division of the net-
work’s nodes into some modules, modularity reflects the concentration of nodes within
modules compared with random distribution of links between all nodes regardless of
modules. The modularity maximization method detects communities by searching over
possible divisions of a network for one or more that have particularly high modularity.
There are different methods for calculating modularity. In the most common version
of the concept, the randomization of the edges is done so as to preserve the degree of
each vertex. For an undirect graph, to detect communities by maximizing modularity
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1. The ABC of Complex Networks

@, the usual functional form used is the following:

1 kik;
Q = ﬁ ; (aij — 2[(]> 5 (Cl',Cj) (111)

where ¢; is the group or community to which node 7 belongs in the graph partition
considered for the evaluation of the modularity and § (m,n) is the Kronecker delta.

The value of the modularity lies in the range [—1, 1]. It is positive if the number of
edges within groups exceeds the number expected on the basis of chance.

Since exhaustive search of the value of modularity over all possible divisions is usu-
ally intractable, practical algorithms are based on approximate optimization methods
such as greedy algorithms, simulated annealing, or spectral optimization, with different
approaches offering different balances between speed and accuracy.

1.3 Network models

In the last twenty years, the analysis of many different kinds of real-world networks,
highlighting a number of different topological features, has stimulated the introduction
and study of many models. Most of these models try to capture the properties of real-
graphs, and helped to construct a series of methods and algorithms to create “synthetic”
networks. In the following we describe some mathematical models of networks which
are either milestones in the network science or which will be used later in this thesis.

1.3.1 Erdos-Rényi random graphs

In 1959, Erdés and Rényi published a seminal article in which they introduced the
concept of a random graph [29]. The term random graph refers exactly to the disordered
nature of the arrangement of links between different nodes. Erdés and Rényi proposed
a model to generate random graphs with N nodes and K links, henceforth called Erdds
and Rényi (ER) random graphs and denote as Gﬁf?}(. Starting with NV disconnected
nodes, ER random graphs are generated by placing a number K of edges randomly
between pairs of nodes, taking care to avoid multiple connections between the same
pair of nodes [29]. With this procedure, one gets a graph which is only one of many
possible realizations. In other words, the generated graph is only one element of the
statistical ensemble of all possible combinations of K connections in a graph of N
nodes.

An alternative model for constructing ER random graphs consists in connecting
each of the w couples of nodes with a probability 0 < p < 1. This defines a
different ensemble, indicated as Gﬁfz, whose elements can have different number of
links, that is to say not exactly K links. It can be proved that the two models G}

and G coincide in the limit of large N. In this limit, one can switch from one model

2K
N(N-1)

to the other using the relation p =
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1.3. Network models

For large N, and fixed (k) = 2K /N, it is easy to prove that the degree distribution
of ER graphs is well approximated by a Poisson distribution:

P(k) = e_<k>M . (1.12)

This also reflects the idea that all the nodes in a random graph are statistically
equivalent, as all nodes in the graph have “similar” degree, in the sense that a randomly
chosen node it is likely to have a degree close to the average value (k)*. Because of
their degree distribution, ER graphs are sometimes referred to as Poisson random
graphs. ER random graphs are, by definition, uncorrelated graphs, since the edges are
connected to nodes regardless of their degree. Consequently, P(k'|k) and k., (k) are
independent of k.

ER random graphs, for their simplicity, are the most studied among graph models.
However, as a model of a real-world network, it has some serious shortcomings. Perhaps
the most serious is its degree distribution, which is quite unlike those seen in most real-
world networks.

1.3.2 Generalized Random Graphs: Configuration Model

The poissonian distribution of ER random graph is very different from most degree
distributions found in most real networks. Indeed, the degree distribution of many real
networks has been found to be fat-tailed, and, in many cases, to follow a power-law
degree distribution (see Sec.[1.2.2). Therefore, if we want to model real-world networks
as random graphs, or if we want to extract interesting properties of real networks from
a comparison with an appropriate null model, one should extend ER models to consider
random graphs in which the degree of each node is arbitrarily assigned to take a precise
value. This model represents the generalization of the ER model, and allow us to
generate graphs with a given arbitrary degree distribution P (k). In the mathematical
literature, this kind of model is known as the configuration model, to describe ensembles
of random graphs with N nodes, K edges, and a given degree sequence [12] [30]. The
configuration model is defined as follows: assign a number of nodes IV, a number of links
K and a degree sequence D = {ky, ks, -+ ,ky}, i.e. a sequence of N integer numbers
such that ), k; = 2K; the configuration model, denoted as Gf\‘;jg, then consists in the
ensemble of all graphs of N nodes and K edges, in which vertex ¢ has the specified
degree k;, with ¢ = 1,2,--- | N, and where each graph has the same probability to be

generated.
To generate one graph of the ensemble defined by a given degree sequence D, one
can assign to each node 7, with ¢ = 1,--- | N a number of half-edges (also called stubs)

equal to its degree k;. Then, one matches randomly with uniform probability pairs of
stubs together, until all the K edges of the graph are created. Obtaining a graph with
a given degree distribution P (k) is very simple: it is sufficient to extract the IV integer
numbers forming the degree sequence with a probability distribution identical to the
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Y

Randomness

Figure 1.4: Small-world networks [20] have intermediate properties between regular lattices, first
graph in figure, and random networks, third graph in figure. A regular lattice has high clustering but
also a large average path length, while a random graph is characterized by a short path length together
with a low clustering. A small-world network, middle graph in figure, borrows a high clustering
coefficient from the former and a short average path length from the latter.

desired degree distribution P (k).

1.3.3 Watts and Strogatz model

The Watts and Strogatz (WS) model is a method to construct graphs having both the
small-world property and a high clustering coefficient [20]. The model is based on a
rewiring procedure of the edges implemented with a probability p. The starting point
is a N nodes ring, in which each node is symmetrically connected to its 2m nearest
neighbors for a total of K = mN edges. Then, for every node, each link connected to
a clockwise neighbor is rewired to a randomly chosen node with a probability p, and
preserved with a probability 1 — p. Notice that for p = 0 we have a regular lattice,
while for p = 1 the model produces a random graph with the constraint that each node
has a minimum connectivity k,.;, = m. For intermediate values of p the procedure
generates graphs with the small-world property and a non-trivial clustering coefficient.
The small-world property results from the immediate drop in L(p) as soon as p is
slightly larger than zero. This is because the rewiring of links creates long-range edges
(shortcuts) that connects otherwise distant nodes. The effect of the rewiring procedure
is highly nonlinear on L, and not only affects the nearest neighbors structure, but it
also opens new shortest paths to the next-nearest neighbors and so on. Conversely, an
edge redirected from a clustered neighborhood to another node has, at most, a linear
effect on C. That is, the transition from a linear to a logarithmic behavior in L(p) is
faster than the one associated with the clustering coefficient C'(p). This leads to the
appearance of a region of small (but nonzero) values of p, where one has both small
path lengths and high clustering.
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1.3. Network models

Figure 1.5: llustration of the BA algorithm for my = 3 and m = 2. At ¢ = 0 we start with a complete
graph of mg nodes. At every timestep a new node j is added, which is connected to m = 2 vertices,
preferentially to the vertices with high connectivity, determined by the rule of Eq. Thus, at time
t there are mg + t vertices and (”30) + mt edges. At each time step, the new node n is in cyan, and
the two new edges are drawn with dashed lines.

1.3.4 Barabasi-Albert model

The Barabdsi-Albert (BA) model is a model of different kind in respect to those pre-
sented before. In fact, it is a model aiming at reproducing how a network grows, instead
of modelling a network in its final, “equilibrium” state. The BA model was inspired to
the formation of the World Wide Web, a scale-free graph, and is based on two basic
ingredients: growth and preferential attachment [26]. The basic idea is that in the
World Wide Web, sites with high connectivity obtain new links at higher rates than
low-degree nodes. More precisely, a BA undirected graph of N nodes and with average
degree (k = 2m) is constructed, starting with a complete graph with a small number
N(t = 0) = m0 of nodes and K(t = 0) = ("}) links. The graph grows according to
the following two steps:

e At each time step ¢t (¢t =1, 2, 3,...) a new node j is added. The new node has
m < myg edges, that link j to m different nodes, already present in the system;

e When choosing the nodes to which the new node j connects, it is assumed that
the probability II;_,; that n will be connected to node ¢ is linearly proportional
to the degree k; of node 1, i.e.:

ki

M, = e
] Zlk/’l

(1.13)

After ¢ time steps, the algorithm results in a graph with N(t) = N(t = 0) + ¢ nodes
and K(t) = K(t = 0) + mt edges, which for very large values of ¢ corresponds to a
graph with an average degree (k) = 2m (see also Fig. [L.5)). The procedure is iterated
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until the desired final number of nodes N is reached. In the limit ¢ — oo, the model
produces a degree distribution P(k) ~ k=7, with an exponent v = 3.
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Chapter 2

Elements of information theory

An absolute can only be given in an intuition,
while all the rest has to do with analysis.

HENRI BERGSON

In this chapter we provide the basics of information theory. In particular we in-
troduce the notion of stochastic process and the definitions of joint, conditional and
relative entropy. We then illustrate the concepts of Markov chain and of high-order
Markov chain and focus on their properties. In particular, we explain the key-concept
of ergodicity and show how this impacts on the growth of entropy, as expressed by the
so-called entropy rate.

2.1 Stochastic processes

Let X be a discrete random variable with state space S = {sy, S2,...,sn} and proba-
bility distribution p; = Prob[X = s;], i = 1,..., N. In other words, p; is the probability
that the random variable X assumes the value s;, i.e. that the system is in state s;.
Unless otherwise specified, we shall assume that the number N of states is finite.

A stochastic process is a sequence of n random variables (X7, Xs,...,X,,). The
integer n is the length of the stochastic process. Since there can be an arbitrary
dependence among the random variables, the stochastic process is characterized by the
joint probability distribution:

Dirsig,in = PTob[(X7, Xo, ..., X3) = (84, Sigs - - -5 Siy))] (2.1)
or by the conditional probability distribution:

Dinirlin,sin = PTOD[ X1 = 55 (X1, .0, X5) = (Sip5 - -5 84,)] (2.2)
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2. Elements of information theory

where 71,29, ...,%,, 1,11 are indices that can take integer values between 1 and N. The
conditional probability p;, . ji,,..., can be written as:

n

Diiin,..jinga
Pipsrlityin = — (2.3)
p21,12,~~-,1n

in terms of the joint probabilities.

A stochastic process can be viewed as a dynamical system, i.e. as a system whose
state changes in time:
Xi—>Xo—>X3— - (24)

The subscript on the random variables here represents a time index: by X; we mean
the state of the system at time ¢, with ¢ = 1,2,.... At each time ¢ the system can
assume one of the states from set S. The sequence iy,..., 1, represents a possible
trajectory of time length n. This means that the dynamical system is in state s;,
at time ¢ = 1, then it moves to state s;, at time ¢ = 2 and so on. In principle, we
have N different sequences of length n. Not all of them are in general possible, and
some of them happens with a probability higher than others. All of this is described in
terms of the joint probability distributions in Eq. or by the conditional probability
distributions in Eq. . The joint probability p;, 4,... s, represent how frequent is the
time sequence of states s;,,...,s;,, while the conditional probability p;, , i,,..i, gives
the probability that the dynamical system is at state s; ., at time ¢ = n + 1, after the
sequence S;,,...,S;

nt

2.1.1 Markov chains

A discrete stochastic process (X7, Xo, X3, ...) is said to be a Markov process, or equiv-
alently a Markov chain if, for n = 1,2, ..., the conditional probability distribution has
the form:

pin-&-l‘ilwuyin = pin+1|in (n) = PrOb[Xn+1 = 8in+1|Xn = Sin] (25>

for all iy, ia,..., in, iny1 € [1,..., N]. This means that the state of the nth random
variable depends only on the previous one, namely the (n — 1)th, and not on the entire
previous sequence. Such a process is said to be a short memory process, since the
“history” of the first n — 2 steps has no influence on the nth state. Eq. implies that
the joint probability distribution p;, ;, . ,, of a Markov chain has the form:

Pirin,sin = PirPisliy (1) *+* Pigin_y (n — 1). (2.6)

The conditional probability p;;(t) is called the transition probability of the Markov
chain at time ¢.

From now on we shall consider only Markov chains with time-invariant transition
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2.1. Stochastic processes

probabilities, i.e., Markov chains whose transition probabilities

P (t) = m(sils;) (2.7)

do not depend explicitly on time. Such Markov chains are called time-invariant Markov
chains. The probabilities 7(s'|s) satisfy the relation

> w(sl]s) =1 (2.8)

because from a given state at time ¢t — 1, the system goes to one of the possible states
at the next time with probability one.

The transition probabilities 7(s’|s) can be written in the form of a N X N transition
matriz:

m(s1]s1)  7w(s1]s2) -+ w(s1lsn)
I — 7T(52:’81) m(s2s2) 7T(32:|5N) _ (2.9)
w(snls1) 7w(snls2) -+ m(sn|sw)

With such a definition we have that m;; = 7(s;|s;), i.e. that the matrix entry m;
represents the probability to go from state j to state ¢. Because of condition ,
IT is a stochastic matrix, i.e. a matrix each of whose columns consist of nonnegative
real numbers, with each column summing to 1. By writing the probability p;(t) =
Prob[X; = s;], t =1,2,...,n, as a vector p(¢):

piy=| 7. (2.10)
p(t)
the dynamical evolution of the Markov chain is ruled by the equation
p(t+1) =Ip(t). (2.11)
The solution of the equation is given by
p(t)=11-1I-... 11 p(0) = II'p(0).

A time-invariant Markov chain is therefore characterized by the transition matrix II,
and by the initial distribution p(0).
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2. Elements of information theory

2.1.2 High-order Markov chain

Markov chains are short-memory processes. Not all stochastic processes are Markov
chains, since in general the probability of moving to state 7,,; depends on the whole
history, and equations are not valid. The simplest case of a non-Markov
stochastic process is when the state at time ¢t + 1 depends on both the states of the
system at time ¢ and at time £ — 1. In this case we have to work with the conditional
probabilities pj,j;, :,. Markov processes are also called first order Markov processes,
while processes determined by conditional probabilities p;,;, i, are called second order
Markov processes. Note that a second order Markov process can be represented as a
first order Markov process by extending the state vectors to pair of states.

A particular example of Markov process is the random walk on a graph. As we will
see in details in chapter [d] a random walk on a network is a dynamical process where
particles or walkers move from node to node. The random walk is a sequence {X,,},
where X,,, € {i1,4, -+ ,in} with iy representing the k-th node in the graph. Given
X, = 1, the next node in the sequence is chosen with uniform probability from the
neighbors of node 7. Such a random walk is known as an plain random walk (see also
Sec. . In a more general random walk, named biased random walk, a neighbor of
the node i, say j, is chosen with a probability which depends on a (time-independent)
property of 7. These dynamical rules yield processes which can be described by an
equation like [2.11] with a transition matrix II which is a function of the adjacency
matrix A of the graph and of the node properties biasing the walkers movements.

Examples of stochastic processes that have long memory, hence being high-order
Markov chains, are provided by written texts or by sequences of DNA. In fact, in a
text, the probability of finding a letter at a given point depends usually not only on
the previous letter in the sequence, but also on a number of other previous letters.
Similarly, in the DNA information is encoded in strings of nucleotides, which can be
represented by four letters A, C, G, T', and an analysis equivalent to the one performed
on written texts can be done. In chapter p| we will discuss about the application of
high-order Markov chains to extract meaning from linguistic and biological sequences.

2.2 Characterization of Markov Chains

From now on we shall restrict to first order Markov chains.

2.2.1 Classification of states

The states of a Markov chain fall into distinct types according to their limiting be-
haviour and are characterized by the following definitions.
Suppose that the chain is initially in state s;.

1. state s; is said recurrent if the chain returns to s; with probability 1. In this case
the time of first return will be a random variable called the recurrence time, and
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2.3. Finite size Markov chains

the state is called positive-recurrent or null-recurrent according to whether the
mean recurrence time is finite or infinite.

2. state s; is said transient if it is not recurrent (i.e. if the probability that the chain
returns to s; is less than one).

States can be distinguished also in periodic and aperiodic. Suppose that the chain
is initially in the state s;. A state s; has period T' if any return to state ¢ must occur
in multiples of T" time steps. Formally, the period of a state is defined as

T =ged{n>0:7" >0}

where gcd denotes the greatest common divisor. If 7" = 1, state s; is said to be
aperiodic. If T' > 1, state s; is said to be periodic with period T. A state s; is said to
be ergodic if it is aperiodic and positive recurrent.

2.2.2 Accessibility and communicating states

Having defined the basic types of states, it is possible to show that only states of the
same type are “accessible” to each other and can hence “communicate”. A state s; is
said to be accessible from s; if it is possible to reach s; from s; in a finite number of
transitions, i.e. if there is an integer k such that WZ(Jk ) > 0. If state s; is accessible from
s; and s; is accessible from s; then states s; and s; are said to communicate. Hence if
s; and s; are communicating, they must be both transient or both null recurrent, or

both positive recurrent, and furthermore, they must have the same period [31].

2.2.3 Classification of chains

From the definitions of the states, it is possible to introduce different classes of Markov
chains. A Markov chain is said irreducible iff all pairs of states communicate, i.e. if
it is possible to go from any state of the Markov chain to any other state in a finite
number of steps. Note that an irreducible chain has the property that all its states are
of the same type, and therefore it is possible to speak of an irreducible Markov chain
as being transient, recurrent, and so on.

2.3 Finite size Markov chains

The definitions given in Sec. are in general valid for every kind of Markov chains,
therefore also for infinite ones, i.e. when the number of states N is infinite. Here our
main interest is in finite Markov chain, described by a finite transition matrix. In such
a case the Markov chain is irreducible if and only its transition matrix is an irreducible
matrix [32).
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The probability distribution p* such that
p* =IIp*. (2.12)

is said the stationary or invariant distribution. That is to say, p* is an eigenvector of
IT with eigenvalue 1. By means of the Perron-Frobenius theorem [32] it is possible to
prove that for irreducible non negative matrices there is only one eigenvalue equal to
1, and therefore that the stationary distribution p* is unique.

A sufficient condition for a vector p* to be a stationary distribution is the detailed
balance condition:
Wijp; = Wjip;'k' (2-13>
Indeed, summing over j on both sides of this condition and keeping in mind the nor-
malization condition for II, we obtain

> mpt =Y mint = p}. (2.14)
i i

2.3.1 Ergodic Markov chains

If all states in an irreducible Markov chain are ergodic, then the chain is said to be
ergodic. In this case, one is assured that

lim p, = lim II"py = p*, (2.15)
n—oo

n—0o0

for any initial distribution pg.

Note that in a finite Markov chain, we cannot have null recurrent states, therefore
states can be either transient of positive-recurrent. Moreover, it is obvious that not
all states can be transient. Therefore in an irreducible finite Markov chain, the states
have to be all positive-recurrent (because they have to be all of the same type, and
not all transient). We can conclude that a finite irreducible Markov chain is ergodic if
and only if it is aperiodic. A Markov chain having a symmetric transition matrix II is
ergodic. Its stationary distribution is the uniform distribution.

2.4 Joint entropy and conditional entropy

Entropy is a key concept in physics [33] and in information theory [34]. In general
words, the entropy of a system is a measure of its disorder or, equivalently, of the
amount of information needed to describe it. In the case of a random variable, the
entropy is a measure of the uncertainty of the random variable. The entropy of a
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discrete random variable X is usually defined as:
Z p(z) Inp(x (2.16)

where p(x) is the probability distribution of the random variable X [34].

The concept of entropy can be introduced also for two random variables X and Y,
if they can be described by a joint probability distribution p (z,y). In this case the
joint entropy H (X,Y) of the two random variables X and Y is defined as:

==>_ > playhp(zy) (2.17)

It is also possible to define the conditional entropy of a random variable given
another as the expected values of the entropies of the conditional distributions, averaged
over the conditioning random variable. If X and Y are two random variables, and
p(x,y) their joint probability distribution, the conditional entropy H (Y| X) is defined

as:
H((Y|X)= ZZp z,y)lnp (y|x) (2.18)

p (y|x) is the probability of y if z occurs, and is referred to as the conditional probability
of y given x. It can be proven that p(x,y) = p(z) +p(y|z) and that in general p (y|x) #
p(z]y).

The naturalness of the definition of joint entropy and conditional entropy is exhib-
ited by the fact that the entropy of a pair of random variables is the entropy of one
plus the conditional entropy of the other:

H(X,Y)=H(X)+H(Y|X) (2.19)

This can be simply proven remembering that p(x,y) = p(z) + p(y|z) and using the
properties of the logarithms
In general, it is possible to generalize the concept of joint and conditional entropy to

the case of N random variables X7, X5, -+, X,, whose probability distribution function
is p (z1, 9, -+ ,x,). The joint entropy reads:
H(X17X27"' 7Xn):_ Z p(x17332>"' axn)lnp(xlyx%'” 7:571)7 (220)

1,22, ,Tn
while the conditional entropy reads:
H(Xn’XhXZ?"' 7Xn71) = - Z p(xlax%"' 7xn)1np<xn|xl7x27“' 7'7;7171)7
X1,22, " ,Tn

(2.21)
In the case of N random variables, it can be proven that the following chain rule
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holds:
H (X, Xp, -, Xp) = = > H(Xi| X1, Xa, -+, Xi1) (2.22)

2.5 Relative entropy

The relative entropy Dk (P|Q) of the random variable P with respect to random
variable @), also known as Kullback-Leibler distance between P and (), is a measure
of the amount of extra information required to represent P by using only information
about ). It is defined as the average of the logarithmic distance between P and @),
weighted by the probability P, i.e.:

Der(PIQ) = X (0) 245 (2.23)

where p (x) and ¢ () are the probability distributions characterizing P and Qrespectively.
D (P|Q) represents the number of extra bits of information required to reconstruct
P starting from @ [34], and it can be considered as a measure of the inaccuracy of
assuming that the distribution is ¢ () when the true distribution is p (x). The relative
entropy is always non negative and is zero if and only if p () = ¢ (z). However, it is
not a true distance since it not symmetric and does not satisfy the triangle inequality.

2.6 Entropy rate

When one has a sequence of n random variables, it is useful to define a measure that
quantifies how the entropy of the sequence grows with n. A measure of this growth is
given by the entropy rate h, defined as:

h = lim w, (2.24)

n— 00 n

provided this limit exists. The entropy rate h is a measure of the average description
length for the stochastic process. This means that we can practically represent the typ-
ical sequences of length n generated by the stochastic process by using approximately
n - h bits. For example, one can consider the case of a typewriter typing on a keyboard
with m letters, each of them equally likely to appear, and calculate the entropy rate of
the sequences of symbols the typewriter generates. Since the typewriter can produce
m™ sequences of length n, all of them being equally likely, the entropy of sequences of
length n is H(X1, Xs,--+,X,,) = Inm™, while the entropy rate is h = Inm. This is
also the bits of information per symbol in the sequence.
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2.6.1 Entropy rate of Markov chains

The entropy rate is very easy to calculate for Markov chains, moreover if the they are
ergodic and time invariant. In fact, it can be proven [34] that the entropy rate h of an
ergodic Markov chain with stationary distribution p*(z) and time invariant transition
probability 7(z'|z) is given by:

h==> n(a|z)p*(x) In7(2'|z). (2.25)

z',x

Notice that, while for a general stochastic process the entropy rate might not be
defined because the limit in Eq. might not exist, the entropy rate for an ergodic
Markov chain with a finite number of states is always defined, as the sum in Eq.
contains always a finite number of terms.

All the definitions and concepts we have presented in this and in the previous
chapters will be used in the following parts of the thesis to address different theoretical
problems, like the issue of the maximization of the entropy rate for a biased random
walk, or to study different kinds of real-world datasets, such as patterns of human
mobility or the statistical properties of aminoacid sequences.

41






Chapter 3

Three-body degree correlations in
complex networks

Not everything that can be counted counts,
and not everything that counts can be counted.

ALBERT EINSTEIN

Many physical phenomena can be fully understood only by considering the effects
of high order correlations [35]. Up to now, the connectivity of complex networks has
been described and modeled solely on the basis of node degrees and of two-body degree
correlations, as mentioned in the first chapter of this thesis. In this chapter we describe
a formalism based on second-order Markov chains to study and detect genuine three-
body degree correlations. By comparing a network to the ensemble of graphs with the
same degree-degree correlations, we give empirical evidence that non-trivial three-body
degree correlations do occur in a number of real-world systems.

The presented analysis reveals that three-body correlations have marked effects on
some network properties, such as the average connectivity of second neighbors of a
node or the rich-club ordering [36H38], which will be introduced below, and can play a
role in network dynamical processes, such as random walks [3], the topic of the next
chapter. As a consequence, a consistent theory of complex networks should properly
take three-body correlations into account.

3.1 More on degree-degree correlations

Before introducing the formalism for the study of three-body degree correlations, we
recall the definitions introduced in Sec. we provide more details on how to derive
the relations shown in that section, and we deepen some concepts regarding the degree-
degree correlations in graphs.
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3. Three-body degree correlations in complex networks

Figure 3.1: Wedges are objects embedded in the structure of networks. We show here an example of
a wedge (k, k', k") with k = 3, ¥ = 6 and k" = 2, whose nodes have been coloured red and the links
drawn with bold black.

Let us consider an undirected graph of N nodes, K links and with degree distri-
bution P. In order to study the degree-degree correlations, sometimes also called
two-body degree correlations, we need to evaluate the probability that, starting from
a node of degree k and following one of its link, we end up on a node of degree k’. We
evaluate this probability in terms of the number of the number of links Ej between
nodes of degree k and k’. More specifically, we define [39):

oo — if k £k, # of edges connecting a node of degree k and a node of degree k';
T itk =K, 2 - # edges between k and k.

Notice that each link of the graph with the definition above is counted two times. For
example, a link connecting a node of degree 2 and of degree 3, will contribute to the
term Fs3 and to the term Fso. This is also the reason of the factor 2 in the case
k = K. a link between two nodes of the same degree, for example 3, will contribute
twice to the term FEs 3.

The following properties hold:

Zk’ Ekk’ :k'Nk:k'NPk
> L = (k)N = 2K

where Ny, is the number of nodes of degree k, (k) the average degree and K the total
number of edges in the graph. To derive first property, it is sufficient to notice that
the sum of Ej over all possible k&’ returns the total number of edges that are incident
on a node of degree k. This number than amounts to the number of nodes N, with
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3.1. More on degree-degree correlations

degree k times the connectivity k. The second property is obtained simply by noticing
that the sum of all possible degrees k£ and k' returns twice the total number of links.

According to the previous definitions, the probability Py of having a node of degree
k connected to a node of degree k' is given by:

Eyrr _ Ey
Yoww By 2K

P = (3.1)

Similarly, once selected a node of degree £/, the probability to find a neighbor of degree
k/, Pk’\ka is:

By Eyy
Py = = 3.2
Sy B kN 32)
By equating the expression of Ej of [3.1] and we obtain:
k Ny, kP,
P = —Pui = — P = qu P 3.3
bk = g Wk = Ty Rk Iy pe (3.3)

where ¢ is the probability of taking a link which is connected to a node of degree k.

If a network is uncorrelated, the probability does not depend on the degree k of
the starting node. In fact, the conditional probability Pé‘,"‘;‘ in an uncorrelated network
can be derived simply by counting the number of possibilities to connect to a node of
degree k', since connections between two nodes are random. Since in the network there
are Nj nodes with degree £/, and in each of these nodes we can arrive from £ links,
the probability that P,;i'ﬁc' reads:

we. . KNy KPy  KPy
" > K Ny - > K B - (k)

In this case the joint probability function of an uncorrelated network P factorizes
into two functions of k and k": P45 = quqer.

= qx’

3.1.1 Average degree of nearest neighbors

The probability Py, as k and k' change, is represented by a matrix which in general
is not easy to visualize. In order to detect the presence of degree-degree correlations
in a graph, it is useful to study other topological properties which are related to the
conditional probability Py;. A useful quantity in this sense is (k) (k), the average
degree of the neighbours of nodes with degree k, already introduced in Eq. which
we report again here:

(kan) (k) = Z k,Pk/Uc (3.4)
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Figure 3.2: The tendency of low degree nodes to be connected to low degree nodes, and of high degree
nodes to be connected to high degree nodes is called assortativity. This non-trivial correlation often
leads to a relation k™™ ~ k™" with v < 0 and is typically observed in collaboration networks [40], see
panel (a). On the other hand, the tendency of low degree nodes to be connected to high degree nodes
and vice versa is disassortativity, with an exponent v > 0. Panel (b) shows one example of such a
disassortative network, the autonomous system of the internet [I6].

Using the equality the previous equation turns to be:
1
knn) (k) = —— k By
(b) = e A B

If the graph has no degree-degree correlations, i.e. Py = P“,ﬁc‘, from the previous
equation we get:
(k) (k) = = S k2py = ) (35
& (&) 2 (")
which turns out to be a constant, as expected, since (k,,) (k) will not depend on k if
the graph is uncorrelated.

On the other hand, if the graph has degree-degree correlations, then (k,,)(k) will
show depend on k. In particular, it has been shown that a wide range of graphs is
characterized by degree-degree correlations which are well described by the expression
(kun) (k) = k=%, where v can be positive or negative. When v < 0 (v > 0), networks are
said to be assortative (disassortative). As example of assortative network and one of
disassortative network are shown in Fig. Although the characterization of two-body
degree correlations has already provided valuable insights in the study of the structure
and dynamics of complex networks, most real networks, as we will show below, exhibit
also higher order correlations, more specifically three-body degree correlations. Our
aim in the following sections is to provide the tools to measure exactly correlations of
the third order.
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3.2 How to quantify three-body degree correlations

3.2.1 Definition of wedge

In order to find out whether a network has higher order degree correlations, namely
three-body correlations, we need to study the statistical properties of triples of con-
nected nodes, namely pairs of edges having a node in common or, in other words,
paths of length 2. Recalling the symbol of the vector product, A, we name such objects
wedges. In Fig. |3.1] we show an example of a wedge, embedded in a network. The
nodes of the wedge are coloured in red and its links are bolded. The wedge has a central
node with degree &/ = 6 and two external nodes respectively with k = 3 and £ = 2
links. We can classify this wedge as a (k = 3,k’ = 6,k” = 2) wedge, meaning that it
has a central node of degree £/ = 6 to which a node of degree k = 3 and a node of
degree k" = 2 are connected. Notice that such an object can be defined only if k' > 2.
Therefore, in the following, we implicitly assume that we are looking at (k, k¥, k) with
k' > 2 and all the sums over k' should be interpreted as sums over &’ > 2. We now
need to count how many wedges are present in a graph. More formally we define:

if k # k", # of wedges (k, k', k") with a node of degree k' as centre,
and nodes of degree k and k” as branches;

if k=Fk", 2-# of wedges with a node of degree k' as centre,
and two nodes of degree k as branches.

Wik =

The following normalizations properties hold:

Z Wk:k’k” = Z k’(k‘, — 1)Nk/ = NW (36)
kklkli kl
> Wiwr = B (K —1) (3.7)

k.//

The quantity Ny = >_,, k'(kK" — 1) N, is nothing else that the total number of wedges
in the graph. This is easily derived by noticing that, if Ny is the number of nodes
of degrees k', then there will be k'(k" — 1) N}, different wedges whose central node has
degree k’. Finally, by summing over all possible &/, the total number of wedges in the
graph Ny is obtained. The quantity ) ,, Wi of Eq. amounts to the number
of wedges in the graph whose first and second node have respectively degree k& and £/,
and whose third node can have any degree. Property can be obtained by observing
that, once the first two nodes are fixed, the first one with degree k and the second with
degree k', one can create (k' — 1) different wedges. Then, >, , Wi is equal to the
total number of edges connecting two nodes of degree k and £/, i.e. Ey, times (k' —1).
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3. Three-body degree correlations in complex networks

3.2.2 Joint and conditional probability

Given the above definitions and the relative normalization properties, the probability
Pyyryr of finding a wedge (k, k', k") can be defined as:

Wkk/k” _ Wkk/k”
Zkk/k" Wi Zk/ K (k/ - 1) Ny

Similarly, the conditional probability Py, i.e. the probability that given an edge
(k, k'), this is part of a wedge (k, k', k"), can be defined as:

Py = (3.8)

Wk‘k’k” _ Wk:k"k"
Yo Wik B (K — 1)

By equating the term Wy » from Egs. and we obtain:

Pk”\kk’ = (39)

Ego (K — 1)
> K (K = 1) Ny

Then, by using the two-body joint and conditional probability, [3.I] and [B.2] respectively,
from previous equation we can get:

P = By

(k' —1)2K
P ! a1 P IP 11 ! =
kk'k S W (K —1) Ny kk! Ll |k
kN (K —1
= k{ ) By P e

S b (W = 1) Ny

Notice that, since in undirected graphs we have Ey = Eyp, Eq.[3.2]yields the equality
kN Py = K'Nj Py . Plugging this in the previous relations, Py can be expressed
as:

k' (K —1) Ny
Yow k(K —1) Ny
KNy (K—1) KNy (k'—1

R CE Ny
wedge, it will have a central node of degree k’.

Py /Pk|k’Pk”\kk’ = wk/Pkkau‘kk/ (310)

) is the probability that, selecting randomly a

where wy = =

Furthermore, since sz,k’,k” = Wk”,k’,k) from definition Pk:k’k” = Pk”k’k- Hence,
Eq. can be also written as:

Pk‘k"k;” = wk"Pk”\k’Pk\k”k’
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3.2. How to quantify three-body degree correlations

Figure 3.3: Schematic example to visualize the second neighbors of a node of degree k = 3, red-
colored in the figure. This node is connected to three other nodes, its first neighbors, that are in turn
connected to other nodes, that are then the second neighbors of the red node. The second neighbors
of the red node, encircled in figure with a red dashed curve, made up together with the red node the
branches of wedges the first neighbors of the red node are centers of. It is the clear that the average
connectivity of the second neighbors of a node is governed by the three-body degree correlations in
the graph.

3.2.3 Markovian networks

A network which is completely described by the Py, meaning that is only characterized
by two-body correlations and is otherwise random, with no higher order correlations, is
usually referred to as a markovian network [39]. The expressions derived up to Eq.
characterize the three-body degree correlations in a general network. However, we can
obtain simpler expressions if we assume that the network is markovian. In this case the
conditional probability Py does not depend on k. Thus, denoting the three-body

joint probability of markovian networks as P,E,?k,,, we have:
2
P = P P

In the equation above, all the terms on the right side depend only on two degree
classes, indicating that there are no correlations between the degrees of the nodes at
the extremes of a wedge. However, the joint probability P,Ezzk,, still depends on three
variables, namely the degrees k, £ and k", indicating that degree-degree correlations
induce spurious three-body degree correlations. To detect the real three-body corre-
lations, i.e. the correlations not induced by those of lower order, we have to compare
particular topological properties of real-world networks to those of null models having
the same degree-degree correlations and otherwise random.
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3. Three-body degree correlations in complex networks

3.3 Average connectivity of the second neighbors

In section we have mentioned the difficulty to get information about two-body de-
gree correlations from the simple visualization of the matrix P .. Visualizing the con-
ditional probability Py is even harder since we have to deal with a three-dimensional
hyper-matrix. Analogously to the case of two-body degree correlations, for which the
average degree of the neighbors of nodes with degree k, (k,(k)), is studied, we in-
troduce the quantity (k,..) (k), defined as the average degree of the second-nearest-
neighbors of nodes of degree k, and we study its behavior to check the existence of
three-body degree correlations. We can get a better idea by looking at Fig. In the
figure a node with degree k, shown in red, is directly connected to some nodes, that
are hence its first neighbors. Its first neighbors are in turn connected to others nodes,
surrounded by a red dashed curve in the figure, which are the second neighbors of the
red node. The average of their degrees then represent the k,,, of the red node. To
get (knunn) (k), one has to average over all the nodes having the same degree k. More
formally, (knnn) (k) can be written in terms of conditional probabilities as:

(Knnn) (k) = Z By Z K" Por g - (3.11)
k/

k/l

To derive this formula, one has to think of a node of degree k£ as being the branching
node of a certain number of wedges. Its second neighbors will be all the nodes on
the other branch of those wedges. Therefore, with the sum )_,, k” Prrjgre one takes
the average degree of all nodes forming a wedge with edges Fyr. Then, to get the
average connectivity of the second neighbors of a node with degree k, one has to sum
over all the possible degrees k' weighting each of term of the sum with the probability
that a node of degree k is connected to a node of degree k’. In the case of markovian
networks (k,n.) (k) of Eq. has a simpler form. In fact, the the three-body joint
probability turns into a two-body one, i.e. Py = Py This means that the
probability of forming a wedge (k, k', k") starting from an edge (k, k'), only depends
on the correlations between the degrees k' and k”. In this (null) case, formula [3.11]

reduces to:
(kb ) (k) = Poge > k" Poner - (3.12)
k/

k//

where the superscript “? indicates the expected value of (k) (k) if there are no
correlations of order higher than two. Notice that, while (k,,) (k) is constant when
there are no degree-degree correlations, (k%2 (k) is in general a function of k even if
there are not three-body degree correlations. Such a dependence is indeeed induced by

the two-body correlations.
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3.4. Three-body correlations in real-world networks

N k(&) r
E-Mail in URV [41] 1133 9.62 179.82  0.073
Scientific collaboration network (cond-mat)[42] 12722 6.28  80.39  0.147
Scientific collaboration network (HepPh) [40] 12008 19.74 2564.78  0.63

Patents [40] 230686  4.81  59.04  0.146

Internet AS [16] 11174 419 1112.82 -0.194

WWW [43] 325729  6.69 1878.69 -0.054

PGP [44] 10680  4.55 85.98 0.232

Neural network C. Elegans [45] 297 14.46  376.78 -0.241
Protein interactions S. Cerevisiae [40) 4626 6.40  155.15 -0.142
Protein interactions S. Pombe [47] 2361  6.08 102.27 -0.084
Private messages in Pardus [48§] 5877  36.57 4997.58 -0.058
Friendship in Pardus [48] 4313  9.79  281.08 -0.002
Enmity in Pardus [48] 2906  13.77 1129.66 -0.240
Attacks in Pardus [48] 7992 13.41 1027.74 -0.163

Jazz musicians collaboration [49] 198 27.60 1070.24  0.066

Table 3.1: Basic features of the networks used in this chapter to investigate the presence of three-body
degree correlations. The number of nodes N, the average connectivity (k), the second moment of the
degree distribution (k?), and the assortativity coefficient 7 (see Eq. and [I7]) are reported.

3.4 Three-body correlations in real-world networks

At this point we can tackle the question about the existence of non-trivial three-body
degree correlations in real complex networks. As for the case of two-body degree cor-
relations, in which the observed value of the average connectivity of the first neighbors
of a node k, which we indicate now as (k°*)(k) is compared to the null-case of a net-
work with the same degree distribution Py, (k¢*P)(k) = (k?)/(k), we will compare the
observed patterns for (k% )(k), with the null case prediction (k¢*?)(k). In Fig. 3.4 we
report the comparisons of these quantities for the Internet network at the Autonomous
System (AS) level [16]. As it can be observed from the left panel, this network presents
non-trivial two-body degree correlations of disassortative nature, i.e., (k,,)(k) is a de-
creasing function of k. However, the right panel show that three-body correlations do
also exist as the observed patterns (k% )(k) differs from what expected if solely two-
body correlations were at work. Morever, the three-body degree correlations show an
assortative character, as (k% )(k) increases with k, at variance with the nature of the
two-body degree correlations. A number of previous studies have shed light on the na-
ture of two-body degree correlations in real-world networks yielding a classification be-
tween assortative and disassortative network that unveils a stricking dependence on the
nature of the network. On one hand, technological and biological networks are seen to

usually found to display disassortative correlations, while social networks are mainly as-
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Figure 3.4: We show the average connectivity of the first neighbors and of the second neighbors of a
node, as a function of its degree k, for the Internet network at the level of autonomous system [16]. In
(a) the measured average connectivity of the first neighbors, (k2%) (k), is compared to (k52P) (k), the
value of the first neighbors’ average degree expected in a random uncorrelated network with the same

](22
degree sequence, which is equal to the constant <<k>>, as proven in Sec. |3.1.1} In (b), the measured
average connectivity of the second neighbors <kff;fn k), the value calculated

) (k) is compared to (k2P )
for the corresponding markovian networks, i.e. for networks having the same degree sequence and the
same degree-degree correlations as measured by the joint probability distribution Py .

sortative. Such a classification points out to a possible functional origin of correlations.
We have further investigated correlations, by looking also at the presence of non-trivial
degree correlation in a number of networks of social, technological and biological na-
ture. In Fig. this typical behavior of the two-body degree correlations is shown for
four networks of different nature (black symbols). In addition to this, we report in the
same figure the ratio (k%% (k))/(k<? (k)), which indicates the nature of the three-body
correlations (red symbols). Looking at both two- and three-body correlations, three
main behaviors for the networks can be distinguished: assortative-assortative, null-null
and dissasortative-assortative. By assortative-assortative we intend a situation where
both the ratios (k%(k))/(k<?(k)) and (k% (k))/{k¢® (k)) increase with k. In the null-
null case, both the ratios are constant with k£, while in the dissasortative-assortative
case (k%%(k))/(keP(k)) increases with k while (k% (k))/(k¢? (k)) decreases. How-

nnn
ever, despite the presence of these three main trends, it is hard to make an association
between each trend and a specific network nature, e.g. social, technological, biologi-
cal. Therefore, looking at three-body correlations in terms of average connectivity of
second neighbors reveals not only that real networks are far from being markovian,
but also that the usual classification based on degree-degree correlations probably fails
to capture fundamental organizing principles of networks that are encoded in their

topology.
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Figure 3.5: We compare the ratio between the observed average connectivity and the expected
average connectivity of the first neighbors of a node, (k%) (k)/ (k¢2P) (k) (black circles), with the
ratio between the observed average connectivity and the expected average connectivity of the second
neighbors of the same node, (k355,) (k)/ (k&8 )) (k) (red triangles), as a function of the degree k of the
node in the following networks: (a) e-mail exchange at URV [41], (b) scientific collaboration (cond-
mat)[42], (c) scientific collaboration (HepPh) [40], (d) Patents [40], (e) Internet AS [I6], (f) WWW
[43], (g) PGP [44], (h) Neural network C. Elegans [45], (i) Protein interactions S. Cerevisiae [46], (j)
Protein interactions S. Pombe [47], (k) Private messages in Pardus [48], (1) Friendship in Pardus [4§],
(m) Enmity in Pardus [4§], (n) Attacks in Pardus [48], (o) jazz musicians collaboration [49].
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3. Three-body degree correlations in complex networks

Figure 3.6: A schematic example to understand the rich-club phenomenon at the level of (a) two-body
degree correlations and (b) three-body correlations. In the figure, we consider nodes that have degree
k' higher than 4 to be rich. These nodes have been colored red in figure. Then, in the case we want
to calculate the rich-club coefficient p(®) at the level of two-body correlations, we need to count the
number of edges connecting rich nodes. In panel (a) these edges are bolded in red and amount to
3. Instead, to calculate the rich-club coefficient p(3) at the level of three-body correlations, we have
to count the number of wedges connecting triplets of rich nodes. In panel (b) the edges forming the
only “rich wedge” of this toy network are red bolded. Finally, to normalize properly p) and p®),
the number of rich edges and of rich wedges need to be counted in the corresponding uncorrelated
network and markovian network respectively.

3.5 Reuvisiting the rich-club phenomenon

Another quantity where correlations have been found to play an important role is the
so-called rich-club ordering. The rich-club phenomenon, a concept introduced first by
Zhou and Mondragon [36] and then fully investigated by Colizza et al. [37], is the
tendency of nodes with high degree, usually dominant elements of the system, to form
tightly interconnected subgraphs. Actually, up to now the proposed measurements
for this feature have been based only on the presence of particular connected pairs of
nodes, hence being indirectly related to the presence of two-body correlations. However,
as we will see below, the rich-club phenomenon can also manifest in the patterns of
connectivity between triplets of nodes and then be associated to the presence of three-
body correlations.

3.5.1 Rich-club and degree-degree correlations

The quantitative measurement of the rich-club phenomenon proposed by Colizza et al.
[37] aims first at defining a rich-club coefficient ¢(k), based on the presence of the “rich
edges”, and then compares it to ¢*“(k), the same coefficient measured in a network
with the same degree distribution but with randomized connections. The rich-club
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3.5. Revisiting the rich-club phenomenon

coefficient is defined as:

Zk’>k Zk”>k By
Zk;’>k Nk’) (Zk’>k Ny — 1) /2

where Y/, > prsp Ewie are all the “rich edges”, being the richness determined by the
presence of connected couples of nodes both with a degree higher than a threshold k; the
denominator accounts for the maximum possible number of edges between nodes with
degree higher than k (see also Fig.|3.6, panel (a) to understand how to individuate rich
edges in a network). ¢"“(k), the rich-club coefficient for an uncorrelated network, can
be derived analitically. Given the degree distribution Py or, equivalently, the number
of nodes Ny with the same degree k, ¢*“ (k) reads:

(Zk’>k k/Nk’)Q
Zk’>k Nk’) (Zk’>k Ny — 1) /2

Finally a normalized function proposed by Colizza et al. [37] to highlight the presence
of the rich-club phenomenon can be the following:

p(2)(k;) _ (k) _ <k>2 Zk’>k Zk”>k 2% _ (3.15)

¢ (k) (Zk’>k k' Py )?

Here we have used the superscript ) to indicate that here the rich-club effect is con-
nected to the presence of two-body degree correlations, and to distinguish this function
from the one we will define in the next session using three-body degree correlations.
Notice that the second term of Eq. is easily obtained from [3.13hnd using the
relations P, = Ni/N and Py = Epw/2K. A ratio p® (k) (Eq larger than 1 is
the actual evidence of a rich-club phenomenon at the level of two-body relations as it
is due to a larger number of edges between high-degree nodes than in the random case.
In contrast, a ratio p® (k) < 1 is a signature of an opposite organizing principle that
leads to a lack of links among high-degree nodes in respect to the uncorrelated model.

o) = ¢ (3.13)

o (k) = ( (3.14)

3.5.2 Rich-club and three-body degree correlations

In order to investigate the role of three-body degree correlations in the emergence of the
rich-club phenomenon, we define a quantity, p®® (k), in the same spirit of Eq. . The
definition of p® (k) is based on comparing the number of “rich” wedges, i.e. of wedges
where all the nodes have degree higher than the threshold %, between a network and
its markovian null model (see also Fig. 3.6 panel (b) to understand how to individuate
rich wedges in a network). The normalized rich-club coefficient p® (k) at the level of
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Figure 3.7: Study for the presence of the rich-club effect in (a) the patents collaboration network
[40], (b) the protein interaction network of the yeast Saccharomices Cerevisiae [46], (c) the e-mail
network at URV [MI], and in the (d) Internet network at the level of autonomous system [16]. We
plot the normalized rich-club coefficient based on two-body correlations, p(® (k) (black circles), and
our extension to three-body degree correlations, p® (k) (red triangles).

three-body correlations can be formally defined as follows:

Zk’>k’ Zk‘">k‘ Zk’”>k (Pk/k’”k”/) -
Ek’>k Zk”>k Zk/“>k (P];i/a;ﬁ/km)
Zk">k’ Zk”>k Zk’”>k (Pk:’k”k:”’)

- (3.16)
D okik Dok Sk Dkik (wk”Pk’Ik”Pk”’lk")

PP (k)

where the superscript ® indicates that the formula accounts for three-body correlations
and where Pp;h,, must be intended as the joint probability in markovian networks.
The rich-club phenomenon can appear also at the level of three-body correlations. In
fact, p® (k) (Eq. larger than 1 indicates that there is a tendency of nodes of high-
degree to be connected to each other in the form of wedges if compared to networks

56



3.5. Revisiting the rich-club phenomenon

with the same pattern of degree-degree correlations. Conversely, p® (k) < 1 indicates
that there is a sort of “anti rich-club” effect, in the sense that nodes of high degree
avoid to be connected in wedge structures altogether in respect to the markovian null
model. Notice that the presence of rich-club or anti rich-club at the level of three-body
cannot be due to p® (k) being different from 1, since the markovian network used as
null model encloses already the rich-club induced by degree-degree correlations. s

3.5.3 Rich-club phenomenon in real-world networks

We have investigated the presence of the rich-club phenomenon both at the level of
two- and three-body degree correlations in a number of networks, the same networks
where the average connectivity of first and second neighbors of nodes of degree k were
analyzed. In Fig. [3.7| we report the plots of p® (k) and p® (k), as defined in Egs. [3.15
and respectively, for four representative networks of different nature. Clearly
different scenarios emerge: there are cases where the rich-club appears at both at the
level of two- and three-body correlations (panel (a)), in other situations there is a sort
of anti rich-club at the level of degree-degree correlations while rich-club appears at
the level of three-body correlations (panel (b)). Finally, there are cases where rich-club
or anti rich-club appear at the level of two-body correlations while there is no effect at
the level of three-body (panel (c) and (d)).

A strong presence of rich-club at the level of both two- and three-body degree corre-
lations has been found in many social networks, especially in collaboration networks like
the patents [40] and the scientific [42] collaboration networks. This provides support to
the idea that the elite formed of influential people, for example prominent scientists in
the scientific collaboration network, tends to form collaborative groups within specific
domains. Surprisingly instead we find that protein interaction networks, like the one
of the Saccharomices Cerevisiae [40], exhibits rich-club at the level of three-body. In
fact, the decreasing behavior of the rich-club spectrum at the level of two-body corre-
lations in the protein interaction networks in the past has been explained to be due to
specific biological mechanisms [37, 50]: it seems that high-connected proteins preside
over different functions and thus coordinate specific functional modules. However, the
emergence of a clear rich-club phenomenon at the level of three-body provides new
insights in the role of high-connected proteins in these networks, and requires further
investigation of the biological mechanisms that are at work. Other kind of networks
instead, like the technological ones, do not appear to be affected by the rich-club phe-
nomenon at the level of three-body correlations, while there is a strong rich-club effect
when considering two-body correlations.

In this chapter we have provided some novel tools to quantify three-body degree
correlations in graphs and we have investigated their presence in a number of complex
networks. We have been able to show that in most of the cases real-world networks have
non-negligible three-body degree correlations. This can be fundamental in the study of
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3. Three-body degree correlations in complex networks

many dynamical process taking place of networks, such as in the case of random walks
on graphs, which will studied in details in the following chapter. Also, the extension
of the concept of rich-club ordering in terms of three-body degree correlations we
have provided in this chapter will allow to uncover new underlying mechanisms in the
organization of complex networks.
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Chapter 4

Entropy rate of random walks on
graphs

Scientist can’t prove their theories;
they can only disprove, or improve, them.

JOHN HARTE

In the last decade an increasing attention has been devoted to the study of random
walks on complex topologies [I3], 51, [52]. Random walks are for example of fundamental
importance for all searching processes. When googling a keyword, or searching a file
in a peer-to-peer network, or even when looking for a hotel in a city we do not have a
map of, the underlying process is a random walk on a graph.

Various features of random walks on networks, such as passage times [52H54] and
spectral properties [55], [56] have been investigated, and random walks have also been
used to detect communities [57, 58], to evaluate centrality of nodes [52) 59, 60] and to
coarse—grain graphs [55]. Another quantity recently considered is the entropy rate, a
measure to characterize the mixing properties of a stochastic process [34]. In particular,
attention has been focused on designing random walks with mazimal entropy rate on
a given graph [61H65], i.e. choosing the transition probabilities of the random walk in
such a way that the random walkers are maximally dispersing in the graph, exploring
every possible walk with equal probability.

In this chapter, we introduce the concept of random walk and biased random walk
on a graph. We formulate the random walk processes in terms of ergodic Markov
chains, already introduced in chapter [2, We address the problem of the maximization
of the entropy rate for biased random walks on a graph and we show how almost
maximal-entropy random walks can be obtained with a limited and local knowledge of
the network, a result reported in the publication [3]. In the last part of the chapter,
we show an alternative formalism which allows to rephrase the problem of a biased
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4. Entropy rate of random walks on graphs

a) Lot

Figure 4.1: We report a schematic representation of (a) a plain random walk and (b) a biased random
walk. In panel a) a walker, placed on node i decides to move to a neighbor node j with a probability
1/4, i.e. with a probability which is equal for all neighbors of node i. In panel (b) different probabilities
to be chosen are associated to the neighbors of i, expressed by different thickness of the links between
1 and its neighbors. In this case a walker performs a biased random walk, meaning that the walker
will consider the neighbors of ¢ with different probability to decide where to move. In (b) for example,
the neighbor [ has an higher probability to be the next node visited by the walker currently on node
i.

random walk on graph as a plain random walk on a graph having the same topology
but different weights. This latter study has been published in [].

4.1 Random walks

A random walk, sometimes denoted as RW, is a mathematical formalisation of a tra-
jectory that consists of taking successive random steps. One can define a random walk
on a graph. Let us consider a connected, undirected and unweighted graph with N
nodes and K links, described by the adjacency matrix A = {a;;}. A random walk on
a graph is a process where at each time step a walker moves producing a sequence of
graph nodes: {ig,i1,12,...,4;}. If the walker at time ¢ is at node 7, at time ¢ + 1 it
moves to one of its neighbors, say j, with a transition probability 7(j|i) (see Fig. 4.1
for a visual representation of a random walk). All the 7 (j|i) are the entries of the
probability transition matrix II, having dimension N as the number of nodes in the
graph. The generic element 7(j|7) is usually a function of the entry a;; of the adjacency
matrix and of a time-independent property of the node j. In this case, a random walk
on a graph is a stochastic process which belongs to the special class of the invariant
ergodic Markov chain, hence all the properties shown for the invariant ergodic Markov
chain in Sec. also hold for random walks on a graph.
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4.1. Random walks

4.1.1 Plain random walk

Given a graph, one can define different kinds of random walks, the simplest being the
unbiased (or plain) random walk. We consider in this section this simplest version of
the random walk and we illustrate some properties of the transition matrix, which also
hold for other kinds of random walks as it will be remarked in the following paragraphs.

In a unbiased random walk, a walker currently on node ¢ chooses to move to a
neighbor node j with a probability 7 (j|i) which is the same for all neighbors j. The

probability 7(j|i) reads:
. Q5 1

T(Jt) = =— = — 4.1
G = 4= ¢ (4.1)
Even if the adjacency matrix A is symmetric, the transition matrix II is not in
general symmetric, unless in the special case in which the graph is regular. We can
write IT = ATD~! where D is the diagonal matrix with (D);; = k;. Since the walker
must move from a node to somewhere, the normalization condition ) ;i = 1 must
hold. We say that matrix II is stochastic. In fact, it satisfies the following properties

of stochastic matrices. A real square matrix S of order N is said stochastic iff:

1. all entries are numbers from the interval [0, 1],

2. the sum of each column is 1.

Property 2 can be written as: 1711 = 17, indicating that 1 is an eigenvalue of
the transition matrix II with left eigenvector 17. This proves that stochastic matrices
have always 1 as eigenvalue. In addition to this, stochastic matrices does not admit
eigenvalues with absolute value greater than 1. This is immediately shown by the
general property that the spectral radius p of a matrix El is less or equal all natural

norms of the matrix. The L' norm of a stochastic matrix II is given by:
||, = mjaxz |7i5] = mJaXij =1
i i

and therefore p(II) < 1. Note that 1 is an eigenvalue of IT with multiplicity one, because
matrices A and II are irreducible (the graph is connected) [32].

For an unbiased random walk, the trajectories are defined in terms of transition
probabilites, and also the node i; occupied by the walker at time ¢, is given in proba-
bilistic terms, as we have seen also in Sec. . Let us denote by p;(t) the probability
that at time ¢ the walker is at node j (with j =1,2,..., N):

p;(t) = Prob(i, = j) (4.2)

We can imagine to calculate such probabilities by successively repeating various real-
izations of the walker motion, each realization starting at the same initial node. This

!The spectral radius p(A) of a N x N matrix A with eigenvalues \;, with i = 1,..., N, is defined
as: p(A) = maxi<;<n |\
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is equivalent to consider an ensemble of M independently moving walkers. If by M;(t)
we indicate the number of walkers at node j at time ¢, the probability p;(¢) can be
approximated as p;(t) ~ M;(t)/M, when M is very large. Probabilities p;(t) satisfy
the normalization condition: Z;VZI p;(t) =1 at each time ¢. Being p;(t) the probability
that our random walker is at node j at time ¢, then the probability p;(t+ 1) of its being
at ¢ one step later is:

pi(t+1) = Z 7350, (1) (4.3)

This equation is equivalent to the evolution equation Eq. written for a time-
invariant Markov chain in chapter 2. It is easy to verify that, if > i p;(t) =1, then we
also have 3 p;(t + 1) = 1. Writing the probabilities p;(t) as a N-dimensional column
vector p(t):

p(t) = : (4.4)

pn(t)
the rule of the walk can be expressed in matricial form as a first order difference
equation:
p(t+1) =TIp(¥). (4.5)

The solution of the equation is given by
p(t) =1I-1I-...-1I p(0) = ITI'p(0). (4.6)

or, in components,

ps(t) =D mi'pi(0), (4.7)

where 7r](-? = (II*);; gives the probability P, ;(t) that a walker starting from node i

reaches node j in t steps.
A fixed point solution of Equation is a probability distribution p* such that:

p* =IIp". (4.8)

Vector p* is the right eigenvector of Il with eigenvalue 1, and is called the stationary
or inwvariant distribution, because it corresponds to a probability distribution that is
mapped into itself by the time evolution.

Since the graph is connected (matrix II is irreducible [32]), then the eigenvalue 1 is
a simple root of the characteristic equation of II and the stationary distribution p* is

unique. In this case, the equilibrium distribution for un unbiased random walk is given
by:

(4.9)
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4.1. Random walks

which is easily proved by plugging it in Eq. and seeing that the equality is verified.
The meaning of Eq. is that if we explore through a random walk a connected undi-
rected graph, the walker visits nodes with a probability proportional to their degree.
An alternative statement of the same result is that the random walk visits the edges
of the graph uniformly.

4.1.2 Biased random walk

A more general class of random walks are the so-called biased random walks (BRWs).
In this process, at each time step, a walker currently at node i chooses to move to
one of the first neighbors of i, say j, with a probability f; = f (z;) depending on the
node property z;. The node property x can be topological (like degree, betweenness,
clustering coefficient, etc.) or any other quantity relevant to a diffusion dynamics
(for example node congestion, healthy state, etc.). Such random walks can also be
described with a transition probability matrix IT which is also a stochastic matrix as in
plain random walk (see previous section). The entries of II for a biased random walk
of the kind described above read:

aij f

m(jli) = S anhi

Since a BRW is also an ergodic Markov chain, there is a unique stationary dis-
tribution p*, expressing the probability of nodes to be occupied at equilibrium by
the walkers. This distribution is in general different from the one found for unbiased
random walks in and reads [65]:

(4.10)

* Cifi
pi g
2.6k

(4.11)

where ¢; = ), ay fi.

Degree biased random walk

A special and interesting case of biased random walk is that where f; has a power
law dependence on the property x; and where the bias is represented by the degree of
neighbor nodes [65]. In this case, we will have f; = £§ and the entries of the transition
probability matrix will read:

aijk?

7T(1|i):m
[ vy

a is a real number. In the case o > 0, a walker has a bias to move to nodes with higher
degree, while when o < 0 a walker avoids high degree nodes preferring low degree
ones. For a = 0 the unbiased random walk is recovered. In this case, the stationary
distribution p* is immediately derived from Eq. plugging in the bias f; = kf.

(4.12)
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4. Entropy rate of random walks on graphs

We obtain: N N
COD R ks

(4.13)

4.2 Maximal-entropy random walk

In the last decade, particular attention has been focused on designing random walks
with mazimal entropy rate on a given graph [61H65], i.e. choosing the transition prob-
abilities of the random walk in such a way that the random walkers are maximally
dispersing in the graph, exploring every possible walk with equal probability and hence
maximizing the entropy rate h defined in Sec. Practical examples where the max-
imization of entropy rate is important are diffusion processes which aim at well-mixing,
such as spreading information about a node’s state (its healthy or infected condition,
its availability or congestion, etc.) [65], mixing in meta-populations models [66], or
global synchronization of moving agents by local entrainment [67].

4.2.1 Entropy rate and random walks

The optimal random walk on a given graph can be rigorously determined on mathemat-
ical grounds by considering the properties of entropy rate h of the stochastic processes,
introduced in Sec. associated to different random walks [34]. A trajectory of t steps
generated by a random walk starting at a fixed node 7 is described by the sequence of
occupied nodes i, 41, %9, . . ., iy, where iy,..., 7; are all indices that can take integer values
between 1 and N. This means that the walker first moves from ¢ to node 7, then it
jumps to node i and so on. In practice, there is a maximum of M (t) different allowed
sequences of length ¢, corresponding to all possible walks of length ¢ (and starting at
node i) on the graph under study. Depending on the rules of the random walk, not all
possible sequences will appear, while some of them will occur with a probability higher
than the others. If we denote as joint probability p(i, 1,4, ..., ;) the probability that
the sequence i, 11,19, ..., is generated by a given random walk, then the entropy rate
of the random walk, h, is defined as:

h = lim He , (4.14)

t—oo

where H, is the joint entropy of the set of trajectories of length ¢ starting at node
i Hy = =3 i 3, D1, 4) Inp(i, iy, ..., i;). The value of the entropy rate in

-----

Eq. can be calculated directly from matrix 7, as for any ergodic Markov chain

(see Sec. 2.3.1)), from:
h=—3"7(li) - (@) I [x(310)] (4.15)

Z’?j
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4.3. Exact solution for the maximal-entropy random walk

where p*(i) is the i'® component of the stationary distribution.

4.2.2 Maximum entropy rate

The minimum possible value of the entropy rate, hy;, = 0, is obtained when, for large
time ¢, only one trajectory dominates. On the other hand, the maximum possible
value is obtained when, for large time ¢, all the M (t) allowed trajectories have equal
probability to occur, i.e. p(i,iq,...,4) = 1/M(t) if ,41,...,4; is a walk on the graph
originating in 4, and p(i, iy, ...,%) = 0 otherwise. The maximum value of the entropy
is equal to: Amax = limy_ o MT(t) The number of trajectories of length ¢ between a given
pair of nodes (i,7) is simply given by the ij entry of the t;, power of the adjacency
matrix A of the graph. Therefore, the number of all possible trajectories of given length

t on a graph, between any pair of nodes, is obtained by summing all the entries of the

matrix A
M(t) = Z (At)z'j
4]

Therefore, the maximum entropy rate on a given graph, can be expressed as:

t
hmax = lim —ZiJ (A )Zj
t—o0 t
Now, due the diagonalization properties of the adjacency matrix A, the limit for £ — oo
of ATt will converge to Ay, the largest eigenvalue of A. This implies that the maximum
value of the entropy rate one can obtain is:

B = 10\ (4.16)

4.3 Exact solution for the maximal-entropy random walk

In principle, the optimization of entropy rate could require the definition of transition
probabilities relying on the history of the walker’s positions. However, it has been
proven that allowing a long-term memory of the past is not needed in order to construct
maximal-entropy random walks, since it turns out that there always exists an optimal
set of transition probabilities that is Markovian [61H64].

Namely, the maximum entropy rate Eq.[4.16|can be obtained with a Markov random
walk in which the probability to step from node ¢ to node 7 is equal to:

_ Qg

= 4.17
o, (4.17)

(i)

where u is the eigenvector of the adjacency matrix A associated to the largest eigenvalue
A1, or in other words: Au = Aju. By using the formula for the entropy rate of an
ergodic Markov chain Eq. it is immediate to prove that a random walk with
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4. Entropy rate of random walks on graphs

transition matrix yields a process with maximum entropy rate equal to In A\; [64].
This random walk process has the interesting property to be biased, in the sense that
a walker follows a link (4, 7) with a probability proportional to the importance of its
end j, as measured by its eigenvector centrality u; [68].

4.4 Maximal-entropy random walk with local informa-
tion

The main problem with a real implementation of the random walk described by Eq.
is that, at each time step, the walker needs to have a global knowledge of the network:
it needs to know the adjacency matrix of the entire graph. Such global information
is very oftenunavailable. A walker at a node ¢ usually has only a local information,
in the sense that it knows the first neighbors of node 7, and possibly some of their
topological properties, such as their degree [65]. We will show that it is possible to
construct random walks that have almost maximal entropy rate and that make use
only of local information or of information which is locally available.

In the previous sections we have mentioned that, in order to have a process with
maximum entropy rate, one needs to sample with the same probability all the M ()
allowed trajectories of the same length ¢, i.e. p(i,iq,...,5;) = 1/M(t) if i,41,...,4; is a
walk on the graph originating in ¢, and p(i, iy, ...,4;) = 0 otherwise.

In the most general case, the probability of having a sequence of t nodes originating
at a given node i can be written (for any ¢ > 1) in terms of conditional probabilities
as:

p(l, il, Ce ,it) = p(Zlyl)p(lg‘Z, Z1> .. p(ZtlZ, il, e ,itfl).

Summing both ends over iy, 13, ... ,%;, and by using the normalization conditions
>, Plitlisdn,i2, . yig) = 1 El for t > 2, we get an expression for the conditional
probability at the first step as a function of the ¢-times joint probabilities:

plinli) = Y plii,... i) . (4.18)

12,835+t

This means that, no matter how long is the memory in the random walker, we can
always describe it as a Markov random walker, provided that we define the transition
matrix of the Markov chain 7(i1]¢) in terms of the joint probabilities p(i, iy, ..., %) as
in Eq. In particular, if we want to construct a maximal-entropy random walk,
we have to set p(i, iy, dg,...,%) = 1/M(t) iff i,4,4s,...,4; is a walk on the graph, and
p(i,i1,12,...,4) = 0 otherwise. The number of walks of length t originating in i can
be written in terms of the adjacency matrix as: M(t) = >, . Qi Giyiy - - - Qiy_yi,-

2By definition, ) 5 P (B|A). In fact given that we are on a node A, the probability that we move
to node B, summed over all possibilities B must be 1, i.e. the certain event.
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4.4, Maximal-entropy random walk with local information

Hence, the joint probability of a trajectory i,11, 1, ..., reads:

p(iin, ... i) = = iy iy - - - Vg rie , (4.19)

11,0200 ,0t Qiiy Qiyig - - - Qi _qdy

and the transition matrix of the Markov random walker with the maximal entropy is
finally given by:

7T(Z1|Z) = lim Qi Zi? Qiriz - - - Zit Aiy_yiy

t—o0 Zil Qiiy ZiQ Qiyig - - - Zit Ay 144 .

From Eq. it is clear that, in the most general case, in order for a walker at a
node 7 to select one of its first neighbors to step on, the walker needs to know not only
which node is in N, but also the neighborhood of first neighbors, the neighborhood
of second neighbors, and so on. In practice, the local choice of moving from ¢ to one
particular neighbor 7;, depends on the whole adjacency matrix of the graph. However,
as we demonstrate below, this global information is not necessary in most of the cases.

(4.20)

4.4.1 Maximal-entropy random walk on uncorrelated networks

Uncorrelated graphs can be described only by means of the degree sequence of the nodes
{k(1),k(2),...,k(N)}, corresponding to a degree distribution Py, since the degree of
a node does not depend on the degree of its first neighbors (see also Sec. . In
mathematical terms, this means that the conditional probability P does not depend
on k, and can be written in terms of the degree distribution as: P = k'Fy /(k) where
the right hand side is the probability to end up in a node of degree k' by choosing an
edge at random with uniform probability. Consequently, the average degree of the
neighbors of node j, kn,(j) = 1/k(j) > , aik(l), does not depend on the degree of j,
kun(j) = knn Vj, and the last two summations in the numerator and in the denominator
of Eq. @F namely D, Gigip o Dy, Gipgie K1) = D25, Qipgie ok (ir-2)Knn (ir—2)
can be written as k,, Eim @i, 4i,_ok(i;—2). The constant k,, at the numerator and at
the denominator cancels out, so that the same argument can be repeated again and
again. Finally, the formula factorizes into:

aiil ]C(Zl)
> i, @iy k(1)

where, by the symbol 7! we mean the first order approximation to the transition matrix
7 in Eq. This formula tells us that the best diffusion process on a uncorrelated
graph is a random walk whose motion is linearly biased on node degrees. Thus, a walker
at a given node, only needs to have information on its first neighbors and their degree.
Since the degrees of different nodes are not correlated, local information of the degree of
first neighbors is, in this case sufficient to construct the diffusion process with maximal

7 (ir]i) = (4.21)
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4. Entropy rate of random walks on graphs

entropy. Such information is “locally available” to the walkers, meaning that a walker
at node 7 has complete information on the degree of each node in its neighborhood M.
Now, it is intuitive that a random walk choosing a node j proportionally to k(j), so
that all the trajectories of length 2 starting in ¢ will occur with the same probability,
will be more random than a walker selecting uniformly the first neighbors of 7. Formula
4.21]is a special case of the more general degre-biased random walk of Eq. which
becomes Eq. fora=1.

Of course, if all nodes have the same degree, as in a regular graph, the transition
matrix reduces to that of an unbiased walker:
(i1 i) = (4.22)
This is the lowest possible approximation for 7 in Eq. in the case of no avail-
able information, each neighbor has the same probability to be selected. The values
of h obtained numerically with transition matrices 7° and 7! in different models of
uncorrelated networks are reported in Table 4.1} In agreement with our predictions, in
regular lattices and in random regular graphs, h(7°) is equal to the maximal possible
entropy hmax = InA. In Erdés-Rényi (ER) random graphs not all nodes have the same
degree, so that a random walk linearly biased on degree has an entropy h(r!) that is
much closer to the maximum, than i(7®). This effect is even more evident in scale-free
graphs, i.e. in graphs with a very heterogeneous degree distribution. This is the case
of Barabasi-Albert graphs (see Sec. and of configuration graphs (see Sec.
constructed starting from a power-law degree distribution. Both these graphs have an
heterogenous degree distribution since there are many nodes with low degree and just
a few very highly connected nodes.

4.4.2 Maximal-entropy random walk on networks with degree-degree
correlations

Graphs with degree-degree correlations are described in terms of their degree distribu-
tion P, and of a non-trivial Py,. This is because the probability that a link from a
node of degree k arrives at a node of degree k&’ does not simply factorize in terms of the
degree distribution. In such graphs the average degree of the first neighbors of a node
Js knn(j), does depend on k(j). Therefore, in analogy with Eq. we can define a
second order approximation of Eq.

Qiiy Ziz ailiQk(i2) .
D i Wiy D, Qiyink(i2)
@iy k(i1) knp (1)

- > i, Wiy k(1) b (71) ’ (4.23)

m(inli) =
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4.4, Maximal-entropy random walk with local information

h(@%) | h(=D) | h(=®) _
| 5 [ 55 | 5 || Aamax = h(m) |
Regular lattice 1.000 | 1.000 | 1.000 1.79
Random regular graph 1.000 | 1.000 | 1.000 1.79
ER random graph 0.954 | 0.993 | 0.998 1.98
Uncorr. scale-free v = 1.5 0.886 | 0.992 | 0.996 2.36
BA model 0.825 | 0.976 | 0.996 2.52
Assort. scale-free vy = 1.5 0.876 | 0.991 | 0.999 2.44
Disassort. scale-free v = 1.5 | 0.937 | 0.990 | 0.997 2.18
Internet AS [16] 0.744 | 0.900 | 0.980 4.10
US Airports [66] 0.879 | 0.990 | 0.997 3.88
E-Mail [47] 0.881 | 0.983 | 0.997 3.03
SCN (cond-mat)[42] 0.694 | 0.867 | 0.946 3.17
SCN (astro-ph) [42] 0.784 | 0.941 | 0.973 4.41
PGP |44 0.597 | 0.92 | 0.976 3.75

Table 4.1: The entropies of random walks with no information, h(7%), and with local information
respectively on nearest, h(r!), and next-nearest neighbors, h(7?), are compared to the maximal
possible entropy Amax = h(m) = In X on different graph models with N = 500 and average degree
(k) = 6 and on various real networks.

describing a Markov walker that, at each time step, selects a first neighbor, iy, of
the current node, with a probability proportional to the sum of the degrees of the
first neighbors of ¢;. This is equivalent to make equiprobale all the walks of length 3
originating in ¢. In conclusion, to construct high-entropy random walks on correlated
graphs, a walker at a given node needs to know the degree of first and second neighbors
of the current node, which is still local information.

In Table 4.1) we report h(7?) for various models and for real networks. In models of
uncorrelated graphs h(7?) is not very different from A(7!), while in models of correlated
graphs, in lattices with defects and in most of the networks from the real world h(7?)
is a much better approximation of h(m) than h(r'). As we have seen in Sec. [1.1.7]
and in most real-world networks degree-degree correlations are such that the
average degree of the first neighbors of a node exhibits a clear power-law dependence
on degree: ky,(j) ~ [k(j)]77, with v > 0 (v < 0) for disassortative (assortative)
networks [13]. For instance, as shown in the inset of Fig. v ~ 0.4 for the Internet
at the autonomous systems level [16]. Plugging this dependence in Eq. we get an
approximate form for the maximal-entropy random walk in a correlated random graph
in terms of degree-biased random walks:

(4.24)

72 (i1]1) ~

In practice, on a correlated network, an approximation for the maximal-entropy random
walk can be obtained by considering a random walk whose motion is biased as a power
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Figure 4.2: Entropy rate of power-law biased random walks as a function of the degree exponent «
for network Internet AS [16]. Horizontal lines correspond to, from bottom to top, h(7°), h(ml), h(n?)
and hmax = h(m). (Inset) Average degree k,,, of the first neighbors of nodes of degree k, as a function
of k, with fit k=04

of the target node degree, with an exponent & = 1 — v. Hence, the optimal bias
is larger (smaller) than 1 for assortative (disassortative) networks, meaning that we
have to prefer a super-linear (sub-linear) bias on the node degree. As an example,
in Fig. we report the entropy rate of a biased random walk as a function of the
exponent o on a disassortative real-world network. We found a,,; = 0.6 for Internet
AS, which is perfectly in agreement with the value v = 0.4 in the inset, through the
relation oy, = 1 —v. We have also checked that this relation holds for the other real
networks in Table (4.1

4.4.3 Maximal-entropy random walk on networks with higher-order
degree-correlations

Similar arguments can be repeated for networks with higher-order correlations. This
procedure generates a class of biased random walks defined by the transition matrices
70, 7!, w2, etc, incorporating more and more information about the system structure.
In Sec. [£.4.4] we studied how this sequence of transition matrices converges to 7 in

different networks. In the limit case in which a graph has correlations at all orders,
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4.4, Maximal-entropy random walk with local information

we have to rely on the full transition matrix of Eq. which can be also expressed
by means of the eigenvalues and eigenvectors of the adjacency matrix of the graph.
In fact, the numerator and the denominator of Eq. can be rewritten in terms of
powers of the adjacency matrix, respectively as a;;, ., (A*")ii, = @i, (A™" - 1), and
> i, (A, = (A'-1);, where (AY); indicate the entry i, j of matrix A*, and 1 is a vector
of ones. By making use of the power method for ¢ — co, we finally get:

Qi Uiy Qg Uy
Aup Y aiuy

where A and vector u are respectively the largest eigenvalue and its associated eigen-
vector of the adjacency matrix ﬂ Eq. represents a Markov walk whose transition
probability is linearly biased by the components of eigenvector u, also known as the
eigenvector centrality of the node [68], and it is indeed the same transition matrix
proposed in [64] as the process with the maximum possible entropy rate hp.x = In A
[6TH64].

m(ir]i) = (4.25)

4.4.4 Kullback—Leibler divergence

In order to test the quality of the approximations of different orders we considered
the Kullback-Leibler divergence between the transition matrix 7 in Eq. and the
transition matrices which use only local information. As explained in Sec. given
two discrete distributions P = {p;} and @ = {¢;}, the Kullback-Leibler divergence
Dk (P|Q), measures the amount of extra information required to represent P by us-
ing only information about Q. It is calculated by averaging the logarithmic distance
between P and () with a weight given by the probability P:

Dir(PIQ) =" pi 12— (4.26)

3For uncorrelated graphs, u; ~ k(j) [69], and Eq. reduces to Eq.

| Dkr() | (7% | (alx") | (x|7®) | (x|7®) | (w]7*) |
Internet AS 0.784 | 0.163 | 0.089 | 0.032 | 0.031
US airports 0.928 | 0.176 | 0.072 | 0.011 | 0.001
E-mail 0.724 | 0.137 | 0.045 | 0.019 | 0.009
SCN (cond-mat) || 1.796 | 0.900 | 0.737 | 0.576 | 0.471
SCN (astro) 2499 | 1.167 | 0.805 | 0.570 | 0.417
PGP 1520 | 0.729 | 0.529 | 0.387 | 0.282

Table 4.2: Kullback Leibler divergence between 7 and successive approximations % for different real
and synthetic networks.
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4. Entropy rate of random walks on graphs

In a sense, Dy measures how much P and @ are different. The Kullback—Leibler
divergence can be calculated also in the case P and () represent two matrices. Indeed,
if P ={p;;} and Q = {q;;}, the Kullback-Leibler divergence in this can be written as:

Dij
DKL(P|Q) = E Dij In —q.Jl
irj I

We have computed the Kullback—Leibler divergence between the transition matrix
7 in Eq. and the transition matrices 7°, 7!, 72, 73, 7* corresponding to local

approximations of increasing order. The expressions for 7, 7!, 72 are respectively

given in Eq. 4.22] Eq. §.21] and Eq. while 72 and 7* are defined as follows:

7_[_3(Z- ’Z) _ iy Ziz ai1i2k<i2)krm(i2> (4 27)
' Zil Qg 212 ail’iQk(iZ)knn(iQ) '
7T4(i |Z) _ iy Zizig ai1i2ai2i3k(i3)knn(i3) (4 28)
1 Zil iy Zigig ai1i2ai2i3k(i3)knn(i3) '

Notice that the choice of transition matrix 7% guarantees that all the walks of length
k + 1 are equiprobable. Therefore, the values of Dy (m|r*) measure the inaccuracy
in using the process 7%, which makes equiprobable walks of length k& + 1, with respect
to using process 7w, which makes equiprobable walks of infinite length. In Table
we report the values of Dy (m|m*), k = 0,1,2,3,4, obtained for the six real networks
considered in Table I of the main text.

In the first three networks in the table, Dy (w|7?) is lower than 0.1 bits. For
these networks, the entropy rate h(w?) is about 99% of the maximal entropy rate
h(w). Conversely, for the last three networks, the divergence Dy (7w|m?) is always
approximately 1 bit, and in fact the entropy rate h(7?) is around 96% of h(m). As
expected the divergence rapidly decreases as we include walks of higher length.

In order to perform a maximal-entropy Markov walk on a graph, at each time step,
a walker needs a global knowledge of the whole network and has to compute u, which
has O(K) computational complexity. However, global information is in practice always
unavailable in real systems. As we have shown in this chapter, this global knowledge is
not necessary since in many real-world networks long-range interactions are weak and
can be neglected. It is therefore possible to construct almost maximal-entropy random
walks with only local information on the graph structure. This can be done with O((k))
complexity, a dramatic improvement which opens up to practical applications in social,
biological and technological systems.

4.5 Flow graphs

Dynamical processes on a graph, in particular the unbiased random walk, have been
used to propose flow-based metrics to characterize complex network properties. As
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mentioned in the introduction to this chapter, unbiased random walk have been used
to detect communities [27], to evaluate centrality of nodes [52] 59, [60], to coarse—grain
graphs [55], just to make some examples. However, the unbiased random walk most
of the times might not represent a good description for the process taking place on
the graph under scrutiny. We propose here a mathematical framework which allows
to analyze the structure of complex networks using wider class of dynamical processes.
We introduce the concept of flow graphs, namely weighted networks where dynamical
flows, like the one represented by random walks, are embedded into the link weights.
Flow graphs provide an integrated representation of the structure and dynamics of the
system, which can then been analyzed with standard tools from network theory. In
other words, given a graph where a certain process, say a biased random walk, has a
crucial role, one can define another graph with the same links, but different weights
associated to them so that an unbiased random walk on the latter graph is equivalent
to a biased random walk on the original graph

4.5.1 Unbiased random walk in weighted graphs

Let G be an undirected graph with N nodes and K links. In addition to this, each
link (¢, 7) has associated a weight w;;, which can be a real positive number. Then, the
generalization of the adjacency matrix A for this graph is a matrix W whose entry
(i,7) is equal to the weight w;; of the link between ¢ and j, and is zero if between ¢ and
J no link is present . We assume that a walker at node i chooses one of the nearest
neighbors of ¢ with a probability proportional to the weight of the corresponding edge.
The transition probability from node ¢ to its neighbor j is then:

. Wy W5
T(Jl) = =—— = — 4.29
() = gt = (4.20)
where s; = ), wy is the strength of node i. The stationary distribution is given in this
case by:

pi = (4.30)
Zj S

namely, the larger strength a node has, the more often it will be visited by a random
walker.

4.5.2 Biased random walks and flow graphs
Consider on G a BRW as the one introduced in Sec. defined by the transition

matrix

m(jlt) prw = S wafy (4.31)

It is possible to interpret this process as an unbiased random walk on an opportunely
defined graph G’. In order to prove this, let us define a non negative symmetric matrix
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4. Entropy rate of random walks on graphs

W', whose entries wj;are
W' is the weighted adjacency matrix of the graph G’, whose edges are the same as in

G but with different weights. An unbiased random walk on G’ is then characterized by

the transition matrix )

T — (4.33)
>0 Wi
By substituting the expression for the entries wy;, we get 7'(j|i) = Ef;}if +, which yields

7' (jli) = 7(j]?) prw. An unbiased random walk on G’ is driven by the same transition
matrix of a biased random walk on G, which implies that the stationary distribution
for both process is the same and is given by applying Eq. [£.30;

RO i DY)
! j 3;‘ Zig fiwie fe

This result also shows that wy; is proportional to the flow of probability from j to i at
equilibrium. Similar results can be proven also for other dynamical processes, such as
continuos time random walks or consensus processes [4].

In general, the equivalence between trajectories of a biased random walker on G
and those of an unbiased random walker on G’ has important implications as it makes
possible to use theoretical results known for unbiased random walks for the analysis
of BRWs. An important context where for example this formalism proves useful is
in community detection. In fact, many community detection methods are based on
plain random walk processes. The notion of flow graph allows for detection of modules
taking in consideration dynamical processes that are more adapt to the graph under
scrutiny.

(4.34)
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Chapter 5

Networks of motifs from sequences of
symbols

Prediction is very difficult,
especially of the future.

NIELS BOHR

There are many examples in biology, in linguistics and in the theory of dynamical
systems, where information resides and has to be extracted from corpora of raw data
consisting of sequences of symbols. For instance, a written text in English or in another
language is a collection of sentences, each sentence being a sequence of the letters from
a given alphabet. Not all sequences of letters are possible, since the sentences are
organized on a lexicon of a certain number of words. In addition to this, different
words are used together in a structured and conventional way [f0H73]. Similarly, in
biology, DNA nucleotides or aminoacid sequence data can be seen as corpora of strings
[74H-77). For example, it is well known that proteomes are far from being a random
assembly of peptides, since clustering of aminoacids [78] and strong correlations among
proteomic segments [79] have been clearly demonstrated. These results give meaning to
the metaphor of protein sequences regarded as texts written in a still unknown language
[74, 80]. Sequences of symbols can also be found in time series generated by dynamical
systems. In fact, a trajectory in the phase space can be transformed into sequence
of symbols, by the so-called “symbolic dynamic” approach [8I]. The basic idea is to
partition phase space into a finite number of regions, each of which is labelled with a
different symbol. In this way, each initial condition gives rise to a sequence of symbols
representing the initial cell, the cell occupied at the first iterate, the cell occupied at
the second iterate, and so forth.

In all the examples mentioned above, the main challenge is to decipher the message
contained in the corpora of data sequences, and to infer the underlying rules that gov-
ern their production. In order to do this, one needs: i) to detect the fundamental units
carrying information, like words do in language, and i) to study their combination
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5. Networks of motifs from sequences of symbols

syntax in the ensemble of sequences. In fact, information in its general meaning is
located not only at the level of strings, but also in their correlation patterns [82] 83].
In this chapter, we introduce a method to transform a generic corpus of strings, such
as written texts, protein sequence data, sheet music, a collection of dance movement
sequences [84], into a network representing the significant and fundamental units of the
original message together with their relationships. The method relies on a statistical
procedure to detect patterns carrying relevant information, and works as follows. We
first construct a dictionary of the recurrent strings of k letters, called k-motifs. Re-
current strings play, in this more general context, the same role as words in written or
spoken languages. We then construct a k-motif network, a graph in which each node
is one entry of the dictionary, and a directed arc between two nodes is drawn when the
ordered co-occurence of the two motifs is statistically significant in the dataset ana-
lyzed. We will show how the analysis of topological properties of networks of k-motifs,
such as the detection of community structures [I3] 27], allows to extract important in-
formation encoded in the original data. In particular, we will consider the application
of the method to datasets in three different domains, namely, biological sequences of
proteins, messages from online social networks, and sequences of symbols generated by
the trajectories of a dynamical system.

5.1 High-order Markov chains and motifs in ensembles
of sequences

Let us consider an ensemble S of S sequences of symbols. Each sequence s (s =
1,2,...,5) is a string of letters from an alphabet A of A letters, A = {01,09,...,04}.
In general, the strings can have different lengths. We indicate by [l; the length of
sequence s, and by L = Zle I the total length of the ensemble. An example is
provided by proteomes. A proteome is a collection of S & 10? proteins of a species.
Each protein is a sequence of length I,, ranging from 10% to 10, made of symbols from
an alphabet A with A = 20 letters, A = {01, 09, ..., 090}, where each o labels one of the
aminoacids a protein can be made of. We define as k-string a segment of k contiguous
letters z12 . .. x5, where ; € A Vi. The number of all possible k-strings is A*, while
from the ensemble of sequences S we can select only L—S-(k—1) overlapping k-strings,
so that some of the possible k-strings do not occurr, some of them occur once, others
more than once, either in the same or in different sequences of symbols. We define as:

pObs(xll'Q ce. a’;k_) — C(:Clg;Q e $k> (51)
Z(Il,ZEQ,--- 7xk)€_Ak C($1x2 e xk)

the observed probability of a string x5 . .. x,. This probability is obtained by counting
the total number of times, ¢(z125 . .. z}), the string actually occurs in the sequences of
the ensemble. To assess for the statistical significance of the string, the probability in
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5.1. High-order Markov chains and motifs in ensembles of sequences

Eq. has to be compared with the expected probability pP(x1xo - - - x)) of the string
occurrence. The latter can be evaluated under different assumptions. In fact, the joint
probability p(z12s -« - zx) can be written as:

p($1$2 . $k) = p($1$2 e '$k—1)p($k|$1x2 e '1Uk—1),

and different approximations for the conditional probabilities p(zg|zi2s - - - xx_1) lead
to different values of the expected probability p®?(zqxs - - ). Namely, if we assume
that the occurrence of a letter does not depend on any of the previous letters, i.e.
p(zg|ri2e - 25—1) = p(x)), the expected probability is simply given by the prod-
uct of the relative frequencies of the string’s component letters: p®P(zyzy---x)) =
p(xy) - p°® (1) [85, 8B6]. By using instead a first order Markov approximation,
ie. p(ag|lrizs - xp_1) = p(ak|rp_1), the expected probability can be expressed in the
form: p*P(z1zq - ax) = p**(x1)p** (wal1) - - p** (wr|ar—r), where p™(z;];) is ex-
tracted from the countings as: p***(z;|z;) = c(z;z;)/ >, Cwiwy) = P (wiz5) /p°P% ;).
This latter assumption is based on the fact that there is a minimal amount of memory
in the sequence: a symbol of the sequence is correlated to the previous one only. Here,
we go beyond the approximation of Markov chains of order 1, by retaining as much
memory as possible [75]. We assume:

obS(xlxz...xk_l).

Obs(xk|a:2 CTg_1) (5.2)

PP (120 x)) =P

P
where the conditional probabilities can be evaluated from countings as:

c(xoms - - xp)

obs
( v, C(T2T3 - T

p xk‘x2...xk71): Z

or can be expressed in terms of the observed probability for shorter sequences as:

b
povs(za - - Tp—1)

ons( CRE) (5.4)

p xkle"'xk—l) e

By using the latter expression, we can finally write the expected probabilities in a more
compact form:

pewp(xl) — pobs(xl)
pexp(xle) — pobs<x1$2)
obs
ex o obs p (33'2.1’3)
P P(l‘lxgi‘g) = p (l‘1$2) pobs($2)
_— (5.5)
obs
ex obs p T K
p p(ﬂﬁlxz ce xk) = D ’ (551 'xk71> ( 2 k)
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5. Networks of motifs from sequences of symbols

This way, the expected probability of a given k-string is evaluated based on obser-
vations for strings of up to (k — 1) symbols. Therefore, by predicting the probability
of appearance with a high order Markov model, our method allows to highlight the
true k-body correlations subtracting from them the effects due to (k — 1) and lower
order correlations. Based on observed and expected probabilities, a test of statistical
significance, for instance a Z—scoreEl, is then performed for each k-string. We define
k-motifs or recurrent k-strings, the statistically-relevant strings whose observed and
expected number of occurrences are such as to validate the statistical test adopted,
and we indicate as Zj; the dictionary composed by all the selected k-motifs H

5.2 Networks of motifs

Once we have constructed a lexicon of fundamental units, the next goal is to represent
in a graph the way they are combined together. Recurrent k-strings can be distributed
differently along the sequences: they can appear in a single sequence or in more than
one sequence, alone or in clusters. To extract the non trivial patterns of correlated ap-
pearance of k-motifs, we need to evaluate the probability for the random co-occurrence
of two motifs, when these are uncorrelated. We estimate first the expected probability
that motif X is followed by motif Y within a generic sequence of the ensemble S, then
we sum over all the sequences of S. We denote as p(X) and p(Y') the probabilities of
finding the two motifs in §. In sequence s, motif X can occupy positions ranging from
the first to the (I; — 2k)th site, where [ is the length of s, and k is the length of the
motif. We have assumed that the two motifs cannot overlap. For each fixed position ¢
of X on s, with ¢ =1, ..., (I —2k), there are (I;—2k+1—1) possibilities for Y to appear
in the sequence. Hence, the number of expected co-occurences of X and Y within s is
given by: S0 7(1, — 2k + 1 — i)p(X)p(Y). In order to obtain the expected number
of co-occurrences, we have to sum over all the sequence in the ensemble S. We finally
get:

S ls—2k S
NeP(Y|X) = Y)Y Y (—2k+1—i) = Y)Y (l—2k+1)(1,—2k+2)
s=1 =1 s=1

(5.6)
For each value of k£, we are now able to construct the k-motif network of the ensemble
S, i.e. a directed network whose nodes are motifs in the dictionary Zj, and an arc
point from node X to node Y if the number of times Y follows X in the ensemble of
sequences is statistically significant. Furthermore, a weight can be associated to the

IThe Z-score indicates how many standard deviations an observation or datum is above or below
the mean. It is a dimensionless quantity derived by subtracting the population mean from an individual
raw score and then dividing the difference by the population standard deviation.

2The term motif is chosen in analogy with the concept of network motifs, i.e. recurrent patterns
of nodes and links in a graph [87]
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arc from X to Y, based on the extent to which the co-occurrence of the two motifs
deviates from expectation.

This approach is able to represent the correlation patterns encrypted in the ensemble
of sequences into a single object, the k-motif network. Then, graph theory allows to
extract information from the structural properties of the network, and to retrieve the
main message encoded in the original sequences. In particular, it is interesting to study
the components of the k-motif network or, if the graph is connected, its community
structures, i.e. those groups of nodes tightly connected among themselves and weakly
linked to the rest of the graph [27].

5.3 Applications

In the following, we will consider the application of the method to three different
datasets, belonging to three contexts as diverse as biology, social dialogs and dynamical
systems. We will show how the community analysis of the related k-motif networks
enables to extract functional domains in proteomes, social cascades and hot topics in
Twitter, and the increase of chaoticity in deterministic maps.

5.3.1 Biological sequences

Methods to study over- or under-representation of particular motifs in a complete
genome [75, [88] [8Y] or in a proteome [90], have already been proposed, and the results
have been used to make functional deductions. Although the information contained in
strings deviating from expectancy is useful for the analysis of many biological mecha-
nisms [86], it turns out to be not sufficient for a complete and exhaustive interpretation
of the genomic and proteomic message. A fundamental key to its comprehension is in
fact hidden in the correlations among recurrent patterns of strings. The spatial struc-
ture of proteins provides an example: when a protein folds, segments distant on the
sequence come to be close to each others in the space. This can happen because two (or
more) segments need to physically interact in order to perform the biological function
the protein is supposed to go through. Such a mechanism translates into a statistical
correlation between short motifs of aminoacids, which is well captured by an analysis
in terms of k-motif networks.

Human proteome

In our application, we have considered the ensemble of sequences relative to the human
proteomeﬁ It consists of 34180 aminoacidic sequences of variable size, with an average
length of 481 letters. For this dataset, we have computed the probabilities p°** and p*P
for each of the 203 = 8000 possible strings of three aminoacids, and we have selected

3Data downloaded from [91]
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Figure 5.1: The 3-motifs network of the human proteome. Nodes belonging to the same community
are labeled by the same number and share the same colour. Most of the communities can be associated
to a functional domain as described in table

as 3-motifs the strings satisfying ; e

ﬁ The entries of the dictionary are the nodes of the 3-motif network. The node X
is then linked to Y with a directed arc if the number of times that motif Y follows

motif X within the same protein is statistically significant, according to the relation:

obs(y‘X) DbS(Y‘X) . . . . obs(le) . .
g ) < 5 (Y] X)> + 20. The statistical significance W is also the weight

P :zp > <p i > + 20, hence creating the dictionary Z3

4With the notation (p (z)), we denote the average of p(z) over all the possible configurations of x
and with ¢ the standard deviation of the distribution
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Table 5.1: List of communities in the 3-motif network of the human proteome. Community labels as
in Fig. [5.1] number of nodes, total internal weight, associated domain, and the domain specificity are
reported.

# nodes Internal Domain Domain
weight recognition

1 6 83,30% Olfactory 171/175
receptor

2 25 74,91% —

3 43 94,13% Zinc Finger = 1345/1364

4 6 55,42%  G-protein and 9/11

CUB-Sushi

5 3 100% Cadherin 330/347

6 4 100% Lipoproteins 16/19

7 2 100% Homeobox 65/84

8 4 100% —

9 4 100% Collagen 271/482

10 2 100% Serine 22/51
protease

11 2 100% —

12 3 60,30% C-type 3/4
proteins

13 5 100% —

14 2 100% —

15 2 100% —

of the arc. In this way we obtain the 3-motif graph of 199 nodes and 1302 directed
links, shown in Fig. 5.1l The graph has 86 isolated nodes (not displayed in Figure),
while the remaining 113 nodes are organized into 10 weak components. The largest
component of the graph contains 5 clusters, detected by means of the MCI algorithm
[28]. Therefore, 15 different communities are present in the graph. In Table we
report, for each community, the number of nodes and its total internal weight, defined
as the sum of the weights of links between nodes of the communities normalized by the
sum of the weights of links incident in nodes of the community. By submitting a query
to the Prosite database [92] we have obtained, for each couple of connected motifs
belonging to the same community, the list of all proteins, classified by domain, where
the two motifs co-occur. The results show that linked couples of motifs belonging to
the same community, all co-occur in the same kind of domains. In addition to this, one
can associate 9 of these 15 communities just to one protein domain, since the majority
of co-occurrences emerge in proteins matching a well-defined function. In Table we
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5. Networks of motifs from sequences of symbols

report, when possible, the association to a single protein domain, together with the
ratio between the number of times the couple of motifs with the highest weight occurred
in that specific domain, and the total number of co—occurrences in the database.

Analogous results were also found for the 4-motif graph, while it is not possible to
derive the same kind of information by using lower order Markov models to construct
dictionaries. For example, the 3-motif network constructed with a dictionary based
on a lower order approximation rather than on a 2-bodies Markov chain, exhibits a
community structure with just four communities, none of which could be identified
with a functional protein domain.

5.3.2 Social networks and microblogging

By means of k-motif networks, information can also be retrieved from datasets of social
dialogs and microblogging websites. Although in these cases, in principle, a dictionary
is a-priori known, not all terms used in the Internet language are always listed in a
dictionary: abbreviations, puns, leet language words [93], names of websites or names
of public figures, are just some examples. Moreover, some expressions or combinations
of terms appear more frequently in some periods or contexts due to the interest to
some hot topics. In addition to this, the method of k-motif networks turns to be very
useful in all those contexts where it is necessary to process and compact information
from large amount of symbolic data. This is the case of Internet, where the amount
of text data provided by blogs, dialogs in social networks, forums, etc. is growing and
growing.

In the following, we provide details on how network of motifs are able to deduce
information about hot topics and cascades [94, [95] in a dataset extracted from Twitter,
a well-know platform for social networking and microblogging.

Twitter and the case of the 2010 UK election

Twitter [96] is a social networking and microblogging service which allows users to
send short messages known as tweets. Tweets are composed only of text, with a strict
limit of 140 characters: they are displayed on the author’s profile page and delivered
to the author’s subscribers, who are also known as “followers”. The dataset we have
analyzed is a collection of 28143 tweets, crawled on two days, from the 23rd to 24th
April 2010, and selected through the Twitter Streaming APT [97] if they contained the
string #leadersdebate. The choice of such a keyword, called in Twitter also hashtag,
was aimed to select all those tweets concerning electoral campaign in UK, where general
election to elect the members of the House of Commons would have taken place two
weeks later. We have analyzed the dataset removing all blank spaces between words
and all symbols that where not numbers or letters (punctuation, symbols like §, @,
* etc.) and not distinguishing between lower- and upper-case letters. From these
sequences, dictionaries of motifs Z3 and Z; have been extracted, selecting respectively
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Figure 5.2: Components of the 4-motifs network of the twitter dataset. Each component and its
associated topic are described in table

the 10% and 1% of most significant strings of 3 and 4 letters. As described in the main
text, we have constructed networks whose nodes represent the entries of a dictionary,
and an arc is drawn from the node representing string X to the node standing for
string Y, if p?**(Y|X)/p°®(Y|X) is greater than a certain threshold. In Fig. 5.2, we
show the 4-motifs network when the threshold is set equal to 400 (isolated nodes not
reported). Such a high threshold is chosen to have a small network that can be easily
visualized and studied. More information can be obtained by setting the threshold to
lower values or analyzing networks made up of motifs of different length k. Searching in
the original dataset the connected motifs, it is possible to associate each component to
a particular tweet which generated a cascade or with a specific expression, related to a
specific hot topic discussed by users of the microblogging platform. For all components
of Fig. 5.2, we report in Table the tweet or expression associated and its meaning.
For example, component 1 and 4 can be associated to two exit polls disclosed on those
days by two different journals, or component 6 to the name “Gillian Duffy”, a 65-years
old pensioner involved in a political scandal with British PM Gordon Brown during the
election tour (Brown’s remarks of her as a “bigoted woman” were accidentally recorded
and broadcast).

5.4 Symbolic dynamics
Symbolic dynamics is a general method to transform trajectories of dynamical systems

into sequences of symbols. The distinct feature in symbolic dynamics is that time is
measured in discrete intervals. So at each time interval the system is in a particular
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5. Networks of motifs from sequences of symbols

Table 5.2: The first ten most significant links between motifs, belonging to 7 different communities
in the Twitter dataset. Each community corresponds to a specific tweet or expression that generated

a topic cascade.

obs

motif | motif z% Expression or Tweet Topic
1 2
9cle ge27 | 955.3 | GUARDIAN ICM POLL
5bro wn29 | 894.8 | Cameron 35% Brown 29%
poll results from
Clegg 27% . :
various websites,
son4 4cle 924.3 , .
Brown wins on 44%, Clegg | journals, tv channels,
don4 2cam | 881.7 |
is second on 42%, Cameron | etc
13% None of them 1%
lapo mete | 892.3 | www.slapometer.com A funny website on
the election
swed nesc} 864.7 hey Dave, Gordon and Nick Proposal for a 4th
nesd ayni | 826.1 debate among leaders,
. how about a 4th debate on : .
. made by a journalist
Channel 4 this wednesday on his twitter pace
night without the rules?! bag
jami ncoh | 842.0 | Benjamin Cohen Journalist of Channel
minc ohen | 764.9 4 News
isob eymu | 831.4 | #disobeymurdoch hashtag

state. Each state is associated with a symbol and the evolution of the system is then
described by a sequence of symbols. The method turns to be very useful in all those
cases where system states and time are inherently discrete. In case the time scale of
the system or its states are not discrete, one has to set a coarse-grained description
of the system. Different initial conditions usually generate different trajectories in the
phase space, which map onto different sequences of symbols. A large number of initial
conditions produces an ensemble of sequences whose analysis can be addressed with
the method based on networks of motifs.

In the following, we will describe the application of the method to the standard
map, and we will show how the related networks of motifs shape according to its
chaotic behavior.

Standard Map

The standard map, also known as Chirikov map, is a bidimensional area-preserving
chaotic map. It maps a square with side 27 onto itself [102]. It is described by the
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Table 5.3: In relation to Fig. we report the number of nodes, links, the tweet or the expression

containing the motifs and the topic associated to each of the 13 communities

Comm. Nodes | Links Expression or Tweet Topic

1 25 33 Brown wins on 44%, Clegg is sec- | poll results from vari-
ond on 42%, Cameron 13% None | ous websites, journals, tv
of them 1% channels, etc

2 12 14 Benjamin Cohen Journalist of Channel 4
News [98]

3 10 11 hey Dave, Gordon and Nick : | Proposal for a 4th debate
how about a 4th debate on Chan- | among leaders, made by a
nel 4 this wednesday night with- | journalist on his Twitter
out the rules?! page

4 9 13 GUARDIAN ICM POLL | poll results from vari-
Cameron 35% Brown 29% Clegg | ous websites, journals, tv
27% channels, etc

5 6 5 Very funny screengrab from the | About a funny picture of
LeadersDebate the leaders debate on BBC

99

6 3 2 Gillian Duffy Woman branded a ’bigot’
by Gordon Brown in
general election campaign
[100]

7 6 5 Cameron: I believe that if you’ve | Electoral campaign from

inherited hard all your life you | David Cameron
should pass it on to your children

8 6 3 #disobeymurdoch Twitter hashtag

9 4 2 F#citizensuk Twitter hashtag

10 2 1 http:// ... .ly Format of shortened we-
blinks in twitter

11 2 1 Tactical voting Strategy that when a voter
misrepresents his or her
sincere preferences in or-
der to gain a more favor-
able outcome [101]

12 2 1 Henry Macrory Head of press for the Con-
servatives, owner of a twit-
ter account

13 2 1 www.slapometer.com A funny website on the
election

equations:

Ty, = Py +asinxy
Pir1 = Pt + Tyq

mod 27
mod 27

(5.7)
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Figure 5.3: Standard map: number of components in the 3-motifs networks (main figure), and the
Lyapunov exponent (inset), as a function of the non-linearity parameter a.

where t represents time iteration and a is a parameter assuming real values. The
map is increasingly chaotic as a increases (see inset of Fig. m to see a plot of the
Lyapunov exponent as a function of the parameter a). For a = 0, the map is linear and
only periodic and quasiperiodic orbits are allowed. When evolution of trajectories are
plotted in the phase space (the zp plane), periodic orbits appear as closed curves, and
quasiperiodic orbits as necklaces of closed curves whose centers lie in another larger
closed curve. Which type of orbit is observed depends on the map’s initial conditions.
When the nonlinearity of the map increases, for appropriate initial conditions it is
possible to observe chaotic dynamics.

In order to obtain sequences from the standard map by means of the symbolic
dynamic approach [I03], one needs to make a coarse graining of the phase space,
defining a discrete and finite number of possible states the trajectory can occupy.
This way it is possible to associate a symbol to each of the possible states and derive
a sequence according to the trajectory originating from an initial condition. We have
coarse-grained the phase space into 25 (5 x 5) squares of equal size and we have derived
for different values of the parameter a, 10* sequences of 10% symbols. In other words,
this means to follow for 10% time steps the trajectories originating from 10* different
initial conditions.

The idea is that closed orbits or quasi periodic-ones correspond to correlations
between motifs and therefore in links of the graph of motifs. When the map becomes
more and more chaotic, closed orbits disappear and, correspondingly, the networks
break in many components, see Fig. In the extreme limit of map highly chaotic
(a > 3), the network of motifs are completly disconnected, with all nodes isolated.
Nevertheless, this scenario is different from the one generated by stochastic sequences,
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a) a=0.05 X

Figure 5.4: Phase space of the standard map (top) and relative network of motifs (bottom) corre-
sponding to a) a = 0.5, b) a = 1.0, and ¢) a = 5.0, where a is the map parameter of Eqs. Patterns
of connectivity in the graphs correspond to tori of the phase space. When the map becomes more and
more chaotic, as indicated by the value of the Lyapunov exponent A, the closed orbits (tori) disappera
and, correspondingly, the networks break in many components. However, even when the map is very
chaotic, a dictionary - corresponding to the nodes in the graph - is still present, meaning that some
short-range correlations are preserved.

since in this case motifs would not be detected, while this still happens in the chaotic
map, although only for small values of k. This result is well depicted in Fig. where
the number of components of the 3-motif graphs is plotted as a function of the value
a of the map generating the ensemble. This curve is shown to have the same behavior
of the Lyapunov exponent, as reported in the inset of the same figure.

5.5 Conclusion and perspectives

We have introduced a general method to construct networks out of any symbolic se-
quential data. The method is based on two different steps: first it extracts in a “nat-
ural” way motifs, i.e. those recurrent short strings which play the same role words do
in language; then it represents correlations of motifs within sequences as a network.
Important information from the original data are embedded in such a network and can
be easily retrieved as shown with different applications (a biological system, a social
dialog and a dynamical system). With respect to previous linguistic methods, our
approach does not need the a priori knowledge of a given dictionary, and also allows
to compare different ensembles, corresponding, for example, to different values of con-
trol parameters in dynamical systems. All this makes the method very general and
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opens up a wide range of applications from the study of written text, to the analysis
of sheet music or sequences of dance movements. Moreover, the method does not use
parameters on the position of motifs in order to correlate them, since co-occurrences
are computed within sequences, which represent natural interruptions of a corpora of
data (proteins in a proteome, posts in a blog, different initial conditions in a symbolic
dynamics, etc.).
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Chapter 6

A high-order Markov model for the
study of mobility

Sitmplicity is the ultimate
sophistication.

LEONARDO DA VINCI

6.1 Studying human mobility

Understanding the statistical patterns of human mobility, predicting trajectories and
uncovering the mechanisms behind human movements [104] is a considerable challenge
with important practical applications to traffic management [105], [106], planning of
urban spaces [107, [108], epidemics [I09-I12], information spreading [I13] 114], and
geo-marketing [T15, [IT6]. In the last years, advanced digital technologies have provided
huge amounts of data on human activities, allowing to extract information on human
movements. For instance, observations of banknote circulation [T17, [I18], mobile phone
records [119], online location-based social networks [120, [121], GPS location data of
vehicles [122], or radio frequency identification traces [104], 108, [123], have all been
used as proxies for human movements. These studies have provided valuable insights
into several aspects of human mobility, uncovering distinct features of human travel
behavior such as scaling laws [I17, [124], predictability of trajectories [125], and impact
of motion on disease spreading [I10HI12] [126]. However, from a comparative analysis
of the different works it emerges clearly that a “unified theory” of human mobility is
still outstanding, since results, even on some very basic features of the motion, often
appear to be contrasting [104]. One example is the measured distribution of human
trip lengths in various types of transportation: some studies agree that mobility is
generally characterized by fat-tailed distributions of trip lengths [117, [124], while others
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Figure 6.1: The universe map of the massive multiplayer online game Pardus. The universe
of Pardus can be represented as a network with N = 400 nodes, called sectors (playing the role of
cities), and K = 1160 links. Sectors are organized into 20 different regions, called clusters, shown in
the figure as different color-shaded areas. There is no explicit set of goals in the game. Players are free
to interact in a number of ways to e.g. increase their virtual wealth or status. Players move between
sectors to interact with other players, e.g. to trade, attack, wage war, or to explore the virtual world.

report exponential or binomial forms [104) [I08] [122]. The discrepancies arise due to
the different mobility data sets used, where mobility is indirectly inferred from some
specific human activity in a particular context. For instance, mobile phone records
typically provide location information only when a person uses the phone [124], while
radio frequency identification traces like the ones of Oyster cards in the London subway
[108] only log movements based on public transportation systems. Analyses of these
data sets can then result in a possibly biased view of the underlying mobility processes.
Furthermore, most of the analyzed data sets have poor information on how socio-
economic factors influence human mobility patterns. More generally, the lack of an
all-encompassing record set with positional raw data including complete information
on the socio-economic context and on the behavior of all members of a human society,
has so far limited the possibilities for a comprehensive exploration of human mobility.

6.2 A new approach to the study of mobility

In this chapter and in [5], we address the issue of mobility from a novel point of view by
analyzing, with unprecedented precision, the movements of a large number of individ-
uals, the players of a self-developed massive multiplayer online game (MMOG). Such
online platforms provide a fascinating new way of observing hundreds of thousands of
interacting individuals who are simultaneously engaged in social and economic activ-
ities. The potential of online worlds as large-scale “socio-economic laboratories” has

90



6.3. A social arena: the online game Pardus

been demonstrated in a number of previous studies [48, 127-129]. For the MMOG at
hand [I30], we have access to practically all actions [7], including movements, accumu-
lated over several years. This MMOG can therefore be considered as a “socio-economic
petri dish” to study mobility in a completely controlled way. We can in fact observe
the long-time evolution of a social system at the scale of an entire human society,
having a perfect knowledge of all the spatio-temporal and socio-economic details. In
contrast to traditional studies in social science which are typically biased by well-known
“interviewer-effects”, in MMOGs the socio-economic measurements are objective and
unobtrusive, since subjects are not consciously aware of being observed.

Using positional data of the players in the game universe El, in combination with
other socio-economic information from the game, we uncover various fundamental fea-
tures of mobility, and we provide a complete description of the mechanisms causing the
observed anomalous diffusion. Two are the main results we will show in this chapter.
First, we find the emergence of different spatial scales, due to the strong tendency of the
players to limit their economic activities to some specific areas over long time periods
and to avoid crossing the borders between different areas. Making use of this obser-
vation, we propose an efficient method to identify socio-economic regions by means of
community detection algorithms based solely on the measured movement dynamics.
Our second result unveils the driving mechanism behind the movement patterns of
players: Locations are visited in a specific order, leading to strong long-term memory
effects which are essential to understand and reproduce the observed trajectories. Fi-
nally, we provide large-scale evidence that neglecting either of these spatial or temporal
constraints may obstruct the possibility of understanding the processes behind human
mobility.

6.3 A social arena: the online game Pardus

Pardus is a massive multiplayer online game running since 2004, with a worldwide
player base of more than 350,000 individuals. It is an open-ended game whose players
live in a virtual, futuristic universe and interact with each other in a multitude of ways.
The topology of the universe can be represented as a network with 400 nodes, called
sectors, embedded in a two-dimensional space, the so-called universe map shown in
Fig. [6.1f Each sector is like a city where players can have social relations (establish
new friendships, make enemies and wage wars), and entertain economic activities (trade
and production of commodities). Typically, sectors adjacent on the universe map, as
well as a few far-apart sectors, are interconnected by links which allow players to move
from sector to sector. At any point in time, each sector is typically attended by a large

"Whenever we address the position or the movement of ‘a player’ in the game universe, this is
meant as a short form for referring to the virtual avatar which is uniquely associated to and controlled
by the player. This abbreviation is consistent with the tendency of players to identify themselves with
their avatars.
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N 400
K | 1160
k 2.9
C | 0.089
C/C. | 12.33
L |11.89
L/L, | 211
Eioe | 0.80
Egob | 0.03
D 27
D 18

Table 6.1: Network properties of the Pardus universe: number of nodes N, number of (undirected)
links K, average degree k, clustering coefficient C, clustering coefficient to corresponding coefficient of
random graph C/C,, average geodesic L, average geodesic to corresponding average geodesic of random
graph L/L,, local efficiency Ej,., global efficiency Eglob, diameter D, effective diameter (0.9-quantile)
Deg.

number of players. The network is sparse and, similarly to other spatial networks, is not
a small world. It has a characteristic path length L = 11.89 and a diameter d,,.x = 27,
which means that, on average, players have to move through a non-negligible number
of sectors to traverse the universe. See table [6.1] for a detailed characterization of the
universe network structure.

The sectors have been originally organized by the developers of the game into 20
different clusters, which are perceived by the players as different political or socio-
economic regions such as countries. For example, a player who is member of a political
faction in the game is provided some game-relevant protection in all clusters which are
controlled by the faction, and has the opportunity of social promotion when accom-
plishing certain tasks within these clusters. Each cluster is shown in Fig. |6.1] with a
different background color. All clusters contain about 20 sectors each, with the ex-
ception of the central cluster, consisting of just one sector, and its surrounding three
clusters having only 6-7 sectors. Sectors belonging to the same cluster are geograph-
ically close on the map, meaning that the distance between any two sectors in the
same cluster is small, with an average distance around 3. Players typically have a
“home cluster” where they focus their socio-economic activities over long time periods.
Occasionally, they also move to sectors belonging to other clusters in order to explore
the universe, to relocate their home (migrate), or during extreme game events such as
wars.

In Pardus, players are free to pursue whichever role they like to take. Many of them
focus on expanding their social relations or political influence, some play the role of
“scientists” exploring the universe, while others choose their main goal in trade and
optimizing the amount of virtual money earned [48]. The large variety of complex socio-
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Figure 6.2: Distribution of jump distances and of waiting times. To each player a time series consisting
of the sector positions over 1000 days is associated. A jump is said to occur when the sector position in
the time series changes from one day to the following. The length d of a jump is measured in terms of
graph distance and can take an integer value between 1 and dya.x = 27, the diameter of the network.
(a) The probability distribution of jump distances is reported in a semi-log plot. For d < 15, the
distribution follows an exponential P(d) ~ e~% with a characteristic length A =~ 3. Players can also
remain in the same sector for more days, without moving to other sectors. We define as waiting time
At the number of consecutive days a player spends in only one sector. (b) We show the probability
distribution of waiting times At in a log-log plot, which is well fitted by a power-law P(At) ~ At=7,
with 8 = 2.2.

economic behaviors emerging in this online society, results in high heterogeneity in the
mobility patterns, such as observed in real human motion. However, differently from
other empirical studies on human movements, mobility in Pardus can be investigated in
a controlled way, since complete information on actions of players is available [48] [127].
Here we consider a data set consisting of movements in the network universe of all
players who were active over a period of 1,000 days, as well as of socio-economic
information about their environment. This opens the possibilty of investigating motion
in relation to other social and economic factors. Note that we do not have to address
the common issues of relying on incomplete data, on data that are only a proxy of
mobility, or on data that are aggregates of different types of transportation [112].

6.4 Basic features of the motion

The position of each player in the universe, namely the ID number of the sector where
the player is currently situated, is logged once a day. In this way the motion of each
player becomes a time series of 1,000 sector positions. A jump occurs when a player’s
sector position changes from one day to the following. The associated length d of a
jump is measured in terms of graph distance, an integer value between 1 and dp,. = 27.
The probability distribution of jump distances, computed for all players over the whole
observation period, is reported in Figure (a). For d < 15, the distribution is
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well-fitted by an exponential:
P(d) ~ e %, (6.1)

with a characteristic jump length A ~ 3. The existence of a typical travel distance,
as also recently found in other mobility data [108, [122], is related to the use of a
single transportation mode in Pardus [I3I]. This allows to disentangle the intrinsic
heterogeneity of the players from the effects due to the presence of different means of
transportation [112], which might be the cause of the scale-free distributions found in
mobile phone or other mobility data sets [T17, [119]. It has in fact been suggested that
power laws in distance distributions of movement data may emerge from the coexistence
of different scales [104, 132].

In some cases, players stay in the same sector for a number of consecutive days. For
instance, 11 of the 1458 considered players, although being active in the game, never
jump within the entire observation period. On average, a player does not change sector
in approximately 75% of the days. To better characterize the motion, we computed the
waiting times At (measured in terms of number of days) between all pairs of consecutive
jumps, over all players. The distribution of these waiting times, shown in Fig. 6.2 (b)
follows a power-law distribution:

P(At) ~ At (6.2)

with an exponent [ ~ 2.2, in agreement with other recent measurements on human
dynamics [I33]. In addition, we found that the average waiting times of individual
players are distributed as a power-law. This implies a strong heterogeneity in the
motion of different players, which is related to the heterogeneity in their general activity.

6.5 Mobility reveals socio-economic clusters

Mobility patterns are influenced by the presence of the socio-economic regions in the
network, highlighted in colors in Fig. [6.1} The typical situation is illustrated in
Fig. 6.3 (a), with jumps within the same cluster being preferred to jumps between
sectors in different clusters. In order to quantify this effect, we report in Fig. 6.3 (b),
blue circles, the observed number of jumps of length d within the same cluster, divided
by the total number of jumps of length d. This ratio is a decreasing function of the
distance d, and reaches zero at d = 12, since no sectors at such distance do belong to
the same cluster. As a null model we report the fraction of sector pairs at distance d
which belong to the same cluster, see red squares in the same figure. The significant
discrepancy between the two curves indicates that players indeed tend to avoid crossing
the borders between clusters. For example, a jump of length d = 8 from one sector
to another sector in the same cluster is expected only in 3% of the cases, while it is
observed in about 20% of the cases.

Now, the propensity of a player to spend long time periods within the same cluster
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Figure 6.3: Influence of socio-economic clusters on mobility. (a) Sketch of jump patterns from a sector
1 to sectors within the same cluster, j and [, and to sectors in a different cluster, j’, I’. Although
sectors 7' and I’ have the same graph distance from sector ¢ as sectors j and [ respectively, transitions
across cluster border have smaller probabilities. (b) Quantitative evidence of the tendency of players
to avoid crossing borders. Red squares show the null model, i.e. the fraction of all pairs of sectors at
a given distance d being in the same cluster. Blue circles show the fraction of measured jumps leading
into the same cluster, per distance. Coincidence of the two curves would indicate that clusters have
no effect on mobility. Clearly this is not the case — there is a strong tendency of players to avoid
crossing the borders between clusters.

might be simply related to the topology of the network, as in the case of random walk-
ers whose motions are constrained on graphs with strong community structures [27].
Nodes belonging to the same cluster are in fact either directly connected or are at short
distance from one another. This proximity is reflected in the block-diagonal structure of
the adjacency matrix A and of the distance matrix D, respectively shown in Fig.|6.4{(a)
and (b). We have therefore checked whether the presence of the socio-economic clus-
ters originally introduced by the developers of the game can be derived solely from the
structure of the network. For this reason we adopted standard community detection
methods based on the adjacency and on the distance matrix [134) [135]. The results,
reported respectively in Fig. [6.4] (d) and (e), show that detected communities deviate
significantly from the clusters, implying that in our online world the socio-economic
regions cannot be recovered merely from topological features. In comparison we con-
sidered the player transition count matrix M, shown in Fig. [6.4] (c), which displays a
similar block-diagonal structure as A and D, but with the qualitative difference that
it contains dynamic information on the system. The entry m;; of the transition count
matrix M is equal to the number of times a player’s position was on sector ¢ and then,
on the following day, on sector j. This number is cumulated for all players. The entry
m;; of the transition probability matrix II corresponds to the probability that a player
moves to a sector j given that on the previous day the player’s location was sector 7. It
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Figure 6.4: Extracting communities from network topology and from mobility patterns. (a) The
adjacency matrix A of the universe network, (b) the matrix D of shortest path distances, and (c)
the matrix M of transition counts of player jumps. Each of the three matrices contains 400 x 400
entries, whose values are color-coded. Sector IDs are ordered by cluster, resulting in the block-diagonal
form of the three matrices. We have used modularity-optimization algorithms to extract community
structures from the information encoded in the three matrices. Different node colors represent the
different communities found, while the 20 different color-shaded areas indicate the predefined socio-
economic clusters as in Fig. m The displayed Fowlkes and Mallows index F € [0, 1] quantifies the
overlap of the detected communities with the predefined clusters. The closer F is to 1, the better the
match. (d) Although information contained in the adjacency matrix A allows to find 18 communities,
a number close to the real number of clusters, the communities extracted do not correspond to the
underlying color-shades areas (F = 0.66). (e) Extracting communities from the distance matrix D
only results in 6 different groups (F = 0.49). (f) The 23 communities detected using the transition
count matrix M reproduce almost perfectly the real socio-economic clusters (F = 0.96), with only a
few mismatched nodes detected as additional clusters.

reads: m;; = %, where m;; is the number of observed player movements from sector
¢ to sector j, and the sum over [ is over all sectors of the universe. The matrix II is a
stochastic matrix, i.e. it has the property that the entries of each row sum to one, as
it is the Markov approximation of the process underlying mobility.

Figure (f) shows that community detection methods applied to the transition
count matrix M reveal almost perfectly all the socio-economic areas of the universe.
This finding demonstrates that mobility patterns contain fundamental information on
the socio-economic constraints present in a social system. Therefore, a community
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detection algorithm applied to raw mobility information, as the one proposed here, is
able to extract the underlying socio-economic features, which are instead invisible to
methods based solely on topology.

In the rest of this section, we give a detailed treatment of adopted community
detection methods and measures. Since the Pardus universe is divided in a number of
clusters, defining political, independent units in the game universe, we have shown that
the mobility patterns of players are influenced by such borders. At the same time, the
topology of the Pardus universe itself might affect the mobility patterns. In order to
investigate the importance of these two elements, one needs to compare the topological
modules that can be extracted from the adjacency matrix A or distance matrix D,
with the dynamical communities emerging from the collective movement behaviour of
players.

At the sector level, the Pardus universe is a directed weighted network with L =
1160 links and N = 400 nodes. The majority of links are wormholes (~ 95%), mutual
links that connect nearby nodes (see Fig. [6.1)) and have a small traveling cost (in
terms of APs). The long-range links in Fig. instead represent X-holes and Y-
holes. Players moving along such links incur significantly higher traveling costs than
in the case of wormholes. Since X/Y-holes may be only scarcely used in-game, in
addition to studying the complete directed weighted adjacency matrix, A, we also
study the adjacency matrix A™® where X/Y-holes were removed, yielding a symmetric
and unweighted network. Finally, we consider the weighted network D™, defined
element-wise as d;; = d(i,7) "' Vi # j and d;; = 0 Vi, where d(4, j) is the shortest path
distance on the Pardus network.

The player dynamics was studied at the aggregate level through the transition count
matrix M and the normalized transition matrix II. Each element m;; of M corresponds
to the total number of times a player was found at position ¢ at a time ¢ and at position
J at time ¢ + 1. The transition matrix II = (7;;) is obtained by row-normalizing M so

mgj

that m;; = S Hence, for all rows 4, ) ;mi; = 1 and Il is a well-defined probability

matrix for the transitions between pair of nodes in the network. Notice that for both M
and II the diagonal elements can be significantly different from zero and therefore the
resulting networks display self-loops. Moreover, both matrices M and II correspond to
directed, weighted networks, and therefore can be thought as representing flows across
the networks. For completeness, we also define the symmetrized versions of the ma-
trices above, namely the symmetrized jump matrix M®»™ = (M + MT)/2, 1T and the
symmetrized transition matrix [I%™® = (II + II") /2. The corresponding weighted net-
works are undirected and represent a first coarse-graining of the information contained
in the dynamical flows. It is thus interesting to compare these two to understand how
much information is lost in the coarse-graining.

We performed community detection algorithms by optimizing modularity [134], 135].
To ensure consistency, we checked the results under different heuristics and repeated
detections [136} [137]. Figure shows the communities extracted from the M, Msy™™
IT and IT¥™™ matrices. The coloured hulls are included for comparison and indicate
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the Pardus cluster to which each sector belongs. For comparison, in figure we
plot the communities obtained from the topological quantities, namely the directed
weighted adjacency matrix A, the undirected unweighted matrix A" and the inverse
distance matrix D™, One can easily see that the communities extracted from the
transition matrices appear to reproduce much better the cluster structure as opposed
to the topological communities.

Notice also that the partitions obtained for the dynamical transition matrices con-
tain communities composed of a single node. Although unusual in community de-
tection, this result is consistent with the mobility patterns. In fact, we measure the
positions of players at the same time every day. Then, the presence of non zero values
on the diagonal of M, M™™ 1II and II*¥™™ simply means that there is a positive
probability for a player to be found again on the same node after 24 hours, implying
that the player either stayed still on the node or traveled but came back to its original
position within 24 hours. These self-loops are responsible for the presence of single-
node communities in the dynamical matrices and for their absence in the topological
ones, where there are no self-loops.

We find a different number of communities for different matrices, making it hard to
come to a conclusion regarding which one is the closest to the Pardus cluster structure.
To quantify the relative goodness of the partitions obtained from the various matrices,
we calculate three measures of clustering similarity: the Fowlkes and Mallows index
F |138], the Rand’s criterion R [I39] and the normalized information variation (NVI)
[140]. Consider a set of nodes T of cardinality n and two partitions C and C" of T,
then the set of all unordered pairs of elements of T is the union of the sets [141], 1T42]:

t11 is the set of pairs the same community under C and C';

to; is the set of pairs not in the same community under C but under the same
community in C’;

ti1o is the set of pairs in the same community under C but not under the same
community in C’;

too is the set of pairs not in the same community under C and C’;

and nq11, no1, Mo, Moo are their respective cardinalities (and nqy + ng1 + nip + Noo =
n(n —1)/2). The F and R indices are then given by:

= 2 _ 2(na1 + 100
7= \/(nu + n10)(n11 + no1) R = n(n — 1) (6.3)

which are essentially two ways of quantifying how well the partitions match pairs of
nodes. Therefore a perfect match between two partitions will have F,’R = 1. The
Variation of Information (V1) is a measure based on information theoretical concepts
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Figure 6.5: Extracting communities from mobility patterns. Communities found for (a) the jump
matrix M, (b) the symmetrized jump matrix M*¥™™ = (M + MT)/2, (c) the transition matrix II
and (d) the symmetrized transition matrix II%™™ = (II + IIT)/2. Different node colours represent
the different communities found, while the 20 different colour-shaded areas indicate the predefined
socio-economic clusters as in Fig. [6.1] The communities found through the information of motions
reproduces well the bulk of the Pardus cluster structure, with a few exceptions along borders where
some nodes are assigned to wrong clusters. The Fowlkes and Mallows index F is close to 1 for all
detected partitions, reflecting the good match. For more measures, see Table

and represents the informational distance between two partitions. Therefore, if the
VI is large, the two partitions are very dissimilar. The VI of a partition is bounded
by log, n, hence it is possible to normalize it, obtaining the Normalized Variation of
Information (NVI € (0,1)):
VI(C,C
wvze.cy = YHE) (6.4)

log, n
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where

VI(C,C') = H(C) + H(C) — 2Z(C,C") (6.5)

The terms in equation (6.5)) are the entropy H(C) of partition C and the mutual
information between two partitions C and C’" [142]:

H(EC) =~ Pli)log, P(i)  Z(C.C)) = >3 P(i. ) log, P—’(D(i,j)

Popg) 0

i=1 i=1 j=1

where P(i) = % is the probability that an element of 7 chosen at random belongs to
IC: N CY]

n

community C; € C, and P(i,j) =
C; € C and to C’j‘ eC.

Table reports the values obtained for the studied matrices. The values of the
Fowlkes-Mallows and Rand indices for the dynamical communities are much closer to 1
than the ones for the topological communities. The result is confirmed also by the NVI
values, where we measured very small values for the dynamical partitions, indicating
that player mobility follows closely the Pardus cluster structure. It could be argued
that this similarity emerges from the topological structure of the network. However, we
also found a difference of almost one order of magnitude between the dynamical and
topological partitions and thus such hypothesis is not supported, that is the topological
properties (e.g. adjacency matrix, distance matrix) produce partitions that are very
different from the dynamical ones and the Pardus cluster one and cannot therefore be
considered as the underlying mechanism of the mobility patterns. Moreover, this result
is robust under different measures of player movement, as shown by the remarkable
stability of the values of the clustering similarity measures for the other dynamical
cases, M>™™ II and II%™™" which stay close to the ones obtained for M. Therefore,
our conclusions cannot be considered an artifact of the particular measure we adopted.

the probability that an element belongs to

6.6 Anomalous diffusion and a long-term memory model

In order to characterize the diffusion of players over the network, we have computed
the mean square displacement (MSD) of their positions, (t), as a function of time.
The MSD is defined as 02 (t) = ((r (T +t) — (1)), where 7 (T') and 7 (T + t) are the
sectors a player occupies at times 7" and T+t respectively, and where (r (T'+t) — r (T'))
denotes the distance between the two sectors. The average (-) is performed over all
windows of size t, with their left boundaries going from T=0 to T=1000-t, and over
all the 1458 players in the data set. If 02 has the form o2(t) ~ ¢ with an exponent
v < 1, the diffusion process is subdiffusive, in the case v > 1 it is super-diffusive. An
exponent of v = 1 corresponds to classical brownian motion [143] [144].

Results reported in Fig. (a) indicate that, for long times, the MSD increases as

100



6.6. Anomalous diffusion and a long-term memory model

a

(\‘ L
P 23
a

A
)

F = 0.66

:

F =0.49

Figure 6.6: Extracting communities from topological information. Communities found for (a) the
adjacency matrix A, (b) the adjacency matrix A"! in which the X/Y-holes were removed yielding an
undirected unweighted network, and (c) the distance matrix D™V, Different node colours represent
the different communities found, while the 20 different colour-shaded areas indicate the predefined
socio-economic clusters as in Fig. [6.1} The partitions obtained from the adjacency matrices produce
communities that cross over the borders between clusters and therefore do not recover the clusters
well. This is particularly evident in the case of D' where only 6 communities are found. The Fowlkes
and Mallows index F is not close to 1 for all detected partitions, reflecting the bad match. For more
measures, see Table @

a power-law:

o (t) ~ t" (6.7)

with an exponent v ~ 0.26. This anomalous subdiffusive behavior is not a simple
effect of the topology of the Pardus universe. In fact, as shown in Fig. (b), gray
stars, the simulation of plain random walks on the same network produces a standard
diffusion with an exponent v ~ 1 up to t ~ 100 days, and then a rapid saturation
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Matrix Network Properties Neomm | F R NVI
Clusters — 20 1 1 0

A directed, unw. 18 0.678 | 0.963 | 0.179
AVh undirected, unw. 17 0.655 | 0.957 | 0.180
D™ directed, weight. 6 0.489 | 0.864 | 0.271
M directed, weight. 23 0.963 | 0.996 | 0.025
Msymm symmetrized, weight. | 22 0.957 | 0.995 | 0.026
I1 directed, weight. 14 0.812 | 0.973 | 0.075
[rsymm symmetrized, weight. | 19 0.999 | 0.993 | 0.036

Table 6.2: Overview of community detection results for the studied matrices. From left to right, the
columns correspond to: the studied matrix, the properties of the corresponding network, the number
of communities found n.comm, the scores for the Fowlkes-Mallows index F [138], the adjusted Rand’s
criterion R [139] and, finally, the normalized information variation (NVI) [I40]. For reference, the
first row contains the values for the Pardus cluster structure. The closer the indices F and R are to 1,
and the closer the NVI is to 0, the better a found partition matches the clusters. The values reported
clearly indicate that the Pardus cluster structure is faithfully reproduced by the player mobility. On
the other hand, the topological, non-dynamic properties (e.g. adjacency matrix, distance matrix)
produce partitions that are very different from the Pardus cluster structure.

effect which is not present in the case of the human players. Insights from the previous
section suggest that the anomalous diffusion behavior might be related to the tendency
of players to avoid crossing borders. We have therefore considered a Markov model in
which each walker moves from a current node ¢ to a node j with a transition probability
m;j = mij/ >, Mi, where m;; is the number of jumps between sector ¢ and sector j, as
expressed by the transition count matrix M of Fig.|6.4] (c). The probabilities m;; are
the entries of the transition probability matrix II, which contains all the information
on the day-to-day movement of real players, such as the preference to move within
clusters, the length distribution of jumps, as well as the tendency to remain in the same
sector. Despite this detailed amount of information used (the matrix IT has 160,000
elements), the Markov model fails to reproduce the asymptotic behavior of the MSD,
see magenta diamonds in Fig. (b). Since the model considers only the position
of the individual at its current time to determine its position at the following time,
deviations from empirical data appear presumably due to the presence of higher-order
memory effects. For this reason we have considered the recently proposed preferential
return model [124] which incorporates a strong memory feature. The model is based on
a reinforcement mechanism which takes into account the propensity of individuals to
return to locations they visited frequently before. This mechanism is able to reproduce
the observed tendency of individuals to spend most of their time in a small number of
locations, a tendency which is also prevalent in the mobility behavior of Pardus players.
However, the implementation of the preferential return model on the Pardus universe
network is not able to capture the scaling patterns of the MSD, as shown in Fig. (b).
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Figure 6.7:  Diffusion scaling in empirical data and simulated models. (a) The mean square dis-
placement (MSD) of the positions of players follows a power relation o2(t) ~ t” with a subdiffusive
exponent v ~ 0.26. The inset shows the average probability P..(7) for a player to return after 7
jumps to a sector previously visited. The curve follows a power law P (1) ~ 7% with an exponent
of a = 1.3 and an exponential cutoff. We report, for comparison, (b) the MSD for various mod-
els of mobility. For random walkers and in the case of a Markov model with transition probability
Ti5 = My /> ;Mij we observe an initial diffusion with an exponent v &~ 1 and then a rapid saturation
of 02(t), due to the finite size of the network. A preferential return model also shows saturation and
does not fit the empirical observed scaling exponent v. Conversely, a model with long-time memory
(Time Order Memory) reproduces the exponent almost perfectly. Such a model makes use of the em-
pirically observed P._.(7) while the Markov model and the preferential return model over-emphasize
preferences to locations visited long ago and does not recreate the empirical curve well. Curves are
shifted vertically for visual clarity.

The reason is that in the model the probability for an individual to move to a given
location does not depend on the current location, nor on the order of previously visited
locations. Instead, we observe that in reality individuals tend to return with higher
probability to sectors they have visited recently and with lower probability to sectors
visited a long time before. Consequently a sector that has been visited many times but
with the most recent visit dating back one year has a lower probability to be visited
again than a sector that has been visited just a few times but with the last visit dating
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6. A high-order Markov model for the study of mobility

back only one week.

To highlight this mechanism we measured the return time distribution in the jump-
time series, which is the transformation of the time-series of daily sector IDs occupied
by the players from real-time to jump-time, in order to be able to compare time-series
of different length and to focus on the movements between sectors. An example of this
conversion is provided: a time series

[5,5,5,32,32,104,5,5,104, 104, 104, 32, 337, 337, 32. . |
becomes in jump-time
[5,32,104, 5,104, 32,337,32,...].

We denote jump-time by the greek letter 7, that is, at jump-time 7 a player has
performed exactly 7 jumps. We use 7 in the computation of the first return time dis-
tribution. In the hypothetical time series of sectors [5, 32,104, 5,104, 32,337, 32| a first
return to a sector lying 7 = 1 jumps back happens 2 times (104, 5,104 and 32, 337, 32),
for 7 = 2 this happens once (5,32,104,5), for 7 = 3 also once (32,104,5,104, 32).
Hence, in this example, P..(1) = 0.5, P—(2) = P(3) = 0.25, where the sum over all
P..(7) is equal to 1. In particular, we extracted the probability P..(7) for an individual
to return again (for the first time) to the currently occupied sector after 7 jumps. As
shown in the inset of Fig. (a), we found that the return time distribution reads

P_(1) ~71¢ (6.8)

with an exponent a =~ 1.3. We used this information for constructing a model which
takes into account the higher re-visiting probability of recently explored locations. In
this way we can capture the long-term scaling properties of movements. Exactly these
asymptotic properties are fundamentally relevant for issues of epidemics spreading or
traffic management.

This “Time Order Memory” (TOM) model incorporates a power-law distribution
of first return times, together with a power-law distribution of waiting times and an ex-
ponential distribution of jump distances, as those observed empirically in Fig. We
show below that these ingredients are sufficient to reproduce the subdiffusive behavior
reported in Fig. (a). The model works as follows: an individual stands still in a
given sector for a number of days drawn from the waiting time distribution, Eq. (6.2]).
Then, the individual jumps. There are two possibilities: (i) with a probability v she
returns to an already visited sector, (ii) with the probability 1 — v she jumps to a
so far unexplored sector. In case (i), one of the previously visited sectors is chosen
according to Eq. . In the exploration case (ii), the individual draws a distance
d from the distance distribution, Eq. , and jumps to a randomly selected, unex-
plored sector at that distance. The model has four parameters. The parameters \, 3

and « of equations ([6.1)), (6.2]) and respectively, are fixed by the data. Further,
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averaging over all jumps and players, the probability of returning to an already visited
location is v &~ 0.83. Similarly to the measured data, the MSD of the TOM model,
black squares in Fig. (b), exhibits no saturation effects and displays an exponent
vrom = 0.23 + 0.02 in full agreement with the exponent observed for the players.

The flat slope of ¥ = 0.26 and the lack of saturation of the MSD of the players
over the whole observation period exposes the significant level of subdiffusivity in the
motions of individuals, consistent with previous findings [77, 124], T43-145]. However,
the mere tendency of individuals to return to already visited locations is not sufficient
to capture these subdiffusive properties of the MSD, but it is fundamental to consider a
mechanism that takes into account the temporal order of visited locations, as achieved
by the TOM model. Moreover, the TOM model is realistic in the sense that, in contrast
to Markov models, it takes into account the tendency of individuals to develop a pref-
erence for visiting certain locations. At the same time it allows for the possibility that
a previously preferred location becomes not frequented anymore. This view provides
an alternative to recently suggested reinforcement mechanisms in preferential return
models [I124]. The possibility for individuals to “change home” is relevant when the
model should be able to account for migration, which is an important feature in the
long-time mobility behavior of humans.

Finally, we discuss to which extent the findings from our “social petri dish” are
valid also for human populations unrelated to the game. Previous analyses of human
social behavior in Pardus [48, [127] have shown agreement with well-known sociological
theories and with properties on comparable behavioral data. Examining the preference
of players to move within socio-economic regions is of obvious importance for clearing
up the role of political or socio-economic borders on the movement and migration of
humans, where the presence of borders has a strong influence on mobility [118, [146-148§].
Online societies as the one of Pardus have the evident potential to serve as “socio-
economic laboratories”, where the complete knowledge of activities, social relations,
and positions of all individuals can significantly advance our understanding of large-
scale human behavior, in particular of mobility.
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Chapter 7

Understanding cooperative behavior
with functional brain networks

Reason has always existed,
but not always in a reasonable form.

KARL MARX

7.1 Neuroscience and Game Theory

Game theory provides a mathematical framework to study decision-making processes
in groups of individuals. In a game, the players adopt one among a set of possible
actions (strategies), and the reward or penalty for each player crucially depends on the
actions taken by all players [T49]. Game theory has proven useful in the investigation
of the neural basis of social interactions and social decision-making. In particular,
researchers have investigated what happens in the brain of subjects involved in games
where each player can choose between cooperative and non-cooperative behaviors, or
between altruistic and selfish behaviors, with the aim of understanding the modification
of brain activity related to the selected strategy [I50].

In this chapter we discuss an experiment to investigate the connection between brain
activity, as measured by EEG recordings, and social interaction, modelled using the
framework of game theory. We first introduce some notions about classical game theory,
focusing on the Prisoner’s Dilemma game, which is played by the participants of the
experiment. Then, we describe the experimental setup and we discuss the methodology
used to analyze the data from the experiment. This methodology relies on a complex
networks approach: from the correlations between signals of different brain areas, one
can construct what is called a functional brain network. These networks can thus be
analyzed using tools of complex network theory. As a major result, we show that it is
possible to predict the cooperative behavior of individuals by looking at the topological
properties of their functional brain networks.
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7.2 Classical Game Theory

Game theory is a unifying paradigm behind many scientific disciplines. It is a set of
analytical tools and solution concepts, which provide explanatory and predicting power
in situations involving interactive decisions, when the aims, goals and preferences of
the participating players are potentially in conflict. Classical (rational) game theory
is based upon a number of assumptions about the structure of a game. It assumes
that agents (players) have well defined goals and preferences which can be described
by a utility function. The utility is the measure of satisfaction the player derives from
a certain outcome of the game, and the player’s goal is to maximize his/her utility.
Another key assumption in the classical theory is that players are perfectly rational
and that this fact is common knowledge of all players. “Perfect rationality” means
that the players have well defined payoff functions, and they are fully aware of their
own and the opponents’ strategy options and payoff values. They have no cognitive
limitations in deducing the best possible way of playing whatever the complexity of the
game is. In this sense computation is costless and istantaneous. “Common knowledge”
implies that beyond the fact that all players are rational, they all know that all players
are rational.

The intriguing predicted outcome, based on these hypotheses and using the mathe-
matical formulations of different games that model conflict (see for example Sec. [7.2.1
for a description of the Prisoner’s Dilemma), is that the solutions to the game consist
in each player defecting with each other, meaning that each player tries to get his/her
maximum benefit regardless what happens to the other player. However, this is in
contrast with many empirical observations from the world around us, where it is clear
that defection is not the common scenario. Quite the opposite, in many contexts indi-
viduals tend to cooperate. A pletora of mechanisms have been proposed to explain the
emergence of cooperation, some of these stating that individuals that play iteratively
the same game can turn to cooperation in the long term [I51].

Here we do not want to go into the details of game theory, but just present the main
characteristics of a game extensively used for the study of conflict and for modelling
social interaction: the Prisoner’s Dilemma.

7.2.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a strategic game used as the standard metaphor to concep-
tualise the conflict between mutual support and selfish exploitation among interacting
non-relatives in biological communities. Its name comes from a thought experiment
involving suspects in a crime, and this is also the first formulation we want to provide
before giving the rigorous mathematical one. The dilemma, as told by Osborne [149],
is the following:

Two suspects in a major crime are held in separate cells. There is enough
evidence to convict each of them of a minor offense, but not enough evidence
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Figure 7.1: Representation of the Prisoner’s Dilemma. The two rows correspond to the two pos-
sible actions of prisoner A, the two columns correspond two the two possible actions of prisoner B.
Depending on their actions, either both go to prison for 5 years (both confess), one is set free but
the other one goes to prison for 20 years (one confesses, the other one remains silent), or both go to
prison for one year (both remain silent). If both players are rational and assume that the other one
is too, the decision of both players is to confess, which brings both of them 5 years in prison. The
dilemma is that regardless of what the other prisoner chooses, one will always gain a greater payoff
by betraying the other, leading to a situation where both confess and serve a longer time in prison (5
years) compared to the case where both cooperate (1 year).

to convict either of them of the major crime unless one of them acts as an
informer against the other (confesses). If they both stay silent, each will
be convicted of the minor offense and spend one year in prison. If one and
only one of them confesses, he/she will be freed and used as witness against
the other, who will spend twenty years in prison. If they both confess, each
will spend five years in prison.

Here, regardless of what the other decides, each prisoner gets a higher pay-off (less years
in jail) by betraying the other. For example, Prisoner A can, with close certainty, state
that no matter what prisoner B chooses, prisoner A is better off ‘ratting him out’
(defecting) than staying silent (cooperating). As a result, solely for his own benefit,
prisoner A should logically betray him. On the other hand, if prisoner B acts the same
way, then they both have acted this way, and both receive a lower reward than if both
were to stay quiet. Seemingly logical decisions result in both prisoners being worse off
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than if each chose to diminish the sentence of his accomplice at the cost of spending
more time in jail himself. This solution to the Dilemma corresponds to the so-called
Nash Equilibrium of the game (see also below in this section).

The game can be summarized in a visual form as shown in Fig. In general,
games like the Prisoner’s Dilemma can be formulated in a rigorous way by using a
matrix representation. In the case of the Prisoner’s Dilemma, where a player can
choose between two possible strategies, either to cooperate (C) with the other player
or to defect (D), the outcomes of the game are summarized in the following matrix:

no (B rmyo(mm e1) o

where rows correspond to the strategies player A can adopt (C for first row, D for the
second), and columns correspond to the strategies of player B (C for first column, D
for the second). Each entry of the matrix contains two values, the first being the payoff
of player A, the second the payoff of player B. These values are usually denoted by the
capital letters R for Reward (for mutual cooperation), S for Sucker, T for Temptation
(to defect), and P for Punishment (for mutual defection). In such a matrix form, the
Prisoner’s Dilemma is a game where the following relation between the values of the
payoff holds:
T'>R>P>S

In particular, the temptation to defect is higher than the reward to cooperate. In the
experiment we describe in Sec. we adopt the following payoff matrix:
pee o pep (2,2) (0,3)

n= (e oo )= () 0 2
A Nash equilibrium is defined as a set of strategies for which no player can do better by
unilaterally changing his or her strategy. Thus, each strategy in a Nash equilibrium is
a best response to all other strategies in that equilibrium. In the case of the Prisoner’s
Dilemma, both players defecting is a Nash Equilibrium since in no situation can a
player can gain a higher benefit if he/she switches to cooperation, provided that the

strategy of the other player remains fixed. This set of strategies is also the only Nash
Equilibrium of the game.

7.2.2 The lterated Prisoner’s Dilemma

When the Prisoner’s Dilemma is played iteratively the situation becomes more com-
plicated, since a player remembers previous actions of the opponent and can change
the strategy accordingly [I52]. This is the actual situation in the experimental setting
studied in this chapter. In the case of an Iterated Prisoner’s Dilemma, we are interested
in the iterative strategy of the player. If a player plays iteratively N games, his/her
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Figure 7.2: A schematic representation of the classification of the iterated prisoner’s dilemma strate-
gies for a player A. The classification of the iterated strategies is based on the pair of strategies adopted
by the players in the simple Prisoner’s Dilemma at trial ¢ and on the strategy player A adopts in the
game in the following trial ¢ + 1. In the first column in the table, all the possible outcomes of the
game at trial ¢ are shown, where the first symbol, C or D, refers to the strategy player A adopted,
while the second symbol refers to the strategy player B chose. In the first row, the possible strategies
of player A in the trial ¢t + 1 are shown. In this way, it is possible to classify the iterated strategy of
player A as cooperation (C), Defection (D) or Tit-for-Tat (T).

iterative strategy can be classified by looking at the entire sequence composed of the
total of the IV single game outcomes. For our experiment, we simplify the classification
of possible strategies taking place. We base the classification of the iterative strategy
of a player just by looking at the outcome of a single game (what both players do)
and at the strategy the player adopts in the following single game (see also Fig. .
The strategy a player adopts can be of three different kinds: i) cooperative strategy
(C), when a player who is playing defection D, starts to cooperate C as soon as the
other player defects, or when a player who is playing cooperation C, continues to do
so for all the possible actions of the opponent; ii) defector strategy (D), when a player
who is playing cooperation, starts to defect D as soon as the other player cooperates
C, or when a player who is playing defection D, continues to do so for all the possible
actions of the opponent; iii) tit-for-tat strategy (T), when a player who is cooperating
C switches to defection D if the opponent defects D, or when a player who is defecting
D switches to cooperation C if the opponent cooperates C.

Considering the pair of iterative strategies of two players, the outcome of each
round, or trial, of the game can be one of the six possible combinations of the individual
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actions. Three of them, namely the cases in which players play both either cooperation
(indicated as CC), or defection (indicated as DD) or tit-for-tat (indicated as TT), are
called here “pure” strategies because the two players adopt the same action, while the
other cases, indicated as CD, CT, and DT or equivalently DC, TC, and TD, are called
“mixed” strategies since the players adopt different iterative strategies.

7.3 Design of the experiment

Fifty-two voluntary and healthy subjects (age ranging from 23 to 33 years) participated
in our experiment. These volunteers were combined in 26 couples and played an iterated
Prisoner’s Dilemma game of at least 200 rounds. In every round, or trial, one single
game, described in Sec. is played. Each of the two players were asked to choose
either to cooperate (C) or to defect (D) and to enter their decision through a special
keyboard. Their “reward” in each single game was assigned according to the payoff
matrix Eq. A trial (¢) consists of two distinct time intervals. During the first
interval, players have to communicate their strategies on the base of the outcome at
the previous trial (¢ —1). Typically, this interval ranged from 0.5 seconds to 2 seconds.
After communicating their choice, a report summarizing the strategy and the score at
the trial (t) is displayed for 4 seconds. At the beginning of this second interval, the two
subjects make a new decision to be communicated in the next trial (£ + 1). A scheme
of the experimental setup is provided in Fig. [7.3

7.3.1 EEG recordings and cortical activity

During all the trials, both the players wore an electrode cap composed of 64 sen-
sors, registering the cortical activity of the players. Cortical activity from scalp EEG
recordings was estimated by using an average realistic head model (MNI template,
http://www.loni.ucla.edu/ICBM/) consisting of four concentric surfaces: scalp, inner
skull, outer skull and cortex. Each surface is composed of approximately 3000 uni-
formly disposed vertices, each corresponding to one current dipole. By means of stan-
dard methods [I53HI55] in neuroscience for the solution of the so-called electromagnetic
linear inverse problem, from the 3000 dipoles the activity of a total of six regions of
interest (ROIs) of the scalp of each subject was estimated. The ROIs used are stan-
dard regions according to the Brodmann classification [I56] and are: 10_L for the left
hemisphere and 10_R for the right hemisphere, the Anterior Cingulate Cortex (ACC),
the Cingulate Motor Area (CMA), the Brodmann area 7_L for the left hemisphere and
7_R for the right one.

After all the trials were played, all the cortical signals of the single players in each
trial were classified as Cooperation (C), Defection (D), or as Tit-for-Tat (T) according
to the rules specified in the Sec. Thus, three different subsets of trials C, D and
T were collected for each subject.
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Figure 7.3: Timeline of the experiment. At each round, or trial, players are asked to choose
either to cooperate (C) or defect (D) through a special keyboard. A trial (t) consists of two distinct
time intervals. During the first interval, players have to communicate their strategies on the base of
the outcome at the previous trial (t-1). Typically, this interval ranged from 0.5 seconds to 2 seconds.
After communicating their choice, a report summarizing the strategy and the score at the trial (t) is
displayed for 4 seconds. At the beginning of this second interval, the two subjects make a new decision
to be communicated in the next trial (t+1). In particular, we considered the first second (i.e., 1 s of
EEG recordings) as period of interest (POI) for the initial decision-making processes.

7.4 The concept of hyper-brain

Most of the approaches used so far in the literature to characterize brain responses
during social interaction have the major limitation of measuring signals from just one
player at a time. The functional connectivity between the brain activities of two
interacting individuals is thus not measured directly, but inferred from independent
observations subsequently aggregated by statistical models which associate observed
behaviors and neural activation. In the experiment presented, instead the cortical
activity of players has been recorded simultaneously by means of EEG hyperscanning.
To get all the potentialities from the simultaneous recordings, we have devised a method
to create a merged dataset considering data from the six cortical regions of the two
subjects, thus obtaining a set of 12 cortical signals. The cortical signals of the merged
data set were then processed to construct a functional brain network [I57], whose
N = 12 nodes correspond to the ROIs individuated. For defining the links of the
network, in neuroscience literature many different methods have been proposed[I57].
Here, we use a standard method named Partial Directed Coherence (PDC) [I58]. The
method is based on the Granger causality index, a measure that quantifies whether a
time series, a cortical signal in our case, can predict another one. The measure is not
symmetric, meaning that the Granger causality of timeseries A to predict timeseries B
can be different from the value obtained to predict A based on B. To each ordered pair
of nodes of the functional brain network, we can then associate a value provided by
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the PDC. In order to consider only functional links between ROIs that are not due to
chance, we used a statistical significance threshold on the measure associated to each
pair of nodes. All the (ordered) pairs of nodes whose PDC value is above the threshold
are then connected by a directed weight link, with weight being equal to the estimated
statistical significance. This weight also indicates the degree of interaction between the
two ROls.

Concerning the spectral properties of the EEG signals, we selected four frequency
bands of interest (Theta 4-7 Hz, Alpha 8-12 Hz, Beta 13-29 Hz and Gamma 30-40 Hz)
and we gathered the corresponding cortical networks by averaging the values within
the respective range. Finally, for each band, different functional brain networks were
constructed. More specifically, for each band six different graphs were produced, cor-
responding to the six different possible pairs of strategies CC, DD, TT, CD, CT, DT
(see Sec.[7.2.2)). The first six nodes of the graph correspond to ROIs of the first player,
while the remaining 6 nodes correspond to the ROIs of the second player. In practice,
we represented the functional connectivity of the two brains altogether in the same
graph: a link in the graph can be either an intra-brain or an inter-brain connection,
according to the fact that it expresses the relationship between two ROIs belonging
to the same brain, or between a region of one brain and a region of the other brain.
We call these graphs hyper-brain networks, since they represent at the same time the
correlations between ROIs in the same brain and correlations across the two brains.

Fig.[7.4)illustrates, for a representative couple of subjects, the hyper-brain networks
associated to the pure strategies CC, DD, and TT, in the Alpha (8-13 Hz) frequency
band. Each network consists of twelve nodes representing the six specific ROIs consid-
ered in this study for each subjects’ brain. Note that the selected ROIs are the same
for each player. To highlight the inter-brain connectivity, only links between the two
brains are illustrated in the figure.

7.5 s it possible to predict social behavior?

We show here the results obtained from the analysis of the hyper-brain networks for the
26 couples of subjects studied. First, we report a series of graph indexes, some of them
already introduced in chapter 1, that have been used to characterize the hyper-brain
graphs. With these measures, we prove that the structure of networks corresponding
to situations in which individuals play cooperatively is significantly different from cases
of couples playing in a “selfish” way. Moreover, we test the possibility to predict the
outcome of a game from the structural analysis of the hyper-brain network obtained
from the signals recorded during the decision-making process. This also suggests that
EEG hyper-scanning and hyper-brain networks allow the direct observation of neural
signatures of human social interactions.

114



7.5. Is it possible to predict social behavior?

0.16

0.08

0.16

0.08

0.16

0.08

Figure 7.4: Inter-brain connectivity for pure strategies in the Alpha band. Two generic
players are represented by the realistic head models used to estimate the cortical activity in the same
six regions of interest (ROIs). Different colored points indicate the barycenters of these ROIs on the
semi-transparent cortex. For the sake of simplicity, we did not label the ROIs of each subplot, but just
two for the CC (7L, 10_L), TT (7R, 10_-R) and DD (CMA, ACC) subplot. Only links between the
two brains are illustrated in each hyper-brain network, i.e. the inter-brain connections. The size and
the color of each directed connection represent the PDC values of a representative couples of subjects
in the Alpha (8-13 Hz) frequency band.

7.5.1 Graph indexes

The hyperbrain networks we analyzed are directed weighted graphs consisting of N =
12 nodes. In general, they can be represented by a N x N weighted adjacency matrix
W = {w;;}, where w;; > 0 is the weight associated to the directed arc from node i to
node j, and in general w;; # wj;. As we have seen in chapter 1, the most intuitive index
of a graph is its total number of links, which measures the overall level of connectivity
within the system. The respective weighted version is the total network weight 1 that
is the sum of all arc weights in the graph:

(2
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In weighted networks one can also define the strength, which is the extension of the
concept of degree. The strength of a node is equal to the sum of the weights of the
links incident in the node. In the case of directed weighted networks, we can define for
each node the in- and out-strength. More rigorously, the out-strength s of node i is

i
defined as:
out __
S, = E wij7
J

while the in-strength s is:

mn
S, = E 'lUji,
J

As already mentioned in Sec. the performance of a network can be measured
by assuming that information flows along shortest paths and that the efficiency in the
communication between two nodes ¢ and j is inversely proportional to their shortest
distance d;;, i.e. the smallest sum of arc weights of all possible paths from ¢ to j in
the case of weighted networks. Namely, the efficiency index E of a graph, is defined as
[23]:

1 Mo
E:mzfj (7.4)

i#j=1
If there is no path from i to j, d;; = oo and the couple (7,7) does not contribute to

the graph efficiency. Large distances imply small efficiency, while short distances imply
high efficiency, with the efficiency being maximal in a fully connected graph.

We have also implemented two measures to quantify how well the graph G can
be divided into two sets of nodes B; and By, corresponding to the brains of the two
players. The divisibility D is defined as:

B w
Y wy (1-0(Ci,Cy)) +e

D (7.5)

where C; indicates the community to which the node ¢ belongs (in our case there are
only two communities: C; = By or Cy = Bs); the § function yields 1 if vertices ¢ and
j are in the same community (i.e. in the same brain), and 0 otherwise; € is a positive
constant (here set equal to W) to avoid possible divergence of D. The divisibility D
is actually the inverse of the cut size [I59] extended to weighted graphs. Modularity
@, originally defined for unweighted graphs (see Sec. , measures the difference
between the fraction of arcs connecting nodes belonging to the same community in the
actual graph and its expected value in a random graph. Modularity () in the case of
directed weighted graphs reads [160]:

out ,in

Q= %Z (wz‘j - SzWJ ) 6 (Ci, Cj) (7.6)

ij
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where the ¢ function has the same meaning as for the divisibility D. As a result, in the
expression of @), the only contributions come from couples of nodes belonging to the
same brain. Hence, the higher is the value of modularity, the better is the partition
of the networks into the two communities B; and B;. In order to compare network
measures for different strategies 7 (7 = CC, DD, TT, CD, CT, DT) of the same couple
k (k=1,...,26), we introduce the Z-score, Z*(x), of a generic network measure z (z
being the efficiency E, the divisibility D, or the modularity @) as:
xk — zF

ZEa) = T (7.7)

ok

The averages ¥ and the standard deviations o* are evaluated, for each value of k, over

all strategies 7. Finally, the average Z-score, (Z,(x)), is evaluated, for each strategy
7, by averaging the Z-scores ZF(x), over all couples k:

2k — (ab)

(Zo(a)) = (L, (73)

7.5.2 Inter-brain connectivity discovers selfish behaviors

The novelty of the study we present in this chapter consists in classifying different
social behaviors by comparing, for each pair of individuals, the six hyper-brain networks
relative to CC, DD, TT, CD, CT, DT strategies. For each of the 26 couples involved,
we have considered the graph efficiency E, and computed two measures, the divisibility
D and the modularity Q, which give a quantitative estimation of how well the hyper-
brain network can be separated into two subsets of nodes, corresponding respectively
to the network of cortical regions of the two players. A comparison of the six values of
E, D and Q, obtained for each couple of players and for each frequency band, allowed
successful discrimination of selfish behavior from other behaviors, as reported in the
pie diagrams of Fig. for the Theta band. The first pie diagram shows that 50%
of the cases (13 couples) display the minimal value of efficiency in the DD hyper-
brain networks, 11.6% (3 couples) in the CC hyper-brain networks, and 19.2% (5
couples) in the TT hyper-brain networks. The remaining 19.2% (5 couples) exhibits
the lowest efficiency in mixed-strategies (CD, CT and DT) hyper-brain networks. For
any frequency band, the DD connectivity pattern has the lower efficiency with respect
to the other five networks in approximately 50% of the couples. Similarly, modularity
and divisibility are maximal for DD strategies in about 75% and 62% of the couples,
respectively. These results indicate that hyper-brain networks corresponding to DD have
longer paths between ROIs (lower global efficiency) and a small number of links between
the two brains (high divisibility). this number being much lower than expected in a
random graph with the same number of nodes and links (high modularity). Conversely,
as shown in the bottom panels of Fig. the efficiency is maximal for TT (resp. CC)

117



7. Understanding cooperative behavior with functional brain networks

D

Figure 7.5: Pie diagrams of efficiency F, divisibility D and modularity ) in the Theta
band. Top panels: from left to right the diagrams represent the percentage of cases - over the 26
couples - in which graph efficiency E is minimal, whilst the divisibility D and modularity @ are
maximal. Bottom panels: percentage of cases - over the 26 couples - in which E is maximal and D
and @ are minimal. Blue areas represent pure cooperation CC, red areas represent pure defection
DD, green areas represent pure tit-for-tat TT. Mixed situations CD, CT, and DT are represented by
white areas. The results are reported for the Theta band (4-7 Hz).

in the 30% (resp. 34%) of couples, while the modularity and the divisibility are minimal
for TT and CC with similar percentages. Analogous results were observed in all the
other frequency bands.

In other words, the relationship between the brains of two-defector couples (DD)
decreases significantly (i.e. the ROIs of the two brains are better separated) with re-
spect to two-cooperator (CC) couples or tit-for-tat couples (TT). The average Z-scores
computed for the three graph measures give a clearer picture of the relations between
strategies across the couples. They are reported in Fig. which provides a compact
visualization of the results obtained for different frequency bands. As illustrated by
the figure, DD hyper-brain networks are well separated from networks corresponding
to other strategies. In particular, the four points relative to the DD strategy cluster to-
gether at the upper-left corner of the panel (a), indicating a relatively high divisibility
and, at the same time, a relatively low efficiency with respect to the other hyper-brain
networks of the same couple. In addition, the four DD points in panel (b) cluster to-
gether at the upper-right region revealing that the DD hyper-brain network modularity
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7.5. Is it possible to predict social behavior?
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Figure 7.6: Scatter plot of efficiency F, divisibility D and modularity ) during cooperation
(CC), defection (DD) and tit-for-tat (T'T). For each couple z, and each strategy 7, the Z-scores
are computed as in formula . Then (Z,(x)) is evaluated as an average of (Z¥(x)) over all the 26
couples. For each strategy, and each frequency band, we report in panel (a), the average Z-score for
the measure of divisibility, (Z.(D)), vs. the average Z-score of the efficiency, (Z.(E)), and in panel
(b), the average Z-score of divisibility, (Z.(D)), vs. the average Z-score of the modularity, (Z.(Q)).
Red squares represent DD values; blue circles represent CC values and green diamonds TT values.
The Greek letter next to each symbol indicates the considered frequency band.

is usually higher than the modularity of T'T or CC connectivity patterns.
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7. Understanding cooperative behavior with functional brain networks

7.5.3 On-line classification

Hyper-brain networks corresponding to a given couple’s DD strategy have peculiar
topological features, such as lower efficiency, higher divisibility and higher modularity
with respect to hyper-brains corresponding to the other strategies of the same couple.
Such differences can be exploited in order to make predictions on the strategy that a
player is going to adopt, based on the on-line analysis of hyper-brain networks con-
structed from data recorded in the decision-making process. For each frequency band,
we have implemented a non-linear classifier, more specifically a Multi-Layer Percep-
tron, using 21 couples for training (6 networks per couple, each graph corresponding to
one of the 6 different strategies, for a total number of 126 networks), and the remaining
5 couples (30 networks in total) for validation. The classification is based on the values
of the Z-scores of efficiency, divisibility and modularity, and not on the actual values
of the measures themselves. In fact, for each couple, the Z-score of a graph measure
provides its deviation from the average value computed over all hyper-brains of the
same couple. The accuracies obtained by the classifiers during the validation process,
i.e. the number of hyper-brain networks classified correctly as DD or non-DD out of
the 30 validation patterns, are respectively: 27, 22, 26, 24 for the Theta, Alpha, Beta
and Gamma frequency band.

Since EEG recordings provide high temporal resolution, they can be used in real-
time for the construction of the hyper-brain networks, the relative computation of
graph measures, and the on-line prediction of the outcome for each trial of the game. In
particular, all the parameters needed for source reconstruction, signal ROI estimation
and PDC computing can be obtained before the actual EEG session. For instance,
they could be obtained in a training session during which the players learn how to play
the game, or during a rest condition where the two players are exposed to the same
environment that they will experience later. In such a way, all the computations can
be reduced basically to a sequence of matrix multiplications. The results presented
here indicate that a non-linear classifier is able to discriminate the DD strategy with
up to 90% of accuracy. Therefore, the proposed classification process is able to predict
the defection strategy of the two players before they press the keyboard buttons to
communicate their choices. In principle, a similar approach can be used to train non-
linear classifiers to predict CC and TT strategies as well. Such an extension would
probably require only a larger dataset, i.e. more than 26 couples.

7.6 Conclusion

Neuroimaging techniques have recently provided strong evidence of a close link between
mind and brain. It is well known that the action of concentrating on a specific object or
performing a given sensory, cognitive or motor task is reflected in different patterns of
brain activity. However, it is not clear whether the decoding of mental states, or brain
reading [I61), 162], i.e. inferring what an individual is thinking from his brain activity,
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7.6. Conclusion

can be practically achieved with current neuroimaging methods. The task becomes even
harder if one wants to identify neural patterns corresponding to social interactions, such
as the choice to cooperate or to defect in the Iterated Prisoner’s Dilemma. Results
reported in this chapter show quantitatively that the non-cooperative behavior of a
pair of players is usually associated with peculiar brain connectivity patterns, and in
general with a much lower interaction between the activities of the cortical areas of the
two players. The DD hyper-brain network is radically different from the other pure
strategies (CC and TT), in which the selected cortical regions of the two players are
highly interconnected. In fact, there are only a few inter-brain links in the DD case,
giving simultaneously a “picture” and a physical interpretation of the selfish behavior
of the subjects. Each player in the couple tends to maximize his own outcome and
to minimize at the same time the opponent’s outcome. This evidence is coded in the
hyper-brain network: cooperation requires areas corresponding to the two brains to be
intermingled, while cortical areas of selfish players are almost uncoupled. This outcome
indicates the possibility of “reading” mental states, and inferring social behavior from
the brain activity of couples of individuals. In particular, these results suggest that:

i) with current neuroimaging techniques, it is possible to estimate in healthy sub-
jects patterns of functional connectivity between cortical areas, which are active in
decision-making processes. In the specific case of cooperation or defection strate-
gies in social games, such patterns appear to be linked to the decisions that were
made successively by the subjects, and cannot be confused with normal cerebral
activity. That is because the operative conditions for the subjects are unchanged
during the whole experiment.

ii) the patterns of functional connectivity among cortical areas sub-serving the de-
cision of cooperating or defecting, estimated from data recorded in the decision-
making process, produce different hyper-brain networks for different observed out-
comes of the game. In particular, for all the frequency bands analyzed, the level
of connectivity between the ROIs of the two brains significantly decreases in the
case of DD strategies, while hyper-brain networks of TT and CC trials are more
tightly connected and intermingled.

In conclusion, we have presented an application of complex network theory to the anal-
ysis of functional brain connectivity and to the study of its correlation with observed
social behaviors. Indeed, many of the theoretical results obtained in the last few years
in the field of complex networks are still waiting to be exploited in the field of neuro-
science, and could potentially give us a better insight into the structure and meaning
of complex biological systems, as they have already done with social and technological
networks. The fact that graph theoretical indexes can also be used to better understand
how the human brain works [0, 157, [T63HI65], suggests that hyper-brain networks can
be adopted in the near future as a valuable reference model for further investigations
of the mechanisms that are the bases of social empathy [166].
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7. Understanding cooperative behavior with functional brain networks

The experiments were conducted by the Neuroelectrical Imaging and Brain Com-
puter Interface laboratory (NEILab) at the Scientific Institute for Research, Hospital-
ization and Health Care, “Fondazione Santa Lucia” in Rome (Italy) and by the Depart-
ment of Biomedical Engineering in Minneapolis (USA). All the subjects involved in the
experiment were recruited by advertisement. Written informed consent was obtained
from each subject after the explanation of the study, which was approved by the local
institutional ethics committee of the Scientific Institute for Research, Hospitalization
and Health Care, “Fondazione Santa Lucia” in Rome and by the Institutional Review
Board of the University of Minnesota.
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Conclusion

I have seen too much not to know that the
impression of a woman may be more valuable
than the conclusion of an analytical reasoner.

ARTHUR CONAN DOYLE

In this thesis we have presented several novel results on the study of structure and
dynamics of complex networks, on how to construct networks encoding non-trivial sta-
tistical features of real-world data, on the characterization of human mobility patterns,
and on the relation between functional brain networks obtained during cooperative
games and selfish behavior.

As regards the structure of networks, we have studied how to measure exactly an
additional order of degree correlations in networks, namely three-body degree correla-
tions. To do this, we used a third-order Markov model. Counterintuitively, we showed
that these correlations are not negligible in respect to the two-body ones. In fact, the
effects of three-body degree correlations on many topological measures are compara-
ble to those of the correlations between pairs of node degrees. We have shown, for
example, that in a wide range of real networks three-body degree correlations (i) alter
considerably the average connectivity of the second neighbors of a node of degree k
in respect to the expectation given by two-body degree correlations, and (ii) are also
responsible for the rich-club phenomenon.

Successively, we have investigated an important kind of dynamics on graphs, the so-
called Biased Random Walks (BRW), a class of markovian stochastic processes which
can be treated analytically and which extend the well-known concept of Random Walk
(RW) on a network. In particular, we investigated the connection between correlations
in the connectivity patterns of the network and the entropy rate that can be associated
to the BRWs. We have demonstrated that it is possible to design maximal-entropy
random walks with only local information on the graph structure, according to the
order of the correlations present in the graph. We also showed how it is possible to
rephrase a BRW process on a network as a plain RW on another network having the
same topology but different weights associated to the edges. We name this network flow
graph, since it embeds in its link the dynamical flows of the original graph. The concept
of flow graph is useful in many applications, as in community detection algorithms, and
for deriving many theoretical results.
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Conclusion

Regarding the applications of complex network theory and of information theory
to real datasets, we have introduced and developed a method to convert ensembles of
sequences of symbols into weighted directed networks whose nodes are motifs, while the
directed links and their weights are defined from statistically significant co-occurences
of two motifs in the same sequence. To our knowledge, this is also the first method in
literature that allows to construct a network encoding information about short- and
long-range correlations of a complex system. We have then applied the networks of
motifs method to the study of the human proteome database, to detect hot topics from
online social dialogs, and to characterize trajectories of dynamical systems.

We have used concepts of complex networks and of information theory also for
the study of mobility of human players exploring a network of a virtual world. After
characterizing the basic features of the motion, such as waiting time and trip length
distributions, we have focused on the analysis of the diffusion properties of player move-
ments. We have showed that the players’ trajectories are highly subdiffusive, exhibit
long-time memory, and that it is necessary to incorporate in a model the information
about the order of locations an agent visits to recover the correct scaling properties
of the diffusion of players. We also investigated how socio-economic factors influence
the trajectories of players. We found that players significantly avoid to cross borders
between communities, and prefer locations that are within the community even if at
high distance.

Finally, we have analyzed the structure of the functional brain networks derived
from EEG recorded during cooperative games. We have first introduced the approach
relying on the definition of hyperbrain, a network whose connectivity patterns represent
at once the correlation of EEG signals among the cortical regions of a single brain as
well as the correlations among the areas of the brains of two distinct individuals that
are socially interacting. Then, we have studied the structural properties of hyperbrain
networks of pairs of individuals playing an Iterated Prisoner’s Dilemma, and we found
that networks of two-defector couples have significantly less inter-brain links and overall
higher modularity i.e., the tendency to form two separate subgraphs, than couples
playing cooperative or tit-for-tat strategies. Furthermore, we found that graph analysis
of the hyperbrain obtained during the decision making process allows to predict in
advance the defection of a player.
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