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Abstract

A COMPLETE CALCULATION OF SHEAR VISCOSITY
IN STRONGLY INTERACTING MATTER

The last observations from the Heavy lon Collider facilities keep marking
new territories in the unexplored field of the high temperature 7" > pu
Quark-Gluon Plasma, with new discoveries that seem to enforce the hypoth-
esis that such an exotic state of Strongly Interacting matter can indeed exist,
making it an established fact. Things in the finite ¢ opposite regime are much
harder as QCD, and its Lattice formulation, cannot yield any quantitative
prediction to date, due to the strong-colour confinement effects in matter at
high densities. Nevertheless its behaviour can be inferred from the empiri-
cal observations of Neutron Stars, that are sensitive to the composition, and
thermodynamical properties of the Nuclear Matter Equation of State.

This thesis is focused on the construction of a Hybrid Equation of State,
imposing a First-Order colour deconfinement transition of the Second Kind
- as pointed out by Lattice QCD studies - between the two phases. Nu-
clear Matter is described by means of the microscopic Brueckner-Hartree
Fock Many Body theory, that builds the in medio properties of interacting
nucleons starting from the consistent treatment of realistic Bonn B 2-body
vacuum interactions plus effective 3-body forces; Quark Matter is instead
treated as a free gas of massless u,d, s quarks with the MIT Bag Model.
Shear Viscosity of the strongly interacting Fermi liquid is then calculated in
a low-temperature Boltzmann-Landau transport approach, yielding a slight
deviation from the 72 standard result at quark degrees of freedom dom-
inated densities. The calculations are finally applied to the Astrophysics
of Compact Objects: Neutron Stars static configurations are evaluated by
means of the relativistic “Tolman-Oppenheimer-Volkoft” structure equations,
finding a upper mass limit of 1.81 Mg for the Hybrid Equation of State;
furthermore, the estimate of the damping timescales of rotational r-mode
Oscillations in Neutron Stars, sensitive to both the Equation of State and
to Shear Viscosity of Hybrid Matter, are performed and confronted with the
typical Gravitational Radiation instability timescales: the latter dominate in
young, cooling Neutron Stars and this could be a promising signal for the
LIGO facility, while in old Neutron Stars, at 7' ~ 107> MeV, the [ = m = 2
rotational-mode is alone able to suppress the GW emission. Despite the title,
the calculation is far from being “complete”, but it describes many features
in a consistent way supported from the solidity of microscopic calculations
of the Strongly Interacting matter properties.
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Part 1

Review of Quark-Gluon Plasma
properties






There are two forms of judgement, one legiti-
mate, the other bastard. And all these are of
the bastard kind: sight, hearing, smell, taste,
touch. The other is legitimate and its objects
are hidden.

Democritus, Il Century B.C.

Introduction

It has been well known over the last century that a fourth state of matter
exists in addiction to the well known gas, liquid and solid: “plasma”. The
name was coined in 1928 by the Nobel Prize I. Langmuir [1] from the greek
word mhdoua, used to address 'anything formed’, in analogy with the blood
plasma. But the first experimental evidences are to be dated back to 1879, in
the work of Sir William Crookes [2] with cathode rays. The aim of this Part is
to present what is today addressed as “Quark-Gluon Plasma” (QGP), a sys-
tem made out of deconfined quarks and gluons, believed to have dominated
the first phases of existence of the Universe, and today reproducible in heavy-
ion collision experiments and in the interior of Neutron Stars. The starting
point is a brief discussion on its plasma properties, together with some basic
phenomenology; this will be followed by a survey of the established onto-
logical evidences of such a system and of its theoretical-inferred properties,
among which the most striking is the existence of a phase transition to con-
fined hadronic matter — also the most interesting from the perspective of
this work. Instead of presenting a to-date picture of what QGP should be
by describing it theoretically from sketch, a list of supporting arguments
and inferred characteristics is here presented, without any spurious claim of
completeness. All the general arguments are taken from some recent QGP
textbooks like Kogut and Stephanov [3], Letessier and Rafelski [4] and Yagi,
Hatsuda and Miyake [5].

0.1 The fourth state of matter

Our most common everyday experiences can be explained in terms of two
of the four fundamental forces: Gravity and Electromagnetism. Even if the
quantitative and deterministically complete description of “basic” phenom-
ena - like, for example, an apple falling on the ground or the exact motion of a

5 ]




CHAPTER 0. INTRODUCTION

Observable Terrestrial plasmas Astrophysical plasmas
Size 107% m (laboratories) 1072 m (spacecr.sheath)
in meters 1072 m (lightning) 10% m (intergal. nebulae)
Lifetime 10712 s (laser pl.) 10' s (solar flares)

in seconds 107 s (fluo lights) 10'7 s (intergal. pl.)
Density 107 m? 1 m? (intergal. medium)
in particles/m? 1032 m? 103 m? (stellar cores)
Temperature 1 K (cristalline pl.) 10% K (aurora)

in kelvins 10% K (magnetic fusion) 107 K (solar core)
Magpnetic Fields 10~* T (laboratories) 10712 T (intergal. medium)
in teslas 10 T (pulsed power pl.) 10" T (pulsar surface)

Table 1: Range of plasma parameters

bowling ball - is often a task well beyond calculating possibilities, a physicist
can very well understand the underlying dynamics in terms of mathematical
concepts and furthermore, in a broad spectrum of cases, find a reasonable
solution, through simplifying assumptions and consequent algebraic approx-
imations.

Among the possible systems, matter is the one that “matters” here: we
know that its scientifically established states - Gaseous, Solid, Liquid, and
our fourth: Plasma - are different realisations of the Electromagnetic inter-
actions among its basic constituents, atoms and molecules. But already cen-
turies before quantum mechanics, even centuries before science itself, matter
was classified by Presocratic philosophers of ancient Greece to happen in four
distinct “essences”: Air, Earth, Water and Fire - plus a fifth: Aether - from
their properties, i.e. their properties of being hot, wet, cold and dry, and
today they can be seen as primordial representations of the aforementioned
contemporary analogues.

Plasma can be regarded on phenomenological grounds as an ionised system
of charged constituents (usually electrons and ions), as it’s obtained after
a phase transition from a gas; it has no definite shape nor volume, like its
progenitor state, but differently from the latter, the high concentration of
charge carriers gives it paraelectric and paramagnetic properties, well known
in the observations of “filaments”, striations or string-like structures. Its
realisations can be easily found in Nature [— tab. 1] : from terrestrial phe-

o |



0.1. THE FOURTH STATE OF MATTER

nomena like lightnings, flames and aurorae, to artificial plasmas like neon
signs, cathode tubes and the last-generation televisions, up to astrophysi-
cal systems: about 99% of the entire visible Universe is in the plasma phase,
making it by far the most abundant; stars, for example, are formed in nebulas
of ionised gas; more generically, the interstellar and intergalactic medium are
very sparse plasmas. The measured values of physical observables for these
systems can vary over many orders of magnitude, giving a very complex and
various phenomenological picture.

§ 0.1.1. Definition of plasma.— The experimentally-inspired definition
given above lacks of generality and fails in pinning the most important fea-
tures of the so-called “fourth state of matter”. A more complete and logically
valid definition can be given specifying three fundamental microscopic prop-
erties, which in turn can then be related to actual empirical observables. A
plasma is a many-body system of charged constituents that shows:

e Collective dynamics: the motion of a single particle in the medium is
mainly affected by the charged-interaction particles that surround it,
rather than from other individual particles it may encounter. This hap-
pens after a redistribution of the charge carriers that - if sufficiently
dense - can effectively damp any local charge excess, a phenomenon
known as “Debye Screening” [6] (estensively treated in textbooks, such
as [7]). Quantitatively speaking, this phenomenon introduces a param-
eter inside the plasma, the so-called “Debye screening length” A\p, at
which a charge is statistically screened. The corresponding condition
requires that the density of charge carriers inside a Debye sphere be
much bigger than unity.

e Quasineutrality: the system must be globally neutral, and the De-
bye screening length must be much smaller that the physical size of
the plasma. This makes bulk interaction more important than the
boundary effects, so that on large scales any portion of the system is
approximatively neutral.

e Supremacy of charged-interactions: the dynamics inside the system
are dominated by the interactions between charged particles, so that
the effects from gas-like collisions between charged particles and neutral
constituents are negligible.

5 |



CHAPTER 0. INTRODUCTION
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Figure 1: a comparison of the n-n Argonne vig potential in the 'Sy channel, with the
Lennard-Jones potential between two Oz molecules; taken from [8].

A fourth consideration can be further exploited: being a phase of matter,
plasma can be obtained from a gas and back by a phase transition, by means
of ionisation and recombination processes.

§ 0.1.2. Electromagnetic systems: some numbers.— The vast ma-
jority of the systems studied during the last century - some of which were
listed in the beginning of the chapter - are essentially composed by atomic or
molecular ions, whose dynamics are ruled by the electromagnetic interaction.
At Normal Conditions (T = 20°C and Py = 1 atm) and thermodynami-
cal equilibrium the thermal energy per degree of freedom is approximatively
kTN =~ 1/40 eV, that compared with the molecular first ionisation energy
scales (=~ 1 eV) clearly favours the gas phase. But already at tempera-
tures of 10% =+ 10* K a consistent fraction of the molecules can (depending
on the chemical specie) be ionised, giving rise to a plasma. Furthermore, at
Ty = 12000 K a Hydrogen gas can easily be considered completely ionised,
as kpTy =~ 1 eV; the same applies to atoms inside a star: our Sun, in the
centre, has a modelled temperature of T, = 15.7 x 10 K; in equilibrium
conditions each degree of freedom has a thermal energy of kg1, ~ 1.35 keV,
two orders of magnitude more than the Hydrogen ionising potential, 13.7 eV.
The atoms themselves cannot survive anymore bound.
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0.1. THE FOURTH STATE OF MATTER

§ 0.1.3. Strongly interacting matter.— But atoms, despite the etymon

of the word, which comes from the greek dropoc and means “indivisible”, are
not elementary particles; at their centre lie nuclei, neutrons and protons
bound together by the strong interaction. They in turn are composed by
quarks and gluons, carriers of the colour charge and - to date believed to be
- the true fundamental bricks of the universe. This moves the question to a
deeper level: is it possible to have strongly interacting matter? What can be
its properties?
The answer is yes, provided that one understands the differences between the
underlying interactions; such a system is referred to in literature as “nuclear
matter”. The first, striking similarity with common electromagnetic matter
is shown in fig. 1: nucleons and molecules have similarly shaped potentials
on different energy ranges [8]; this is due to the fact that both systems expe-
rience what is called a “residual interaction”, mediated by meson exchange
on one side, by Van Der Waals forces on the other. In this way nucleons can
be bound together; without deeper investigation — this being the topic of the
next chapters — a number of theoretical and experimental evidences of phases
of nuclear matter can be given: as a first example, C. F. von Weizsécker
(1935) and H. Bethe (1936) formulated the “liquid drop model” to describe
nuclear properties in analogy with a drop of liquid, and more generally a mile-
stone work that led to the evidence that at Normal Conditions nuclei are in
a liquid phase; J. Negele and D. Vautherin in 1973 studied the possibility to
have lattices of neutron-rich nuclei just below the drip-line in Neutron Stars,
that can be thought as a a realization of solid-state “nuclear matter” [9];
many experiments in high energy heavy-ion collisions have shown evidences
of a possible liquid-gas phase transition, so that already in 1995 a German-
Italian collaboration (among which there was our beloved and prematurely
deceased prof. G. Raciti) could measure the caloric curve of the transition
[10]; it is reported in fig. 2. The critical temperature is T ~ 10 MeV; the
convention to use the energy kg7 instead of the temperature T in Kelvins
itself was introduced in order to ease the comparison with the excitation
energies of nuclei, that typically lie in the range of a few MeV. In quantum-
theoretical approaches it is common to use the so-called “natural units”,
redefining quantities in order to avoid the explicit show-up of the most com-
mon constants (like /, the reduced Planck constant, ¢, the speed of light in
vacuum and in statistical applications, also kg, the Boltzmann constant).
This procedure is addressed stating that h = ¢ =1 [— App. A].
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CHAPTER 0. INTRODUCTION
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Figure 2: Caloric curve of nuclei determined by the dependence of the isotope temperature
TheLi on the excitation energy per nucleon. Taken from [10].

§ 0.1.4. Strongly interacting plasma.— This can be applied to plasma
as well: the subject of this chapter, the Quark-Gluon Plasma, can be re-
garded as a fourth state of interacting matter in the same sense as one can
speak - given the examples listed above - of phases of nuclear matter, i.e. pro-
vided an analogy with the analogous electromagnetic interaction dominated
systems. There is anyway an ontological difficulty concerning the definition
of the properties of such a system, and this requires the opening of a short
parenthesis about the investigating method. It is instructive to refer to an
historical example, in order to exploit it: at the early stages of science the
differences among the states of matter were merely phenomenic and gen-
erally based on their macroscopic properties. It is only with the discovery
of Quantum Mechanics in 20th century and later applications to the study
of the structure of matter that the microscopic properties of the states of
matter could be finally grasped. So plasma phase could be recognised and
separated from the gas one; the huge quantity of subsequent theoretical and
experimental investigation led to an amount of knowledge sufficient to pro-
vide good definitions and explanation of the properties of this exotic state.
When switching to strong interacting matter, science faces the same difficul-
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0.1. THE FOURTH STATE OF MATTER

ties, but on a scale much less easy to investigate, due to the exotic character
of the systems involved; the differences between interactions introduce lots of
difficulties: solid state nuclear matter for example is usually unbound due to
the medium range saturation of the strong force and Coulomb repulsion, and
gets bound only by gravity. QGP has been extensively studied during the
last 40 years, but it is early to conclude unanimously for its properties and
characteristics, maybe even for its existence. So the subsequent discussion is
to be considered on the same grounds of frontier topics.

What is then QGP? It is a state of strongly-interacting matter widely be-
lieved to have been produced at CERN SPS during the 90s, and theoretically
inferred to be present inside astrophysical compact objects; in addiction it
is one of the states straddled by our universe during its first seconds of ex-
istence. The analogous of electromagnetic ionisation, that drives the phase
transition, is here colour deconfinement, or the way in which the strong bond
among quarks is dynamically overcome.

§ 0.1.5. A bit of History.— If the concept of “quark” made its appear-
ance during the 60s, in the works of Murray Gell-Mann and Zweig and under
the name of “parton” - a term coined by Feynman to address point-like struc-
tures found inside the hadrons seen in the experiments at SLAC in Stanford
- it is during the 70s that a large part of the scientific community begun be-
lieving in their existence, finally giving credit to what to date was seen as a
mere mathematical trick to solve, in an elegant group-theoretical fashion, the
puzzle of the “particle zoo”. The most symbolic year in this sense was 1974,
when two independent groups, one at SLAC, the other at Brookhaven, dis-
covered independently a meson to be recognised as a charm-anticharm state,
later to be called J/1, from the names that each of the groups gave it. That
particular event proven many theoretical investigations and finally convinced
the biggest majority of the audience about the existence of quarks. Gluons
unmistakable observations came only in 1979, in three-jet events at DESY,
Hamburg (PETRA and DORIS experiments). In the meanwhile Quantum
Chromo-Dynamics (QCD) was being developed as a non abelian gauge the-
ory built on the SU(3) colour group, gaining credibility as the definitive
theory of Strong Interaction.

It is in such scheme that the first known ideas about QGP arose. In partic-
ular, among the first, two works are to be noticed. The first, by N. Cabibbo

o |



CHAPTER 0. INTRODUCTION

and G. Parisi, proposed a solution to the problem of the Hagedorn limiting
temperature for the existence of hadronic states [11]. In their words:

We suggest that the “observed” exponential spectrum is connected
to the existence of a different phase of the vacuum in which quarks
are not confined.

They concluded stating the general form of the phase transition and drawing
a tentative T' — pp phase-diagram, oddly enough, with axes reverted with
respect to the ones spread today.

A second, by J. Collins and M. Perry, deals with matter inside Neutron Stars.
Here the authors point out that according to an asymptotically-free theory,
the interior of such exotic compact stars should be composed by quarks rather
than hadrons [12]. They reported:

Our basic picture then is that matter at densities higher than
nuclear consists of a quark soup. The quarks become free at suf-
ficiently high density. A specific realisation is an asymptotically
free field theory. For such a theory of strong interactions, high-
density matter is the second situation where one expects to be able
to make reliable calculations — the first is Bjorken scaling.

The early works spoke of a “quark soup”; the name “Quark-Gluon Plasma”
was coined by E. Shuriak in 1978 [13] and came with a short statement of
why such a system could be regarded as a plasma state of strongly interacting
matter. At that time it was common to think it as a gas of free quarks and
gluons, in which the strong binding was broken. But it soon was evident that
this was not the case, due to remnant effects of confinement [14]. Theoretical
investigation continued to fruitfully understand aspects of the transition and
to give phenomenological predictions of QGP properties.

In the meanwhile, many experiments were beginning to explore the field,
mainly at CERN (Geneva) and BNL (Brookhaven); aside from this efforts,
theorists were trying to understand observable mechanisms that could con-
straint the QGP by showing behaviours different from the well-known hadronic
scenarios. One of the most famous works in this direction was prepared in
1986 by T. Matsui and H. Satz, and proposed that .J/¢ meson suppression
in QGP would be one of such “signatures” [15]:

[...] there appears to be mo mechanism for J/i suppression in
nuclear collisions except the formation of a deconfining plasma,

|10 |



0.1. THE FOURTH STATE OF MATTER

and if such a plasma is produced, there seems to be no way to
avoid J/v suppression. Furthermore, our estimates indicate that
the measurement of the dilepton spectrum from nuclear collisions
should allow a clear test of this phenomenon.

During the 80s and 90s the NA and WA installations at CERN SPS collected
enough data to test the properties of hot and compressed heavy nuclei at
temperatures between 100 =+ 170 MeV, a region marked as “promising” from
phenomenology. The teams working in those collaborations could list a series
of signatures of the existence of a QGP, among which the most clear was .J/v
suppression. This led to the announcement that a new state of matter was
produced; thus spoke prof. L. Maiani on the 10th February 2000:

The combined data coming from the seven experiments on
CERN’s Heavy lon programme have given a clear picture of a
new state of matter. This result verifies an important prediction
of the present theory of fundamental forces between quarks. It is
also an important step forward in the understanding of the early
evolution of the universe. We now have evidence of a new state
of matter where quarks and gluons are not confined.

Soon after the construction of the Large Hadron Collider begun at CERN;
the challenge was so taken on by the Relativistic Heavy Ion Collider at BNL.
In 2005 a press event confirmed tentatively the scenario of five years earlier,
adding evidence that the QGP should be a strongly coupled liquid rather
than a gas of free particles. The definitive startup of the LHC during 2009,
and the first Pb-Pb collisions, observed in Fall 2010, seem to confirm the
scenario at RHIC, yet adding some new features, such as the possibility of
strong CP-violating evidences. At the end of 2011, during the writing of this
thesis, the heavy ion program started back at LHC, while an independent
proof of the existence of QGP is still to be given; yet a wide part of the
scientific community believes in its existence. A brief review of the most
recent experimental discoveries is reported in Chapt. 1.

§ 0.1.6. In Nature.— As far as it is known there are essentially two
different thermodynamical regimes of QGP, realised in three different natural
phenomena. Before actually looking at the phase transition in detail, it is
interesting to fix ideas on the picture to-date. Some numbers are reported in
Tab. 2, in a fashion similar to § 0.1.2. In detail:

L1 |



CHAPTER 0. INTRODUCTION

Observable QGP fireball Quark core in NS

Volume 10 = 100 fm? 1 km?

in cube meters  ~ 107 m?3 109 m?
Lifetime 2-+10 fm/c stable

in seconds ~ 1078 s /

Density vanishing 2 +5po (nucl. sat.)
in g/cm? / ~ 10" g/cm?
Temperature 150 + 200 MeV 1075 = 10 MeV
in kelvins ~ 10" K ~10* =101 K

Table 2: Range of QGP parameters

High pp regime: Imagine to compress adiabatically an infinite lattice
of nucleons, keeping the temperature 7' low enough to statistically for-
bid excitations of the nucleons and relativistic effects. Such a system
would have prominent bulk properties, and a good quantity to look
at would be pp, baryon density, as the number of antibaryons would
be negligible. At very high densities, such as 1 baryon/fm?3, several
nucleonic wavefunctions would superimpose at every point, with par-
tonic degrees of freedom becoming preponderant, thus making hard to
distinguish the original particles. Such a system would be ionised in
a fashion totally different from the standard EM plasmas, but would
show similar properties - provided one takes into account substantial
differences in the mass of the constituents and consequent mobilities of
the species.

High T regime: On the other side, one can imagine to heat a portion
of strongly interacting vacuum: thanks to the thermal energy, many
hadronic degrees of freedom are polarised - lowest lying states meson
and anyway “white”-coloured particles due to colour charge confine-
ment. Above a critical density these hadrons would overlap and melt
in a dynamical medium, in which colour charge is screened. Such a
system is ionised in a way that resembles a lot the EM plasmas, but
would have vanishing baryonic density and so properties very different
from such a system.
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Figure 3: Schematic timeline of Big-Bang evolution of our Universe in En-
ergy/Temperature scale. Around 1076 after the explosion, the hot fireball un-
derwent to a QCD phase-transition, with the onset of colour confinement. The
picture also reports the zone experimentally investigated during the last 30 years.
Taken from ref. [4].

What kind of conditions could lead to the formation of the two kinds of
QGP? The first seems likely to happen inside the cores of Neutron Stars,
where the density, due to the gravity of the superimposing neutron lay-
ers, can reasonably go several times beyond the nuclear saturation density
po=10.17 fm™3 = 2.7 x 104 g/cm?.

The second is believed to have been one of the states touched by our Universe
during its first Big-Bang expansion [— fig. 3]: soon after the Electroweak de-
coupling the hot fireball was composed by a QGP of chiral constituents (i.e.
that satisfy the so-called “chiral symmetry”, valid only in the massless limit,
later to be treated in more detail) that, following the expansion with conse-
quent lowering of the temperature, crossed the critical temperature around
T ~ 150 =+ 200 MeV, finally forming white hadrons and breaking chiral sym-
metry, thus gaining a mass. This kind of situation is reproduced in heavy
ion collisions, where the two nuclei colliding form a hot and energy-dense

fireball in which, at sufficient center-of-mass energies, it is possible to cross
the barrier of QGP.
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We now have evidence of a new
state of matter where quarks and
gluons are not confined.

L. Maiani - Cern (2000)

Quark Gluon Plasma

After the long discussion of sec. 0.1, that was meant to explain the general
idea behind the concept of strong interacting plasma, it is now the moment
to switch to a more quantitative description of QGP and its properties. The
starting point is a review of Quantum Chromo-Dynamics (QCD) and of its
features more interesting from this point of view. References include standard
textbooks of Quantum Field Theory, like Peskin and Schréeder [16]. It is
implicitly assumed that A =c =1 [— App. A].

1.1 Quantum Chromo-Dynamics

The fundamental degrees of freedoms of QCD are quarks and gluons.
Quarks are Spin-% fermions that carry a standard set of particle quantum
numbers, plus “flavour” - there are six in total, with different masses - and
“colour” - that sets their strong-charge state; their properties are briefly re-
ported in the first four columns of tab. 1.1; they are arranged in three doublets
of alternate charge —|—§e and —%e, with e being the electron charge. They are
elementary particles and this makes them the fundamental bricks of matter,
as nucleons and more generally hadrons can be interpreted as their bound
states. Gluons are massless vector bosons of spin 1, known to carry colour
charge and to be responsible for the mediation of the strong interaction. A
short story of their discovery was presented in § 0.1.3.

The concept of colour was introduced by Greenberg [17], Han and Nambu
[18] and definitively proposed by Bardeen, Fritzch and Murray Gell-Mann
[19] to solve the puzzle of the S = 2, A™* baryon, that according to the
decuplet of the “Eightfold way” by Gell-Mann and Zweig should have been
composed by three u quarks with exactly the same set of quantum numbers,
thus forbidding the Pauli principle. It was realised that if the three quarks
could have different colour states, then they would be able to build a com-
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Name Flavour f EM charge Running mass Energy scale &

Up u +§e 1.5+ 4.5 MeV 2 GeV
Down d —%e 5+ 8.5 MeV 2 GeV
Strange s +§e 80 = 155 MeV 2 GeV
Charm c —%e 1+1.4 GeV m,
Top t +§e ~ 175 GeV my
Bottom b —Lle 4 +4.5 GeV my

Table 1.1: Quark Families and masses in the M S scheme.

pletely antisymmetric wavefunction, finally reconciling with the validity of
the spin-statistics theorem. The number of different possible colours is set
to N. = 3; this can be proven experimentally and inferred theoretically.
Technically speaking, Quantum Chromo-Dynamics (QCD) is a renormalis-
able non-abelian gauge theory based on the SU(3) colour group. It is a part
of the Standard Model of fundamental interactions.

§ 1.1.1. Short review of SU(3) properties.— In order to build a Quantum-
Field Theory for strong interactions it is necessary to allow for the following
guidelines:

e SU(3) is the colour symmetry group: it is a compact semi-simple
Lie group whose algebra is generated by a set of N? — 1 = 8 traceless
and Hermitian 3 x 3 matrices t, = \,/2, with A, known in literature as
“Gell-Mann” matrices and a = {1, 2, ..., 8} the octet colour index. The

8 generators satisfy the following commutation rules:

8
[tautb] = Z.Zfabctc (11)

where the fu. (whose raising and lowering of indices is trivial) are real
numbers known as “structure constants” of the SU(3) group.

e SU(3) gauge invariance: It is a property of invariance pertaining to
a certain class of Dirac algebraic structures from a three-dimensional
representation of SU(3) transformations in colour space. The represen-
tation is obtained assigning a set of 8 functions ,(z) = >5_, $Aa0% ()
of the space-time point x* that build the operator:

A

U(x) = explig ()] (1.2)
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where g is the coupling strength of strong interactions - analogue of the
EM charge e.

Quarks (antiquarks) are the fermionic degrees of freedom: They
are indeed an SU(3) triplet in colour space i.e., they belong to the
fundamental representation 3 of SU(3); their quantum-relativistic dy-
namical evolution is expressed by the Dirac spinor of fields ¢;(x) of
flavour i = {u,d, s, ¢, b,t} and triplet colour index o« = { R, G, B} spec-
ified in every point x:

q;
¢i(x) = | ¢ () (1.3)
Q‘

with corresponding ¢ for antiquarks. Flavour indices ¢ will be sup-
pressed from now on, for simplicity of notation; they take no dynamical
role in the evolution of quark fields, as all the dynamical observables
are diagonal in flavour space, and exist due to the experimentally ob-
servable mass hierarchy among quarks. They gauge transform as:

Q% () = %@ ¢ (x) (1.4)

with the operator U(x) leaving unchanged the physical properties of
the quark fields.

Gluons are the bosonic degrees of freedom: Gluons arise as the
Yang-Mills bosons as soon as a local gauge symmetry is imposed at
Lagrangian level, and are minimally coupled to the quark fields in the
covariant derivative. Their properties and number again come from
SU(3) group theoretical properties: there are 8 of them; indeed, being
the force carriers and changing both colour (with ¢) and anti-colour
(with @), they belong to the product of the fundamental representation
3 and its conjugate 3:

33=108 (1.5)

where 1 is a colour singlet to which would correspond a hypothetical
white gluon, not observed in nature, and 8 is the 8-dimensional SU(3)
adjoint representation, made of 3 x 3 matrices (under certain assump-
tions the Gell-Mann matrices can be taken to represent gluons).
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§ 1.1.2. Classical Lagrangian.— Once the basic ingredients of the the-
ory are stated, the starting point of every Quantum Field Theory is the con-
struction of a Lagrangian density that respects the chosen gauge symmetry
in a Lorentz-covariant scheme. The QCD Lagrangian density is:

1
~Ge Gy (1.6)

‘CgCD = (j(l pﬂ - m)q - 4

in the first term m = m; = diag (m,, mq, ..., mp) is the quark mass matrix,
trivially diagonal in flavour space, while J), is the gauge covariant derivative
acting on the colour triplet quark field, responsible for the coupling of the

vector field Au =%, %)\GAZ(x) with the quark fields:

Ey = VHD;L = Vu(au - Z'gAu)a (1'7)
in which v, are the Dirac matrices for p = {1,2,3,4}. The second term of
eq. (1.6) is the trace of the gluon field strength tensor GY,:

G, = 0,A% — 0,A% + g [ AL AS (1.8)

wtivs

which contains a gluon self-coupling term AZAZC, mediated by the SU(3) an-
tisymmetric structure constants f¢, features of the non-abelianity of the
gauge group. No gauge-breaking interaction terms as Aj A% can be included:
gluons are costrainted to be massless.

The built Lagrangian density of eq. (1.6) shows SU(3) gauge symmetry as
G}, and D, are built to transform covariantly under action of the operator
U(z) [— eq. (1.2)]:

G, () — U(x)GZVUT(x) (1.9)
D,(z) — U(z)D, U (x); (1.10)

the same applies to the fields ¢*(x) and /Alu, that transform respectively as
the fundamental [— eq. (1.4)] and adjoint representations of SU(3):

Q% (x) = %@ ¢(x)

P T T
g

But in order to gain full predictive power the theory must undergo two fun-
damental procedures: the first is quantization, or the promotion of classical
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fields to field operators that act on quantum state vectors of a pertaining
vector space, generally ending up with a perturbative formulation put in a
diagrammatic fashion thanks to the development of a set of so-called “feyn-
man rules”; the second is renormalization, or the careful reanalysis of a the-
ory in order to avoid the showing up of infinitives when calculating physical
amplitudes at all orders of perturbation theory, usually ending up with a
redefinition of the experimentally measured parameters. The first procedure
is particularly interesting, but not being directly relevant to the matter of
this thesis; thus, only a particular feature will be discussed in what follows:
the running of the QCD coupling constant.

§ 1.1.3. The set of symmetries.— The QCD Lagrangian (1.6) is con-
structed to be invariant under the action of the standard symmetry group:

G = SU.(3) ® SO*(1,3) ® F (1.12)

i.e. the local colour gauge group and the usual proper, orthochronous Lorentz
group with metric signature (+, —, —, —) [Bjorken and Drell textbook scheme:
— [16], preamble section “Units and Conventions”]; .# = {P,C, T} is the
set of discrete symmetries.

In addiction to ¢ there is a group of global symmetries which are approxi-
mately realised or valid under certain assumptions. If the flavours would not
show any mass hierarchy, i.e. m = mgI, then eq. (1.6) would contain a fur-
ther SU;(6) flavour symmetry. This is not true in nature, but an approximate
SU;(3) and the product representation:

333=198® 810, (1.13)

are the basis of the “Eightfold Way”, including the famous baryon octet and
decuplet representations that led to the explanation of hadrons as bound
states of quarks (one can do a similar decomposition for mesons), and to
the prediction, with subsequent discovery, of the (2~ particle. Its Ny = 2
realisation for the light quarks, is approximatively realised in nature due
to the small difference in mass (m, ~ my) and generally knows as “isospin”
symmetry in nuclear physics. In many theoretical applications it is also taken
as exact.

Much more interesting is the m; — 0 limit. Under this circumstance in fact,
one can operate a decomposition of the ¢ fields - and of the Lagrangian - by
means of the following projectors:

qr = (1 —5)q qr = (1+75)q, (1.14)
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based on the application of the fifth Dirac matrix 5 = ivy17273 (with
eigenvalues £1), that lets the separation of (L)eft and (R)ight handed com-
ponents, with a meaning equivalent to the helicity of massless particles. The
Lagrangian is then equivalent under a new class of transformations, with
clements that belong to the group SUL(Ny) x SUgr(Ny):

qL — e g, (1.15)
*iTjGj
qr — €/ RqR; (1.16)

the TJ]; matrices are their group generators, and 6 a set of global parameters.
Such a symmetry was called “chiral” referring to the handedness of the states,
from the greek yelp, meaning “hand”. In eq. (1.6) in nature it is explicitly
broken by the presence of the mass term, but it is thought to be exactly
realised in the QCD-dominated phase of our expanding Universe during the
Big-Bang, and dynamically broken in the QCD phase transition.

§ 1.1.4. Running coupling and asymptotic freedom.— The strength
of an interaction in Quantum Field-Theories is expressed by the value of the
coupling constant g. The name comes from the fine-structure constant of the
ElectroMagnetic interaction:

e’ 1

- - 1 1.1
T F (1.17)

whose small value justified the success of Quantum ElectroDynamics (QED)
and its perturbative approach, allowing for a convergence of the relative se-
ries (even if it was found to be asymptotic!). It was soon discovered though,
that the coupling is not constant at all, and that QED was apparently a
particular case because the vast majority of its processes take place at a low
energy scale. At the Z° boson scale (~ 90 GeV), for example, the coupling
is 1/127.

The study of how a coupling g changes with the energy scale k is a cen-
tral topic of the Renormalization Group theory; but it is a problem even
deeper: QFTs give infinitive predictions at one-loop level due to interme-
diate high momentum states. The procedure of renormalization deals with
these infinities combining them with the bare parameters of the Lagrangian
and absorbing them in the renormalised parameters. The divergences are
typically renormalised at some energy scale k; the observables cannot be k
dependent, but quark masses turn out to be [— tab. 1.1, last column]|. The
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aim of the Renormalization Group theory is then to solve the so-called “flow
equation”:

dg '
k22— 5o); (1.18)

the right hand side is called § function and its evaluation, partially possible
with perturbation theory in a narrow range of small g values (and also ex-
perimentally, in a discrete set of values), is crucial for the predictive power of
the overlying QFT. In particular, the sign of § is very important: in QED it
is positive, thus the resulting coupling is monotonically growing and leading
to the Landau pole at infinite energy - a sign of the fact that perturbation
theory loses its sense at some energy scale; in QCD it is negative, reaching
some fixed point k* in which S(k*) = 0 at high energy. Keeping at next-to
leading perturbative order (NLO) and following the most used procedure,
known as “Minimal Subtraction scheme” (MS), 3 depends only on g and
can be expanded as:

B(g9) = —Bog® — Brg” + O(g"); (1.19)

the two coefficients of g, that in turn depend on Ny and are positive when
Ny < 8, leading to a negative 3 are:

Bo = (4;)2 (11 - §Nf> (1.20)
B = @ (102 - ?Nf) . (1.21)

Generally the QCD coupling constant is given, to leading order (LO), as a
function of the coupling strength g:

1
 47B In(k2 /A%cp)

as a logarithmically decreasing function of k, taken over a scale set by the

a, (k) (1.22)

parameter Aqgcp. This is k-independent and to be fixed in experiments, in
order for a, to be determined. Its value must be given specifying the Ny and
the subtraction scheme, i.e. the procedure used to obtain By and i, due
to their dependence in determining ;. Quark masses calculated in the MS
scheme are given in the last column if table 1.1; the scale parameter used is
Ag7g = 217 £ 24 MeV, under the bottom quark mass, for Ny = 5 “active”
flavours.

[ 21 |



CHAPTER 1. QUARK GLUON PLASMA
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Figure 1.1: QCD (T, ) Phase diagrams. Left: qualitative, as stated in § 0.1.6. Right:
complete synthesis of the transition properties. Taken from ref. [22]

The negative 3 behaviour, discovered by the Nobel Prizes winners F. Wilczek,
D. Gross [20] and D. Politzer [21], is known as “asymptotic freedom”, and
is a striking feature of Yang-Mills theories: the strength coupling decreases
with increasing energy scale, explaining the partonic results of deep inelas-
tic scattering experiments of the end of the 60s, in which highly energetic
partons in hadrons seemed to initially react as free particles during collisions
with suitable probes. The QCD wvacuum thus shows an effect called “anti-
screening”: virtually polarised gluons enhance colour charge in the vacuum
and change its colour.

The running coupling of eq. (1.22) goes to infinity in the range [0, Aqcp]: this
suggests that no perturbative approach has any sense therein and generally
around the upper limit of ~ 200 MeV. The low energy limit of QCD is not
perturbatively solvable and pertains to the experimentally observed feature
of “colour confinement”, i.e. the impossibility to isolate a colour charge.
QCD is the definitive theory of strong interactions, but its relatively simple
perturbative approaches - that had many success when dealing with other
QFTs - fail in explaining the most common situation in our present Universe:
the existence of white baryons and mesons, atomic nuclei and all the periodic
table of elements.

1.2 Phase transition

Due to the two different realisations of QGP believed to exist in nature,
as described in § 0.1.6, it is natural to observe and represent the states of
strongly interacting matter in terms of its temperature 7" and baryonic den-
sity pp - or alternatively the correspondent chemical potential pp. It is easy

|22 |




1.2. PHASE TRANSITION

to imagine that two phases of matter must be linked by some phase tran-
sition or critical phenomenon, just like a bridge connecting two banks of a
river or a continuous function that changes its sign crossing the abscissae
axis. The situation is depicted in the left panel of fig. 1.1: the hadronic and
QGP phases are separated by a continuous line of transition points. Any sys-
tem in the low (7', 1) hadronic region, i.e. in which both T, p < Agep ~ 200
MeV, can be heated and/or compressed until it deconfines to a QGP, crossing
the boundary at some (7', it).. In addition, at 7" — 0 and p > Aqep, the
QGP is realised in a state called “colour superconductor”, with the analogue
of Cooper pairs condensing at low temperature. The correlated states will
melt just by heating.

The aim of this section is to elucidate the nature of the phase transition,
whose properties are sketched in the realistic diagram of the right panel of
fig. 1.1. The matter is not supposed to be highly technical - such a treat-
ment is beyond the aim of this thesis; it is much more interesting to have a
decent share of phenomenological insight on the problem. Together with the
textbooks already cited, the following is based on a series of lectures given
during 2009 by prof. H. Satz in Catania. An excellent transcription can be
found in ref.[22].

§ 1.2.1. A crude model for the transition.— A very easy model of the
transition can be given introducing a drastic set of assumptions and starting
from two ideal systems: a gas of massless pions and a QGP gas made of
free and degenerate massless constituents. The pressure as a function of
temperature for the first system can be expressed by a Stefan-Boltzmann
law in a fashion similar to the treatment of blackbody radiation:

7T2 4
Pr=dygs T, (1.23)

where the degeneracy factor d, = 3 accounts for the three charge states of the
pion, which is a spin 0 boson internally composed by different superpositions
of uu and dd states (photons would require d, = 2 for their polarization
states). Once they melt they form a system of Ny = 2 and N, = 3, whose
degeneracy factor is:

7
ngp:(2><8)g+§(3><2><2><2)q:37, (1.24)

that accounts for 2 spin and 8 colour degrees of freedom for the gluons plus 3
colours, 2 flavours, 2 spin configurations and 2 particle/antiparticle states for
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the quarks, plus a 7/8 factor that accounts for a difference in the statistics
(the Bose distribution at p = 0 is slightly broader than the corresponding
Dirac for fixed single particle energy E). The corresponding pressure is given

by:
2

Pocp = 3779T—OT4 ~ B; (1.25)
the B parameter - called Bag constant - is a contribution that takes into
account the difference between the physical vacuum and the ground state for
quarks and gluons in a medium, and it is fixed to tune model predictions on
physical values. In literature this way to sketch the QGP thermodynamics
is called “MIT Bag model” [— § 3.3.1] because it is the simplest and crudest
way to “confine” quarks - hence the name for B.
From general thermodynamic arguments a system chooses the state of lowest
free energy and consequently of highest pressure: the pressure of the two
gases (1.23,1.24) are reported in the left panel of fig. 1.2, where it is possible
to check that the hadronic gas is favoured up to a critical temperature:

45 \3 1 1
this result, combined with Bi ~ 0.2 GeV, an estimate from hadronic spec-

troscopy, yields:
T, ~ 150 MeV (1.27)

as deconfinement temperature. A similar calculation for the energy density e
is reported in the right panel of fig. 1.2: the discontinuity at 7, is the latent
heat of deconfinement. The transition is - by construction - of the first order.
As seen in § 1.1.4, QCD is perturbatively solvable only in the asymptotically
free regime, which clearly is opposite to the deconfinement phase transition
of interest here. Nevertheless, QCD was discretised and numerically solved
on a lattice with - at least initially - huge difficulties and demand for high
computational power. Current calculations give as a value for the critical
temperature around 7, ~ 175 MeV, not so far from the crude estimate given
here.

The transition, according to the right panel of fig. 1.1, is exactly first order
at T' = 0, and continues up to 7. as a line of first order transitions; the
critical point is exactly second order, and beyond this there is no transition
anymore, just a rapid crossover with exchange of the degrees of freedom.
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Figure 1.2: Pressure and energy density of pion and quark-gluon gas model of § 1.2.1.
Taken from ref. [22]

§ 1.2.2. Lattice QCD.— To go beyond the perturbative level and probe
the theory in its “colour confining” limit, QCD is formulated in a finite
temperature quantum field scheme, in which the lagrangian (1.6) is used
as an input of the partition function Z of statistical mechanics, suitably
expressed in a path integral functional:

Z(T,V) = / dAdqdg exp[— /V &3 /0 TdrLoon(A g, )| (1.28)

in the thermodynamic limit V' — co. Much more remarkable is the way in
which the temperature enters the scheme: T is related to the thickness of the
integration over 7 (whose upper limit is § = 1/7T'), obtained by means of an
imaginary rotation for the temporal component 7 = iz in the path integral
of eq. (1.28), thus turning the 4d-Minkowski space in which the fields are
defined into an Euclidean manyfold. With this trick Temperature takes the
role of imaginary time integration. The partition function can be evaluated
non perturbatively, but numerically, by means of a particular regularisation
scheme with subsequent discretisation; once it is known, one can calculate
every thermodynamical quantity by means of its derivatives - according to
the prescriptions of statistical mechanics [— cap. 2].

§ 1.2.3. Proof of phase transition.— In order to understand the pic-
ture coming from the first lattice simulations it is necessary to define two
important variables connected with the transition. The first is the quark ef-
fective mass, or the temperature-dependent expectation value in the vacuum
of the Lagrangian term (gq)(T"); the latter is the so-called “Polyakov Loop”,
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Figure 1.3: The color singlet quark-antiquark free energies F'1(r;T) at several tempera-
tures close to the phase transition as function of distance in physical units -
Results from lattice studies of 2-flavor QCD. Taken from ref. [23]

a name that identifies the quantity:

L(T) ~ lim exp[—V(r)/T], (1.29)

r—00

where V' is the potential between a static heavy ¢ — ¢ pair at spatial distance
r. Fig. 1.3 reports the free energy F' of such a system for 2 flavour lattice
simulations. This quantity can be used - under some assumptions - as a
potential energy in charmonium studies and can be here taken as a good ex-
ample. In a pure SU(3) gauge theory - i.e. without light quarks - V(r) ~ or,
with o a positive constant called “string tension” (black line in fig. 1.3): un-
der these circumstances L(T) = 0. By converse, in a deconfined medium,
the high temperature - and consequently the onset of deconfinement - leads
to colour charge screening, with V' (0o) converging at some finite value (dots
in fig. 1.3), and L(T) > 0. The peak in the Polyakov Loop susceptibility
xi(T) ~ (L?) — (L)? can be interpreted as the critical temperature.

Any evaluation of QCD with bare masses m; — 0, i.e. in the chiral limit
[— § 1.1.3], the quarks gain an effective mass due to the dynamically spon-
taneous breaking of chiral symmetry, that leads to a non-vanishing value of
(@q) ~ 300 MeV (typical value for a valence quark inside a proton). This
symmetry is believed to be restored at sufficiently high temperature, in the
deconfined phase. If the quark bare mass matrix is non vanishing, chiral
symmetry is only approximated, so that the chiral limit is never reached.
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Lattice QCD simulations in some particular limits can give enough support-
ing evidences for a phase transition:

e Diverging bare quark mass m; — oo: quark dynamics become negli-
gible and QCD reduces to a pure SU(3) gauge theory. The transition
is exactly analogous to a 3 spin Potts model [24] i.e. shares its same
critical behaviour, with spontaneous Z3 global symmetry breaking (Z3
is the so-called discrete centre symmetry of SU(3)); the proof for QCD
was given by Svetitsky and Yaffe [25] - the transition is second order
for N, = 2 and first order for N, = 3.

e Finite bare quark mass: separating indefinitely a couple of quarks
makes the potential V' grow up to the point at which a ¢ — ¢ couple is
polarised from the vacuum, corresponding to the creation of a hadron
of mass Mpy: hence V becomes arbitrary small but never vanishes,
so that L(T) ~ exp[—V (My)/T]. The situation is analogous to the
ferromagnetic phase transition, in the case of a finite external field.

e Vanishing bare quark mass m; — 0: if one simulates QCD in the
chiral limit [— § 1.1.3], the quarks gain an effective mass due to the
dynamically spontaneous breaking of chiral symmetry, that leads to
a non-vanishing value of (gg) ~ 300 MeV (typical value for a valence
quark inside a proton). This symmetry is believed to be restored at
sufficiently high temperature, in the deconfined phase.

At vanishing pup then Lattice QCD predicts the onset of two transitions: one,
to colour deconfinement, whose order parameter is the expectation value of
the Polyakov Loop L(T); the second, to chiral symmetry restoration, driven
by the suppression of dynamical generated effective mass for quarks. Both
chiral and Z3 symmetries are only approximated in the physical case of in-
terest of m; finite; analizing the peaks in the second derivatives of the two
order quantities - i.e. their susceptibilities - it is possible to see that the two
transitions coincide in the considered limit - the proof is given in [26]. The
critical temperature lies in the range 150 = 200 MeV.

§ 1.2.4. Nature of the transition at yp = 0 and finite y.— Such a
temperature lets any approach to stop at the Ny = 3 light quarks level;
the physical situation discussed in the previous paragraph is synthesised in
fig. 1.4. The nature of the transition at up — 0 depends quite sensitively on
the number of flavours Ny and the quark mass values:
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1.4: Three flavour diagram on the nature of the QCD phase transition at ug — 0.
Taken from ref. [27]

If m; — oo, the case of pure SU(3) gauge is recovered, and the phase
transition for N, = 3 is of the first order.

If m; — 0, the Lagrangian is chirally symmetric. For three massless
quarks the transition is again of the first order.

If 0 < m; < oo, none of the above is true; the area of first order
discontinuity disappears on a line of second order transitions, above
which there is a rapid crossover, with a rearrangement of the degrees
of freedom: i.e. no phase transition in the sense of the description
by means of a partition function; the physical situation, with small,
approximatively equal m,, my masses and bigger m; lies certainly in
this region.

In the case of finite pup there are lots of numerical difficulties, as the algo-

rithm
the di

s break down on states with negative norm. It seems that some of
fficulties were overcome, confirming the existence of a crossover region,

that ends on a critical point - in which the transition is of the second or-

der, followed by a continuous line of first order points that end at 7' = 0
[— fig. 1.1, right panel].
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Figure 1.5: Dynamical evolution of the fireball in a case without (left) and with QGP
(right). Taken from ref. [2§]

1.3 Experimental evidences

This section is devoted to give a brief review of the experimental situa-
tion. After the CERN announcement of year 2000 about the “evidence for a
new state of matter” [— § 0.1.5] and the last ten years of surveys at RHIC
(Brookhaven) - with preliminary data also coming from the CERN LHC
(Geneva) - there seems to be enough evidence to finally proof the existence
of QGP and to pin down a considerable amount of its features.

There are several difficulties in understanding the experimental picture, when
coming from a theoretical background as the one briefly stated in the last
sections; theory gives - under the strong assumption of thermodynamical
equilibrium - results in terms of static observables: pressure and energy den-
sity of the plasma, to give an example. But the experimental picture is quite
different: two nuclei with sufficiently high mass number A collide with a
certain center of mass energy per nucleon pair v/Syy, at a given degree of
centrality. The impact generates a core high energy density, called “fireball”,
that has two subsequent evolutions - depending on the event of QGP for-
mation, as shown in fig. 1.5. Usually a large part of the energy is spent
on a timescale of 1 fm/c in anelastic events (partonic excitations, QGP for-
mation, etc.), with following hadronisation, leading to the observed particle
distribution. Any observation is therefore indirect, and refers to non equi-
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Figure 1.6: QGP signatures. Left: Strange particle enhancement versus strangeness con-
tent [29]. Right: Measured J/v¢ production yields, normalised to the yields
expected assuming that the only source of suppression is the ordinary absorp-
tion by the nuclear medium. The data is shown as a function of the energy
density reached in the several collision systems [30].

librium observables, relying on a careful confrontation with purely hadronic
scenarios. How is it possible to judge whether QGP was produced during an
experiment? A first, rough estimate can be given using Bjorken formula for
the energy density ¢y of a fireball:

1 dEr
= —_— 1.30
o= (i) (10

that is a function of the timescale of the collision 7y, of the nuclear radius R
and of the derivative of the total transverse energy Er with respect to rapid-
ity. A temperature of 170 MeV roughly corresponds to ¢y ~ 0.9 GeV /fm?.

§ 1.3.1. The signatures at CERN SPS.— The Super Proton Synchrotron
started its heavy ion programme in 1987, after being modified, with Sulfur
and Oxygen beams with energies of 200 GeV per nucleon. In 1994 a Lead
beam with energy 158 A GeV was made available for the experiments. At
such energies, the lorentz-contracted nuclei have Ultra-Relativistic dynamics
and can be thought as a collection of coherent free nucleons, not bound any-
more. One might imagine a collision between two such systems as a large
number of individual n — n collisions, but the results proven the existence of
some new collective effects, whose nature was interpreted to be a QGP.

The experimental results from the various collaborations showed indeed a
series of possible “signatures” of a QGP formation, that all together led to
the famous announcement. Using relation (1.30) and a measured dE/dy of
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450 GeV in Pb+Pb collisions, one obtains:

1
~ 3.14 x (8.3fm)2 x 1fm/c

€0 x 450 GeV ~ 3 GeV /fm”, (1.31)
a value that exceeds the 0.9 GeV /fm? needed in order for the fireball to reach
T,, roughly pointing towards a QGP scenario. An excellent review is given
in J. Stachel [31]. Briefly, a short compilation of the most interesting:

e Strangeness enhancement: the colliding nuclei have no strangeness
content; the yields of strange K? mesons, A, =, Q baryons and their
anti-particles are studied in Pb+Pb collisions at the West Area 97 ex-
periment [29] and confronted with the corresponding yields from p+Pb
reactions, and plotted against the number of participants (fig. 1.6, left
panel). A strong enhancement in strangeness production is observed
(several orders of magnitude), and a further enhancement with grow-
ing strangeness content (particle specie). The high survival ratio seems
to favour a QGP scenario over the standard hadronic one, in which a
longer hadronization time should suppress more strange particles, due
to their short lifetimes.

e J/1 suppression: this was proposed as a clear signal for deconfine-
ment already in 1986 [15] - an extensive citation from the authors is
reported in sec. 0.1 [— § 0.1.5]. The North Area 38 and NA 50 experi-
ments performed measurements of .J/1 and Drell-Yan cross-sections in
Pb+Pb collisions and confronted them with the cross-sections obtained
in several different setups: p+p, p+A, and A+A, reconstructing the zipu
Branching-Ratio, as a sum of various contributions (e.g. invariant mass
spectrum of J/1 and Drell-Yan processes) [32, 33]. They reported an
evident suppression that goes up to the 70% of the trend-expected yield
(fig. 1.6, right panel), stating that such a result could not be explained
by the known hadronic suppression processes [30]. This particular ef-
fect, due to the cleanliness of results and to the high significance of
the measure, has been cited as the most promising among the QGP
signatures.

e Enhancement of low mass dileptons: similarly to the previous case,
the invariant mass spectrum of ete” was measured with more than
42 million events from the CERES spectrometer [34], reconstructing
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the low mass vector mesons such as 7°, 7, p, etc. in p+Be, p+Au and
Pb+Au collisions; electrons produced in such decays have mean free
paths much longer than the size of the fireball, so that they can carry
information about the different stages of the collision. The observed
spectrum shows a significant excess in the mass region below the p
meson peak; the annihilation of thermal pions © + 7 — ete™ partly
accounts for the excess, showing signs of a hot and dense medium, but
fails in reproducing the whole dilepton excess.

e Observation of direct photons: under the assumption that QGP
should be responsible for thermal photon emission, the total v spec-
trum was reconstructed in p+A and Pb+Pb collisions by the West
Area 98 experimental collaboration[35]; about the 97% of the observed
spectrum, due to hadronic digamma decays such as 7° — v + 7, was
classified as bias; when confronting the multiplicities for the two cases,
a sensible enhancement was find around pr = 2 GeV/c in the Pb+Pb
spectrum. An attempt was made on smaller systems: 32S+Au colli-
sions did not show a corresponding excess, which may point towards
the initial hypothesis.

Even if no one could deny that new physics was found at CERN SPS, a
considerable part of the scientific community did not believe in the QGP
picture, stating that different evidences in dedicated experiments could not
necessarily be added up to prove its existence. The need for new data, and
new observations - possibly combined in the same experimental setup - shifted
the interest of the community towards RHIC in year 2000.

§ 1.3.2. RHIC.— The Relativistic Heavy Ion Collider situated at the
Brookhaven National Laboratories in Upton, NY, is the first facility entirely
dedicated to heavy ion collision experiments. It is operative since year 2000,
and is capable of beams up to Au, with a maximum center of mass energy
per nucleon pair v/Syy = 200 GeV. During year 2005 a BNL internal formal
report was prepared and distributed on the Web [36]; it contained four review
papers with preliminary results from the experimental activity. To date, the
picture of RHIC discoveries is still very fragmentary; nevertheless while on
one side some of the SPS evidences have been confirmed, other new features
have been discovered:

e Strongly coupled liquid: what was once thought to be a gas of free
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(weakly coupled) quarks and gluons, turns now out to have a per-
fect liquid behaviour (with very small viscosity; from estimates 7/s ~
1/47, the lowest known for any liquid) whose particles interact strongly
among themselves. This was possible thanks to careful reproduction of
the early stages of the collision, like the measurement of the anisotropy
in momentum space of the produced particle distributions in non-
central collisions (the so-called “elliptic flow”).

e Jet quenching: the observed yield of high pr jets in A-A vs. p-p
collisions shows a strong suppression with growing A, possibly related
to anelastic interactions of the partons in the hot QGP medium.

e Colour Glass Condensate: it scems that the lorentz-contracted nuclei
arrive at the transition with sort of “gluon walls”, whose properties
recall those of a glass (highly disordered state in which matter behaves
on short timescales like a solid, while on longer timescales like a liquid)
carrying the colour charge of its constituents gluons that are very dense,
thus forming a condensate.

e Parity violation: very recent observations of the STAR Collaboration
[37] seem to point towards Parity violations in strongly-interacting mat-
ter. The authors also indicate possible observables sensitive to such
effects.

§ 1.3.3. Perspectives @ LHC.— The much awaited upgrade of CERN
colliders finally came in 2008, with the first runs of LHC. Lead ion experi-
ments started on November 2010; the program lasted for 2 months, providing
beams of nuclei with center of mass energy per nucleon pair v/ Syy = 2.76
TeV, ten orders of magnitude more than RHIC. Preliminary results from the
dedicated facility ALICE (A Large Ion Collider Experiment) [38] and AT-
LAS [39] so far confirm the trends of most of the SPS and RHIC discoveries,
extending them smoothly to upper energy ranges (e.g. an increase of 30% of
RHIC observed Elliptic Flow). Probably the most expected and interesting
result is on J/v suppression, that seems to be decreased from RHIC results;
for the first time it was observed the new phenomenon of T mesons suppres-
sion. It is of November 15th, 2011 the announcement of a new round of Lead
beam experiments at LHC. The data collected will help to make the situation
more clear and hopefully grasp the exotic and exciting QGP properties.
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One of these movements [of quantum liquids]
is normal, i.e. possesses the same properties
as the movements of usual liquids; the other is
superfluid.

L. D. Landau - Phys. Rev. 60, 356(1941)

The system and its static properties

The states of Electromagnetic interacting matter - usual matter we have
experience of everyday - can be described by some macroscopic theory (elas-
ticity, mechanics, thermodynamics, fluid dynamics, etc.) whose input is a
microscopic theory (solid state physics, kinetic theory of gases, etc.). This
chapter is dedicated to the macroscopic equilibrium properties of strongly
interacting matter, obtained by means of statistical mechanics and thermo-
dynamics of liquids. A central role is played by the concept of “quasiparticle”,
a theoretical unit introduced in order to overcome the difficulty of treating
interactions in many body systems: instead of calculating all the sums of two
body potentials, one imagines the motion of a single particle in a medium
composed by all the others, a sort of effective potential. This in turn leads to
the renormalisation of its mass, so that, similarly to the case of an electron
inside a metal, the sigle-particle motion is described as the motion of a free
particle with different mass, whose difference accounts for the effect of the
interaction. General arguments are taken from the textbooks of A. Fetter
and J. Walecka [40], P. Nozieres [41], G. Baym and C. Pethick [42].

2.1 Strong-interacting constituents

The system - from the greek word X0ctnua, “whole compounded of sev-
eral parts” - i.e. the subject of the investigation of this thesis - is an in-
definitely large aggregate of strongly interacting protons and neutrons in
equilibrium. Its microscopic properties are determined by the small scale
nature of the interaction, and are responsible for the macroscopic thermo-
dynamical and hydrodynamical properties that itself shows in its physical
realisations: from the bulk properties of nuclei, up to Neutron Stars.

As thoroughly discussed in Chapter 1, the natural observables of such a sys-
tem are temperature 7" and baryonic density pp - or correspondingly their
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chemical potential up; the system is expected to undergo a phase transition
at a certain value of the pair (u., 7¢.); at the present moment there is no the-
ory that satisfactorily incorporates a mechanism for the transition, so that
the two phases are studied separately and the transition is later on imposed,
in order to study its effects.

This section is devoted to the sketching of “Nuclear Matter”, technically
meaning a Normal Fermi Liquid of Quasiparticles - in its broadest sense,
i.e. allowing for the system to undergo a phase transition to a deconfined
phase of QGP. As a liquid, it is essentially made by dense particles at a low
temperature far from phase transition to gaseous/solid or superfluid phases,
that interact within themselves by some sort of residual interaction.

§ 2.1.1. The idea of Nuclear Matter: Fermions.— The basic con-

stituents of the system are identical fermions: protons p, neutrons n and
electrons e~ in one phase, up u, down d and strange s quarks in the other.
When closely packed, and at such low temperature, the quantum correla-
tions can not be ruled away: the particles try to occupy all the possible
single particle states according to Fermi-Dirac statistics and thus experienc-
ing the Pauli principle, that prevents identical particles from having the same
set of quantum numbers.
The simplest strongly interacting system built on this simple ideas is the
nucleus: the idea of “Nuclear Matter” comes directly from the systematics of
nuclear properties. In particular, the binding energy B of a nuclide with Z
protons and N neutrons and mass number A = N + Z > 20 - is given from
the semi-empirical mass formula from Bethe and von Weiszéicker:

B=—m A+ a3A5 + a3 Z2°A75 + a)(A—22)°A7 +6(A, Z),  (2.1)

as a sum of terms that account respectively for its volume, surface, Coulom-
bian, asymmetric and pairing properties. The corresponding parameters a;,
with ¢ = {1, ...,5} are determined from a best-fit on experimental data.

The heaviest nuclei observed in nature have almost A ~ 300; dropping the
pairing term as, eq. (2.1), in the limit A — oo, describes a system in which
only the a; and a4 terms survive. This extrapolation is the central idea for the
concept of Nuclear Matter: it can be imagined as a static homogeneous bulk
of nucleons in arbitrarily large number, so that the Thermodynamic Limit
is valid and the volume V is substituted by the two densities p, = N/V
and p, = Z/V pertaining to the respective chemical species; the Electromag-
netic interaction is “switched oftf” as it would give mathematical divergences
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when dealing with thermodynamics, due to its relative local strength: this
hypothesis is justified by the further assumptions of local charge neutrality
and [-equilibrium, that introduces an non-vanishing electron density p. in
the system:

Pp = Pe
pte Sn+r, (2.3)

where the v, (neutrinos) are medium transparent - thus escape; three fermionic
degrees of freedom with two superimposed relations among them leave only
one free quantity, that could be the density of one specie; but - of much more
interest for the idea of a later phase transition - in practical matters the total
baryon density is chosen:

A
B == ot pp, (2.4)

together with p. and ps = p,, — p,, or the isospin (third-component) density,
accounting for the stoichiometric asymmetry of nucleonic species. Isospin
is an approximate SUf(2) light-flavour symmetry of the strong interaction,
hence valid also at nuclear level; it was briefly discussed in § 1.1.3; the quan-
tity I = p3/pp = (N — Z)/A is called “asymmetry parameter”, and appears
in the homonym a4 term of eq. (2.1). An extrapolation of nuclear charac-
terstics finally leads to strongly interacting matter whose bulk properties are
regulated by its particle-density.

§ 2.1.2. Why a Normal Liquid?.— Lev Landau wrote a lot of physics
about quantum liquids, finally winning the Nobel Prize in 1962 for his phe-
nomenological model of superfluid Helium II [43]; he used to distinguish the
superfluid motion of the particles in a liquid from the “normal” motion, so
that finally the name “normal liquid” was used to indicate a quantum liquid,
i.e. a many-body system of weakly EM interacting atoms whose thermal
de-broglie wavelength is comparable with the typical interatomic distance.
This definition can be extended for a liquid of strongly interacting fermions
stating that is the temperature 7" the parameter to look at [— § 0.1.3]: such
a system, at a temperature low enough to make unavoidable the quantum
effects, but to rule out any possibility of superfluidity. A nuclear tempera-
ture [— App. A] of kgT = 1 MeV corresponds to T = 1.134 x 10'° K: these
extreme conditions for electromagnetic matter can be easily regarded as a
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T — 0 limit for Nuclear Matter, when confronted with the typical excitation
energies of nuclei. For this reason, unless explicitly stated, the temperature
will be ideally set at T" — 0 limit on the MeV scale, leaving pp as the only
scale to look at with respect to QGP and liquid properties. This assumption
finds proper justification in the applications.

§ 2.1.3. Residual interaction and Quasiparticles.— At liquid phase,
matter is condensed, thus packed at a density comparable with ions in a
solid, and much higher than particles in a gas. Such a state is maintained by
the temperature, that plays an equally important role in phase transitions.
A third characteristic of liquids, not yet discussed, is the form of the interac-
tions: this microscopic input is responsible of much of its phenomenological
properties, and must be understood in order to attack the problem from a
theoretical point of view. The Many-Body problem for a liquid contains a
huge number of two-body interactions that can be very complicated to treat:
this justifies the introduction of Quasiparticles.

The original semi-phenomenological treatment of normal Fermi liquids de-
vised by Landau and his coworkers is based on two striking microscopic ideas:
(i) the adiabatic switch on of the interaction, that (ii) transforms the single
particle states of the free particles in a Fermi gas into the energy levels of an
interacting quantum liquid. Pauli Blocking prevents the low lying occupied
states from any exchange or excitation, so that the only interacting particles
lie around the Fermi surface. Here, the theory solves the problem with the
concept of quasi-particles, the quantised collective excitations that arise in
the medium and acquire a renormalised mass, due to the interaction - or
“dressing” - of a “bare” particle with all the others as a whole.

The idea of treating Nuclear Matter in such a scheme has been extensively
studied in literature; in particular, many positive efforts were carried out
by A. B. Migdal and are reported in the book [44]. In practical matters
the static properties - like the compressibility or the internal energy of the
system - are calculated by means of statistical thermodynamics and the com-
plicated Many-Body problem is solved within the Hartree-Fock scheme in a
perturbative/diagrammatic fashion, obtaining a free gas-like single quasipar-
ticle spectrum and thus virtually “cancelling” the interactions in an effective
way. The full quantum liquid approach becomes necessary when one is in-
terested in the dynamical non-equilibrium characteristics of the system, like
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the calculation of the first and second viscosities, of collective excitations
and the transport parameters. This point is extensively treated in a book of
H. Hoffmann [45] and will indeed be reprised in Chapter 4.

In § 2.1.2 it was argued that a system of fermions at high density and low
temperature should certainly behave as a quantum liquid. This is not strictly
true, as it generally depends on the form of the interaction: in Electromag-
netic liquids it is the residual molecular interaction, that includes an attrac-
tive well at medium range, accounting for particle aggregation by Van der
Waals forces, plus a strong hard-core at short range, that avoids superpo-
sitions; the analogy of such a potential, sketched in fig. 1 at pag. 6, with
the the nucleon-nucleon two-body potential in the vacuum has already been
discussed. It can be proven that such potentials satisfy two fundamental req-
uisites of Landau Theory, (i) letting a sufficiently slow change of the levels,
whose lifetime must be long enough so that a new state can survive the pro-
cess (ii) not allowing for the formation of bound states, of correlated states
or excitations.

§ 2.1.4. Quark Matter.— Very briefly - the same discussion can be
straightforwardly done for a system of deconfined quarks and gluons. In
particular, one does not explicitly deal with the bosonic degrees of freedom,
as the properties of dense QGP systems are - in first approximation - given
by the quarks; the interaction is then effectively treated and also in this case
leads to a renormalisation - or dressing - of the quark bare mass. The system,
composed thus by four species, must be f—stable and locally neutral, so that
again 4gpecies — Jeqtns = lfreevars, as the f—stability condition is here composed
by two reactions. Thus, one free parameter can be used to describe the state
of the system: p, = py, + pa + ps.

2.2 Equilibrium Thermodynamics

Before specifying the form of the interaction and its theoretical treatment,
it is interesting to state a certain number of static properties of Nuclear Mat-
ter at equilibrium, i.e. a set of physical observables related to - at least in
principle - measurable quantities whose expectation values are constant with
time. The macroscopic theoretical framework is here statistical thermody-
namics, and the knowledge to be sought, the Equation of State. General
arguments are taken from textbooks of statistical mechanics like K. Huang
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[46] (based on the Thermodynamics of E. Fermi) and a more technical review
book by M. Baldo [47].

§ 2.2.1. The Equation of State.— It is now clear that the states of
Nuclear Matter can be studied as a function of the total baryon density pp,
expressed in nuclear natural units of baryons/fm=2 and of the temperature T,
in MeV. Recalling the validity of the Thermodynamical Limit for the present
case, it is possible to assume a very large volume V' and divide every ther-
modynamical observable (Energy, Pressure, Enthropy, etc.) by it, working
with the corresponding densities. Starting from the Helmoltz Free Energy
density as thermodynamical potential,

f=e=Ts=3 mpi— P, (2.5)

where € is the energy density, s is the entropy density p; the chemical po-
tentials of the i species, (that can be n, p and e~ for the case of Nuclear
Matter, and u, d, s quarks plus e~ for quark matter) and P the pressure
density. From now on, the term “density” will be dropped and implicitly
supposed valid. Furthermore, in the calculation of static properties, it will
be assumed that 7" = 0: this is a drastic approximation, that makes the
Energy of eq. (2.5) the relevant thermodynamical potential for the problem,
but it is justified stating that the static properties of Nuclear Matter do not
vary sensibly in the range 0+1 MeV. The knowledge of the thermodynamical
potential lets a theorist to calculate any other thermodynamical observable,
by means of the Maxwell relations:

T T

in this particular case there is a direct relationship between the Energy and
the Pressure. Thus, the knowledge of the function f(e, pg) - or alternatively
of f(p, pp) - allows the calculation of every static property of Nuclear Matter.
The theory of such a tool, called “Equation of State” (approximate by the
label EoS), is presented in the following sections; it will be calculated in
Chapter 3, in which a particular microscopic approach to treat the interaction
is presented, and consequently a scheme to build quasiparticles of the Fermi
Liquid approach.
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§ 2.2.2. Hadronic Equation of State.— The internal energy density e
is usually substituted - in the case of Nuclear Matter - by the binding energy
per nucleon, defined as:

LY. . (2.7)
A A PB
following from the definition of pp; being an Energy, and not an Energy
density, it is measured in MeV. In principle £/A should depend on both pp
and ps; under this assumption, it is commonly given as a parabolic expansion

in function of the asymmetry parameter I, following ref. [48]:

E

E Eoym
Z(/)Baf) = Z(/)B,O) + IZTY(/?B), (2.8)

stopping at O([ 2), as a sum of a term accounting for symmetric matter
(I = 0) and a term depending only on pg, called “Symmetry Energy”. Its
validity is proven up to I ~ 0.6 + 0.8.

The Symmetry Energy has a very important physical meaning: it is the
in-medium interaction in the iso-vector channel; it can be determined by
subtraction from eq. (2.7), posing I = 1:

B2 05 = 2o, 1) = 2 (05,0) 2:9)

as the difference between the binding energy per nucleon of pure neutronic
matter and of symmetric matter (p, = p,). Two more terms appear in the
definitive form of the Equation of State:

Eiot E 1+1 E.-

_ = 2
A (pB7I)_ A(pB7I)+ 92 me” + A

(2.10)

the nucleon mass term - in perfect isospin symmetry - and a term accounting
for the contribution of the electrons, here treated as a free gas, as there is no
need to couple them with hadrons. Due to the [-equilibrium, expressed in
the eq. (2.3), for the chemical potentials of the species holds:

fe = [in — [p = Hu; (2.11)

the leptonic potential can be obtained by eq. (2.7) as a simple derivative:

=2 <%> = 4IESY“‘ (pB) (2.12)

oI A
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from which, in turn, it is possible to obtain the corresponding electron den-
sity, as a simple Fermi gas of free particles, that enter the scheme with

chemical potential p;:
1 1

Pe = ﬁ (hc)g 2]
remembering here the hc third power that makes the density p. appear with

(2.13)

its desired physical units. As discussed, the equations (2.2, 2.3) rule out the
necessity of p3; this makes the parameter I a function of p, or in other terms,
fixes the asymmetry of Nuclear Matter at every value of the pg. Defining a
proton fraction as x = p,/pp, and substituting eqgs. (2.2, 2.12) in eq. (2.7),
one finds the algebraic equation:

3

372 (he)*ppr — |4(1 — 2x)EZm (pg)| =0 (2.14)

to be solved for every value of pg, determining the chemical fractions of the
species as a function of baryon density. This makes eq. (2.10) a function of
only one variable, pg.

In practical matters one must calculate the two terms in eq. (2.9) separately
from some many-body approach, i.e. solving some complex quantum problem
with the aim to calculate the energy of the ground state of a system of many
interacting particles, usually introducing a set of plausible simplifications.
Their linear combination yields the Symmetry Energy, that must be in turn
substituted in eq. (2.14) to give the desired proton fraction z at every value of
pp. Finally, all the ingredients of the recipe can be put in eq. (2.10), together
with the leptonic contribution, to complete the picture. Typical behaviours
of the discussed quantities are represented in figs. 2.1-2.3.

§ 2.2.3. The state of art.— As stated, the Equation of State is a static
description of the thermodynamical states of Nuclear Matter; but in Nature,
strictly speaking, the realisations of Nuclear Matter for high densities are
not directly accessible, because locked in the interiors of Neutron Stars; the
only way to reproduce any of its properties is in heavy-ion collisions, where it
appears in small droplets and anyway in non-equilibrium conditions. Thus,
at the present moment, the Equation of State is unconstrained and there
are many approaches in its calculation. Nevertheless, there is a basic set
of assumptions that every model must fulfil, coming from the systematic
observations of atomic nuclei and a fruitful field of experimental trials to
determine the Symmetry Energy.
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Figure 2.1: EOS in Nuclear Matter and Neutron Matter. BHF/DBHF and variational
calculations are compared to some phenomenological models (NL3 and DD-
TW and ChPT+-corr). The left panel zooms the low-density range. Taken
from ref. [49].

The various schemes are classified as semi-phenomenological or microscopic:
the first are based on fits of the empirical properties of nuclei, employ-
ing a theoretical formalism that mimics a set of features of the full many-
body problem - famous example are the Skyrme, Gogny and Migdal forces;
the latter solve an ab initio many-body problem, whose input is the bare
Nucleon-Nucleon force; two further sub-families can be individuated: the
non-relativistic approaches, like the Brueckner-Hartree Fock (BHF) and the
variational method (var) versus the relativistic ones, like the Dirac-Brueckner
(DBHF) and the Relativistic Mean Field (RMF) theories.

An excellent review of the results in the various schemes is presented in
ref. [49]; the authors discuss them also in relation to the known constraints
coming from the heavy ion collisions, tentatively arguing for their overall
predicting quality. A good sample is given fig. 2.2.

§ 2.2.4. Experimental constraints I: Nuclear Systematics.— A certain
number of basic features come straight from the empirical properties of the
atomic nuclei. Recalling the A — oo limit in the semi-empirical mass formula
of eq. (2.1), it is possible to give a list of basic features that every model of
Equation of State must reproduce:
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Figure 2.2: Predictions for the EOS of symmetric Nuclear Matter from microscopic ab
initio calculations, i.e. relativistic DBHF, non-relativistic BHF and variational
calculations. For comparison also soft and hard Skyrme forces are shown.

Taken from ref. [49].

e Nuclear saturation point: the force that binds nucleons is attractive
at short range (= 1 =+ 2 fm); it is known that due to this effect, it
“saturates”, i.e. it is effective only on the closest primes. This is
true already for A > 4; both volume and binding energies of nucle:
are indeed proportional to the mass number A. the Free Energy per

nucleon of symmetric Nuclear Matter must have a minimum at py:

E
po = 0.17+0.01 fm ™, S (P0.1) = 16+ 1MV, (2.15)

as measured in EM probes scattering experiments and from eq. (2.1).
The behaviour of the symmetric matter around saturation is displayed

in fig. 2.2 for several approaches to the Many-Body problem.

e Symmetry Energy at saturation: from the asymmetric term a4 of the
semi-empirical mass formula it is possible to calculate what value must

have the Symmetry Energy at the saturation point:

E, sym
A

(po) = 30 + 2 MeV. (2.16)

This constraint for different models in literature can be checked in the

right panel of fig. 2.3: almost all the Equations agree at pg = po.
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Figure 2.3: Symmetry energy as a function of density as predicted by different models.
The left panel shows the low-density region, while the right panel displays the
high-density range. Taken from ref. [49].

e Compressibility at saturation: it is possible to measure the compress-
ibility of the nuclear fluid in experiments on the monopole resonances.
The same parameter is a static property of Nuclear Matter, and can be
evaluated both from the EoS or from a Landau normal liquid approach.
Its value is:

K(po) =220 4+ 30 MeV. (2.17)

e Causality condition: the speed of sound in the medium must not ex-
ceed the speed of light. This leads to the condition:

1/2
& (a_p> <1 (2.18)
Oe

C

§ 2.2.5. Experimental constraints Il: Heavy lon Collisions.— At high
density the picture is much more complicated, as there exists not any system
that can easily be probed in equilibrium conditions. The high-density regime
of the equations of state is then strictly model-dependent and deeply related
with the Egy, term. Its different behaviours can be classified from their stiff-
ness: a linearly growing term is called “asystiff”; a saturating or decreasing
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term is by contrast called “asysoft”; quadratically diverging energies are said
“superstiff” [— fig. 2.3, right panel].

The symmetry term can be partially constrained at various densities by heavy
ion collision experiments at various energies. Here a brief report, based on
the report by V. Baran et al. [50]:

e Sub saturation: the situation, sketched in the left panel of fig. 2.3, can
be constrained looking at fragments formation in low energy collisions;
good systems are the giant monopole resonances in °Zr and ?°*Pb, the
giant dipole resonance and the neutron skin thickness in 2*Pb. Some
results can be found in [51].

e Around saturation: here a nice tool is represented by an expansion of
Egym around the saturation density:

OF 1 (9%E
B ~ B sym — - sym — pg)?
ym(PB) y (po)+< oo )po(pB po) + 2( o, )po(/)B 00)
L (ps—po Kegm [ pB — po ?
_ - 2.19
ait 5 ( . >+ 5 o : (2.19)

in which L = (3/po)Psym(po) and Ky, are respectively its slope and
curvature; the first is in turn related to the symmetry pressure at sat-
uration by means of eq. (2.6).

e High density: the authors of ref. [50] compile a list of 11 observables
that can give hints on the high-density regime of the Equation of State.
The point lies in probing situations in which the asymmetry between
the colliding ions drives some effect that can be somehow related to
the static properties of Nuclear Matter. Typical phenomena include
the liquid-gas phase transition, with isospin distillation and evapora-
tion of neutrons; neck properties of the Intermediate Mass Fragments
produced at intermediate energies, to study isospin migration; collec-
tive fluxes of n,p and particle production rates (especially the 7 /7~
yields), can be checked with transport theory predictions; finally also
some deconfinement signature can be made eligible, studying the phe-
nomenon of neutron trapping, the production of neutron rich fragments
and the production of 7, K mesons in high-density regions.




2.3. BUILDING A PHASE TRANSITION

2.3 Building a phase transition

Strong theoretical evidences point towards a first order phase transition
at a 2 + 4 times the nuclear saturation density pg. At the present no theory
can include a deconfinement mechanism in the finite pp limit for QCD mat-
ter; some effective models, like the Nambu-Jona Lasinio, can only account for
half of the transition, the restoring of Chiral Symmetry [— § 1.1.3]. When
working with the static properties of strongly interacting matter it is then
customary to impose a phase transition, starting from the Equations of State
for the two phases.

§ 2.3.1. The Glendenning scheme.— According to the Lattice QCD

simulations [— § 1.2.4] and technically speaking, the transition here is of the
first order and second kind: differently than H,O then, Nuclear Matter is a
complex system with two conserved quantities, electric charge e and baryon
number Ng. N. K. Glendenning was the first to point out that for such a
system the usual Maxwell scheme cannot be employed, defining the guidelines
for a transition of the second kind [52, 53]; the keypoint is the relaxation of
the local charge neutrality in the mixed phase - separately imposed on the
two phases - in favour of the more “natural” global charge neutrality.
The Gibbs conditions say that in a two components system, (H)adrons and
(Q)uarks are at equilibrium if their chemical potentials, temperatures and
pressures are equal. Thus, the thermodynamical equilibrium bi-univocally
implies chemical, thermal and mechanical aequilibria:

HH = [Q = fleq (2.20)
Ty =Ty = Toq (2.21)
PH(NB;MQaTeq> = PQ(NB;MQvTeq) = Peq; (222)

the last equation alone cannot be employed to calculate phase transitions
properties: following the idea by Glendenning, it must be put together with
an equation that imposes the global charge neutrality in the mixed phase,
for a system with charge density Z/V = qu + qg:

é = (q), (2.23)

in which x = Vi/V is the volume fraction of quarks. This equation states

(1 - X) QH(MB,,UQaTeq) + XQQ(MBa HQ, Teq) -

that the charges of both phases of the system at every value of the thermo-
dynamical parameters must be equal to the average charge density. With
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astrophysical applications in mind, Z = 0, as Neutron Stars are supposed to
be neutral objects. The two equations (2.22),(2.23) must be solved at fixed
T for 0 < x < 1, yielding as solutions py = py (T, x) and pg = po(7T, x), the
chemical potentials of the two coexisting phases. A relationship analogous
to eq. (2.23) can be exploited for the total baryon density:

B
(1 =X) p5(ks, 1o: Tea) + X Pa(1is, 1o Tea) = 17 = {pB)3 (2.24)
the energy density in the mixed phase is then:
Eyo
emp = (1= %) jlt + X €, (2.25)

providing that both Equations of State are known, and calculated in some
Many-Body scheme.




The Many-Body problem has attracted attention
ever since the philosophers of old speculated over
the question of how many angels could dance on the
head of a pin.

R. D. Mattuck - (1967)

The Many Body Problem

The determination of the static thermodynamical properties of Nuclear
Matter - i.e. its Equation of State - relies on a proper Many Body scheme.
In systems at the Thermodynamic Limit, the number of constituents is arbi-
trarily high, so that every particle experiences a solicitation superposition of
many two-body forces. The task to explicitly write down a whole potential
term of the Hamiltonian without recurring to formal abbreviations is often
far from trivial itself. Any exact solution is impossible, so the problem is
simplified with some assumptions and then solved perturbatively with some
proper diagrammatic prescription to include all the relevant contributions to
the energy eigenvalue at some given order of approximation. The aim of this
chapter is to complete the picture of Chapt. 2 elucidating how to calculate
E/A(pp): the starting point is the free gas system; the next step includes the
sketching of the idea behind quasiparticle schemes: the semiphenomenolog-
ical Landau theory for Normal Fermi liquids and the Hartree-Fock method,
a way to transform two-body potentials into effective one-body operators
that describe the interacting system as a mean field. Finally the theories
employed in actual Nuclear and Quark Matter calculations are presented.
General references are taken from the textbooks from Fetter and Walecka

[40] and Baldo et al. [47].

3.1 Formulation

This section is dedicated to a brief statement of the problem, with a
qualitative discussion on how it is solved in this thesis work. Many Body
problems can be solved exactly for a few class of very simple systems; in
general it is necessary to employ some approximation scheme. The one chosen
here is the Quasiparticle method; for a system at liquid phase, it is natural to
apply Landau semi-phenomenological theory; this is a very complicated task
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due to the nature of the interaction, and it is the basis for transport theory
and dynamical properties of Nuclear Matter, treated in Chapt. 4. Static
properties are calculated in a microscopic approach, with the Hartree-Fock
method, that leads to a free gas-like energy spectrum.

Every quantum problem is posed specifying a proper Hamiltonian, containing
all the relevant degrees of freedom and stating the interactions among them.
In the present case it is Nuclear Matter, a system of A nucleons with mass
m - supposing isospin symmetry and no Coulomb interactions - for which:

A A
AN =S5NTTe 4+ ay; = Hy + Hy; (3.1)
i=1 i<j

with the indexes i, j = {1, 2, ..., A} running over the different degrees of free-
dom (the ¢ < j is written to exclude double counting); the Hamiltonian H,
the one-body kinetic energy ff and the two body interaction 4;; are Hermi-
tian operators, whose representations are matrices defined on suitable finite
dimensional Hilbert spaces by the choice of a particular base. In the follow-
ing this notation will be dropped, for simplicity of notation; for the same
reason, the nucleon spin degrees or freedom will be ignored throughout all
this section, as the arguments here are very general and meant just to give
a general idea of the methods.
The u two body potential is the Nucleon-Nucleon potential in the vacuum;
it is an input and its analytic form comes from fits of experimental data,
due to the complicate nature of strong interactions and of the non-analytic
solvability of QCD in the confined region; it is determined with relativistic
effective theories: the different interaction channels are represented by the
exchange of a lowest-lying octet meson, following Yukawa’s idea; such theo-
ries are non renormalizable and the arising parameters are fitted to reproduce
the properties of the first Nucleon-Nucleon scattering and bound states. The
best performing models to date are the Argonne v18 [54] (a momentum space
version was very recently published, [55]) and the CD-Bonn [56]. The latter
was used in all the Nuclear Matter calculations presented.
The Many Body Problem is then the solution of the Schrodinger equation
for the static Hamiltonian HNM:

HNM(I)k(qlaq27"'an) :E(bk(qlaq%“'an) (32)

i.e. the complete set of Wavefunctions &, depending on an appropriate set
of space-coordinates ¢; for the :—th particle and the corresponding energy
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eigenvalues Fy, specifying the total energy of the system that depends from
the many particle-configuration.

§ 3.1.1. Fermi Gas.— One of the most simple thermodynamic applica-
tions of a trivial solution of such a quantum-mechanical problem is the Free
Fermi Gas at T = 0. The term “free” here refers to the procedure of dropping
down the interaction term in eq. (3.1), thus working with the Hy defined on
the right-hand side. Such a problem is characterised by a trivial Hamilto-
nian, whose only action on the many-body wavefunction ®; is mediated by
the momentum operator p:

A

p?
Hy=> . .
0 = 2m (33)

The single particle problem of Hamiltonian H; is very easy to solve; the
s-th eigenfunction is the plain wave e’P*" and the corresponding single par-
ticle energy is ¢, = p7/2m, with quantised momenta p; appearing due to
translational invariance and subsequent use of periodic boundary conditions;
classically s can be interpreted as the number of nodes of a string of fixed
length.

In this particular case a Many-Body solution of the Fermi Gas of Hamilto-
nian (3.3) is simply found filling the single particle levels in a box with two
nucleons per level k (accounting for two opposite spin degeneracy), up to
the so-called Fermi Energy, the level of the last particle with & = kr. The
total ground state (gs) energy of the system is then a simple sum over single

particle states:
A/2

Ey=2) € (3.4)
k=1

the role of T' = 0 temperature here is to ensure the degeneracy of system:
the total energy is then the Fermi Energy and it is simply given by a sum of
the single particle states, as the nucleons do not interact with each other. A
much desirable property for a many-nucleon system! Before going on with
the discussion it is necessary to make two remarks, that demand for a pow-
erful formalism in order to be treated.

e Statistical thermodynamics: at the Thermodynamical Limit the first
excited levels strongly depend on the (7, ) environment: thermody-
namics kicks in with a classy generalisation of the theory given in
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Chapt. 2. The properties of a system of many particles, in which
A > 0, can be described recurring to the Gibbs grand-canonical en-
semble and the various observables calculated by means of a suitable
quantum grand-canonical partition function Z(T', u, V):

Z(T,p, V) = Tr[e- U #M/T]

= > (m,no, o noole BN ) g nss), (3.5)
N1, Moo
in which now a many-body state is specified in terms of the occupation
numbers n = {0, 1} (for fermions) of an indefinite number of particles
i = {0,1,...,00}, represented by the operator N, rather than by the
space coordinates of A labeled particles ¢;. Many fermion-states in
occupation number representation obey the simple relation:

[n1,na, .., Noo) = |1} 02) [ neo), (3.6)

that in turn lets the factorisation eq. (3.5), Z = [[32,(1 + e~ (=#/T)
in terms of the single particle energies ¢;. The thermodynamics can be
calculated starting from the grand-canonical potential:

0= —% InZ(T, 1, V) = =T In(1+e (/T (3.7)
i=1

by means of the First Principle and Maxwell relations. Any Ensemble
average for a generic observable O can be evaluated as (O) = Tr(pccO),
by means of the statistical operator:

pac = Z tem H-N)/T (3.8)

As an example, for the average number of fermions (N) = Tr(pgcN):

o0

00 1 &,
(N) = Cou 2 1+ e @m/T — ;” (39)

=1

thus making the average number of particles as the sum of the statistical
occupation numbers n?, that represents the probability of occupying the
single particle level ¢ at (7', u), in terms of the Fermi-Dirac statistics.

Indistinguishability of particles: this fundamental quantum postulate
is manifestly violated by the Hamiltonians (3.1),(3.3), that contain la-
bels i, j for the particle coordinates. An elegant way to overcome this
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difficulty is to switch to second-quantisation, in order to exploit the oc-
cupation number representation of many-particle states compactness,
in a form particularly desirable for statistical approaches. The start-
ing point is the Many-Body wavefunction, that must be expressed as
an Antisymmetrized product of single particle states ¢x(q), solution of
a l-particle Schrodinger problem. This is obtained with the so-called
Slater determinants:

O
(I)((h,-..,qA):\/% ¢1<EQZ) ¢2(5Q2) ¢A(EQZ) |
¢1(an) palan) -+ dalan)

a way to develop wavefunctions of indistinguishable A-body states with-
out violating Pauli Blocking. It is possible to prove that the given
determinant changes sign for the exchange of two particles ¢;, g;. The
next step is to promote the wavefunctions to field operators (again tem-
porarily denoted by hats, just to show the difference with c-numbers):

O(q) =" ardu(q), (3.11)

with index k running over the quantum numbers of the set of eigen-
states ¢ and ay, &L the annihilation/creation operators, that, applied
to eigenstates of the system, destroy/create a particle with quantum
numbers k. The procedure, called “second quantisation”, leads to
the imposition of the following anti-commutation relations among the

fields:

+
|
(&%)

[@(q), ®'(q")] (¢—q) (3.12)
[@(q), 2(¢)]+ = [®(q), D'(¢)]4 = 0, (3.13)

that in turn imply analogous equations for the a, a' operators of usual
quantum mechanincs. By means of this representation one can build
all the states of the single-particle problem, provided it’s solvable.

Under this assumptions, the Hamiltonian for Nuclear Matter can be written
in second quantisation as:

el - 1 .
M _ Z<1|T |j>a1-aj + 5 Z(lj|u|k;l)a3a;alak, (3.14)
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and in this form it is the starting point of the Many Body problem of inter-
acting Nuclear Matter and it must be applied - by means of the Schrodinger
equation - to Antisymmetrized products of single-fermion wavefunctions.

§ 3.1.2. Basics of Landau approach: quasiparticles.— A way to intro-
ducing the quasiparticle concept when solving for static properties is the use
of Landau semi-phenomenological theory for Normal Fermi liquids. This in-
cludes a review of the stated many particle formalism in the case of a system
at thermodynamical limit, that is composed, as A — oo, by an arbitrarily
high number of constituents, so that the Hamiltonian for a Free Gas:

2
Z p—ka,zak... —
o 2m

Vi [

dp... 3.15
@n)? / pedp (3.15)
with corresponding need to switch to the distribution formalism. The total
energy E[ng(g,t)] of the system is thus a functional of the distribution ny;
so that in this easy case, to any infinitesimal variation dny, corresponds a:

(SEgaS = Z 62 (Snk (316)
k

which, due to the simple dispersion relation, is simply a sum of the single
particle states €} = p?/2m, as in the case discussed in the previous section.
Following then the original intuition by Landau and his coworkers, the inter-
action is adiabatically switched on, transforming the single particle states of
the free particles in a Fermi gas into the energy levels of an interacting quan-
tum liquid. Indeed, after a new equilibrium is reached, each particle carries
the same spin, charge and momentum that it used to carry; the total number
of particles Npay = A remains constant, so that every quasiparticle is the
dressing of a bare particle, and a state of the whole system is still obtainable
by a careful counting of the occupation numbers through the distribution ny;
a deviation from the ground-state equilibrium distribution n9 to first order
in dn, yields a change in the energy distribution:

6E1iq = Z €L 6nk (317)
k

in which the label £ has the same role as before, with €, now defined as the
functional derivative of E with respect to the change in the distribution n
(due to an interaction), and corresponding to the quasiparticle energy. This
time though, differently from the free gas case, nothing can be said on the
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total energy, as the definition of quasiparticle energy makes sense only around
the Fermi surface. The Fermi energy ep is the energy acquired by the system
for adding a particle on top of the Fermi level. Expanding to second order
in on:

1
0Bug =Y €, 0ny + 5 Sk, K Sngong (3.18)
k kk’

in which appears a two-particle function f, the interaction energy between
two particles. At low temperatures, with Pauli blocking limiting most of the
particle/hole excitations around ep, the excitation of the system is related to
the deviation from the ground state:

Sng = ng — ny. (3.19)

Furthermore, expanding € — ez in powers of p — pr around the Fermi surface,
one obtains:

€—€p =~ UF(p - pF) (3-20)

where vp = [0¢/0p|y—p, is the Fermi velocity of a particle around the corre-
sponding surface; recalling the case of a noninteracting gas, in which particles
and quasiparticles coincide, € = p*/2m and vy = pr/m; by analogy then, for

a Fermi liquid one defines:

m* = 2L (3.21)

Up

obviously different from the bare mass m of the particles, yet meaningful
as an “effective mass”. Its value can be in principle measured from the
system by means of the Landau-parameters, essentially the coefficients of
a Legendre Polynomials expansion of the interaction energy f between two
quasi-particles. Its physical meaning is quite clear: the excitation of degrees
of freedom around the Fermi surface is sketched as a few, noninteracting
quasiparticles that move freely as if they had a different mass m*. This semi-
phenomenological theory is now put aside to calculate static properties with
the Hartree-Fock method.

§ 3.1.3. Hartree Fock.— The effective mass will be here calculated with
a microscopic method developed by Hartree, and successively perfected by
Fock and Slater. It was initially used in the treatment of the atomic Many-
Body problem coupled to the variational approach, using Slater determinants
as trial functions. During the 60s the method received new attention and was
generalised for the case of perturbative approaches.
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The core idea of the Hartree-Fock method is to replace the four Fermi inter-
action term in the second quantised Hamiltonian of eq. (3.14) with a sum of
all possible free particle-like two-body term. Due to translational invariance,

p
HNM Z o k a[La,k + = Z akak,+qak/ak+q, (322)
k kk’,q

in which - working in momentum space - a Fourier transform @ of the po-
tential u was performed. Without entering the details, the substitution is
obtained essentially by means of a linearisation, averaging pairs of operators:

alabasas ~ —(alas)alas — (abay)alas + (alag)alas + (adas)alay, (3.23)
in which the signs come from fermionic orderings by means of anti commuta-
tion relations; terms like (afa') or (aa) were dropped, as they violate baryon
number conservation. In principle one should ensure that the performed
operation leads to an effective minimisation of the energy. The procedure
substitutes a two-body term with an average field that, summated over all
the particle states, acts as a “mean field” that takes into account the medium
behaviour:

(ataw) = (alag)duw = O (3.24)

such a mean field term finally depends on ny, the average number of parti-
cles in the k state; when substituted in the interaction term of the Hamilto-
nian (3.14), yields an average interaction due to all the other particles. After
some easy algebraic passages and applying repeatedly eq. (3.24):

Upp = Z l an U+ nu] apay = ZEHF akak, (3.25)
k q

that finally is a one-body operator; n is the total density as sum of the mean
occupation numbers. The Hartree-Fock potential is sum of two terms, a “di-
rect” term, due to Hartree, that averages the interaction on one particle due
to a mean field generated by all the others; and an “exchange” term, due to
Fock, that essentially performs a momentum shift.

The method has been generalised to be employed in perturbative Many-Body
approaches, in which the Scrhédinger problem is solved by means of Dyson
expansions of Green functions. Providing that a proper set of Feynman rules
is specified, the exact Green function, solution of the Many-Body problem,
can be diagrammatically represented as a sum of the unperturbed Green

58 |




3.1. FORMULATION

function plus all connected terms with a free Green function at one end.
This is usually defined as “Proper Self-Energy” and is indicated as »*. The
Hartree-Fock approximation consists in stopping the expansion for X* at the
two first order contributions.

A very important remark must be here made: the method implies the so-
called “self-consistency”, as the matrix elements of uyp are calculated by
means of the auto-functions, that in turn are unknown and to be deter-
mined. The problem is then solved iteratively and numerically, starting from
some guess-solution that should converge, after a given number of cycles -
to the desired solution. Once this happens the system will be a collection of
quasiparticles with a new dispersion relation:

' = (@] |) = <1>|z( + Sur >)a2ak|<1>>; (3.26)

the Yyp term can be included inside a renormalised mass m*: the energy
spectrum has the form of a Free Gas spectrum, whose static properties can
be calculated quite easily.

The method is obviously non exact and works well in all those systems in
which correlations are not too important. A good example are Pauli-blocked
dense systems at T" — 0, in which the main contribution to the first excited
states energy comes from a few quasiparticles at the Fermi surface - as ex-
tensively discussed - leading to a huge suppression of any other two-body
correlation.

§ 3.1.4. Thermodynamical consistence.— The effect of the Hartree-
Fock method is thus to change the dispersion relation; it must be kept well
in mind that in a thermodynamic scheme the system properties are regulated
by the parameters 7" and pg, both appearing in the Fermi-Dirac distribution
- the latter being related to the chemical potential pp. The quasinucleon
dispersion relation is thus medium dependent through the average occupation
numbers ng. In the T"— 0 limit, this can be sketched as:

2

* p
w*(p, up) = o + Xnr(p, us)- (3.27)

Such a medium dependence actually destroys thermodynamic consistence.
The Free Gas, extensively treated, has a dispersion relation w = w(p); its
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Hamiltonian and Partition Functions are:

H =" w(p)alay, (3.28)
k
Z(T, p, V') = Tr [e”HE-mMIT), (3.29)

the energy density (7, ) can be calculated either from the partition func-
tion, or from the thermodynamical identity € = T's + un — P, from other
thermodynamical relations, and the result would obviously be the same.
The same does not apply for a system that - for the sake of generality -
holds a single particle dispersion relation w* = w*(p, T, x): in such a case
the effective Hamiltonian becomes medium dependent; when calculating the
energy density from the partition function one ends up with the same form
of the free-gas:

(T, 1) = %m Ty [HFC e~ (HS=uV)/T)). (3.30)
but this time the definition of any observable from the first principle of ther-
modynamics would contradict the free gas case, as any derivative of the
thermodynamical functions yields new terms due to the medium dependence
of the Hamiltonian.

The inconsistency does not prevent the use of such models, but breaks the
“Quasiparticle scheme”, so that a careful use of thermodynamics is advised; a
formal solution was given independently in many approaches, until M. Goren-
stein and S. Yang proposed a unified scheme to treat the issue [57]. According
to their work, when dealing with Effective Hamiltonians Heg(cq, g, ...) de-
pending on a certain number of phenomenological parameters ¢; = ¢;(T), p)
- like the renormalised mass, m* = m*(T, 1) - one should be sure that for
the corresponding pressure P = P(T, i, ¢1, ¢3, ...) the following conditions do

hold: op op
(_) 0, (_> _o,.. (331)
acl T,,c2,... 862 T,1,c1,...

so that any additional term is suppressed and the validity of the thermo-
dynamical identity € = T's + un — P is recovered. This is equivalent to
adding a medium-dependent zero point energy Ej = Ey(ci,ca,...) to the
Effective Hamiltonian. This prescription was devised for high temperature
QGP Equations of State, such as quasi-gluon models based on Lattice QCD
data [58].
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3.2 Brueckner Theory

K. A. Brueckner begun working on Nuclear Matter during the 1950s [59];

his studies were later on continued by J. Goldstone and H. A. Bethe (for
example [60]). Since then the theory - that nowadays carries his name,
Brueckner theory - has gained much attention, as it was employed also in
finite nuclei calculations; it was highly remarkable that an ab initio micro-
scopic approach, whose only input was the Nucleon-Nucleon potential in the
vacuum, could reproduce the nuclear saturation point, despite the fact that
the theory was far from being trustworthy due to internal inconsistencies
and numerical difficulties. The challenge was taken back in the 1980s, with
the first relativistic Dirac-Brueckner approaches on one side, formulated by
C. M. Shakin [61] in a first moment, and by R. Brockmann and R. Machleidt
later [62, 63]; on the other side the Catania group of M. Baldo, U. Lombardo
and G. Giansiracusa and the Liége group of J. Cugnon and A. Lejeune took
back the bulk of Brueckner theory, could finally elucidate the correct single-
particle potential choice [64] and improve the prediction adding contribution
from three body forces [65].
Technically speaking, Brueckner Many-Body theory is based on a Goldstone
expansion, whose diverging ladder diagrams are carefully resummed, defining
a scattering G-matrix in medio; this new physical quantity is non-divergent
and thus exploitable in Nuclear Matter calculations.

§ 3.2.1. Goldstone expansion.— Brueckner theory is based on the Gold-
stone expansion [66], a perturbative series of linked-cluster diagrams, for the
ground state of a Many Body system, Nuclear Matter, under the condition
that it is non-degenerate. Recalling the formalism presented in the last sec-
tion, the starting point is the Hamiltonian of eq. (3.1), in which a single
particle potential Uj; is inserted in a way that makes the final result indepen-
dent from its choice:

A A A
HMN — Z(Tf + Ui) + (Zu” — Z Ui) ; (3.32)
i=1 i<j i=1
this is done in order to accelerate the series convergence. A brief discussion on
its choice will be presented in the next paragraphs. The unperturbed ground
state g comes from the solution of the Schrédinger problem of Hamiltonian
Hy; this is expressed as a Slater determinant in eq (3.10), and is supposed
non-degenerate. The associated energy ¢, eigenvalue of the Hy®y = ;P

|61 |




CHAPTER 3. THE MANY BODY PROBLEM

problem, is thus obtainable from the free-single particle contributions.

Now one switches to the full Hy = e problem for the ground state ¢ of the
interacting system; the total energy ¢ is evaluated by means of perturbative
theory, as an expansion up to third order in H;:

€ = € + <(I>Q|H1|(I)0> —|— <(I)0|H1(€0 — H0)71PH1|(I>0>
—+ <(I)0|H1(€0 — H())ilPHl(EQ — H0)71PH1|®0>
— <(I)0|H1|(I)0><(I>Q|H1(Eo - Ho)_QPHllq)()) + ... (333)

where P = 1 — |®g)(P]| is the Projection operator on |®g), used for formal
purposes. The diagrammatic form of this expansion can be built provided
that a suitable set of generalised Feynman rules is specified, starting from the
second quantised form of H;, represented by eq. (3.14) upon the adding of
the single particle potential U. The &', & operators - as stated - must satisfy
the anti-commutation relations for fermions:

[&7‘7 &3]+ = 07 [&;[7 dl]Jr = 07 [&;[7 dl]Jr = (Srsa (334)

while the matrix elements are calculated in the same functional space in
which the Many-Body wavefunctions are defined (Fock space). The sums
are performed on the single-particle states rather than on the particles and
careful avoiding of double counting is advised (the elements symmetric under
the pg — rs exchange are dropped).
The contributions at the various perturbative orders are calculable by means
of the specified diagrammatical representation; for example, the second order
of eq. (3.33) is:

(®g|Hy(€g — Hy) * PHy|Po); (3.35)

starting from the right, it is instructive to check the action of the various
operators that appear on the unperturbed ground state |®g): the first term
of Hy, that is of the form (ablv|lm) ala)ama;, destroys the particles occu-
pying the [, m states of the Dirac sea and creates two particles in the states
a,b above the Dirac sea, due to the effect of the creation and annihilation
operators. With this procedure one ends up with a new ®" Slater determi-
nant with two particle and two hole states, whose pictorial representation
lies in the (a) panel of 3.1: the matrix element, representing the interaction,
is drawn as a dashed line; the usual continuous lines are used for fermions.
The starting point, below the diagram, is the unperturbed state ®.
Proceeding towards the right hand side in eq. 3.35, it is the turn of (eg— Hy) ™!
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Figure 3.1: (a) Action of the first term in H; on the unperturbed Ground State ®¢ - (b) A
diagram contributing to the second order of the perturbative expansion 3.35.
Both pictures are taken from ref. [67].

to be applied on the new determinant &', obtaining the reciprocal of the en-
ergy difference among the two states; its contribution is —(E, + E, — E; —
E,,)~%, in which the various E; are the single particle energy eigenstates of
the free problem. The term is called “Energy Denominator”.

Finally applying H;y, one ends up with ®, again. The only H; terms to be
used are those that transform &' = &L&z&mdl ®, back in Py; there is more
than one way to topologically perform this taks, that anyway involves the
use of diagrams of the kind shown in the (a) panel of fig. 3.1. An example of
a suitable diagram, satisfying all the discussed requirements, is given in the
(b) panel of the same figure, evidently composed from two diagrams of the
(a) kind. A typical second order diagram contribution is composed by the
product of the two-body matrix elements, form the energy denominator and
from the expectation value:

(o] af, yadl i) o), (3.36)

which, depending on the particular action of the a operators, is valued +1.
For the considered (b)-diagram, the contribution is proportional to:

> {im|v|ab)(E, + E, — Ey — En,)~{ablv|im) (3.37)
ablm
where the sum is extended to the states a,b above the Dirac sea and to the
[, m populating the Dirac sea.
An excellent review of the development of such a diagrammatical tool for the
perturbative calculations by means of the Goldstone expansion can be found
in a report by D. Day [67]; the pictorial method is very powerful when it
comes to write all the contributions at a given order of the expansion (3.33).
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o e =

Figure 3.2: First order diagrams relative to the contributions of eq. (3.38) for the Gold-
stone expansion [67].

The discussed example is only one of such contributions for the second order;
it is presented in order to give a minimum insight on the applied method
and of its physical meaning. The correct prescription states that only the
topologically connected diagrams must be picked up at a certain order, as
the disconnected ones exactly cancel their contributions at all orders of the
expansion.

The diagrams contributing to Leading Order (first) are reported in fig. 3.2;
their contributions are:

e=>Y_ (nT|n)+ % > (mnlv|mn) 4, (3.38)

n<A m,n<A

in which appears the U-term dependence that enters the unperturbed prob-
lem. The second term has been written in a compact form by means of the
Anti-symmetrising operator A:

[mn) 4 = mn) — [nm); (3.39)

eq. (3.38) contains the v potential and is thus divergent due to the presence of
the hard-core in nuclear forces; this problems makes the discussed Goldstone
expansion unusable in calculations. The problem can be overcome by a smart
resummation of classes of ladder diagrams.

§ 3.2.2. Resummation and G Matrix.— The Goldstone expansion, as
it is formulated, is composed by diverging terms and thus cannot converge.
But this difficulty, that the approach shares with many other perturbative
approaches for the strong interaction, whose structure constant is typically
as ~ 1 in nuclear applications, can be overcome defining the G-matrix as the
in medio scattering matrix and converting a series in v in one in G, noting
that the latter has a non-singular behaviour for potentials that contain a
hard-core, such as the nuclear one. Surprisingly enough - it can be proven
that all the terms of the new Brueckner-Goldstone expansion are finite and
of the appropriate order of magnitude for perturbative use.
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TR, b
.
ld

)

Figure 3.3: Example of ladder-diagrams risummation for the definition of the G-matrix.
The (d) diagram is the sum of the (a,b,c) and of the infinite diagrams of the
following orders that belong to the same class. Taken from ref. [67].

The physical intuition that lies at the base of such a procedure can be un-
derstood thinking at two interacting nucleons in the vacuum: the first order
scattering amplitude in Born approximation yields a large, inaccurate value.
But calculating all the orders contributions - or solving the corresponding
Scrhédinger equation, the correct result is found. On the same grounds, a
careful re-ordering of the diagrams is here performed, so that every matrix
element in v is substituted by an infinite series including the two-body inter-
action at all orders.

A practical example can be made looking at the diagrams of fig. 3.3, in
particular the first (a) and therein the v interaction ending in a bubble on
its right: ¢ and n are the outgoing lines, while b and n are the ingoing. The
corresponding matrix element is (cn|v|bn); this diagram, accounting for the
bubble-interaction at first order, must be added the following order diagrams
(b), (c), and all the infinite obtainable by adding further dashed-interaction
lines under the existing ones.

It is useful to define the “starting energy” as the energy denominator W =
E, + E,, + E, — E,, observing that it is the energy of the prototype dia-
gram of the class with only three v interactions (obtainable by cutting the
bubble interaction in diagram (a) of fig. 3.3). With this prescription, the
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(a) (b)

Figure 3.4: (a) Diagram redundant for the definition of G - (b) Correct diagram contribut-
ing to the definition of G [67].

contributions relative to the second (b) and third (c¢) order diagrams are:

— Y {en|vlde) (Eq+ E. — W)~ {de|v|bn)

d,e>A

> (enfvlde) (Eq+ E. — W)~ (delv| fg) (Ef + By — W)~ (fglv|bn).
defg>A

The correct classes of resummed diagrams are built with a few simple pre-
scriptions, formulated in order to avoid redundance:

e The initial energy must be constant: new interactions are inserted
all in the same point each following its predecessor, with the rest of the
diagram never changing, so that the initial energy stays constant;

e Cutting particle lines: new interactions must always be inserted cut-
ting particle lines;

e Hole-lines number: the number of vertex-ingoing hole-lines must be
kept constant in all diagrams.

Following this rules the sum of all the infinite ladder diagrams defines the
G-matrix, represented as a wiggly line in the (d) diagram of fig. 3.3. But
the procedure, even on resulting diagram (d) is far from being complete, and
must be then applied again for the two top interactions, i.e. the second order
in v resummation, and for the bottom interaction, that is a first order. Again
this must be done avoiding any redundance: looking at fig. 3.4, the correct
result is not the (a), but the (b) diagram. Again, this was presented as an
example and is only part of the complete procedure of building the relevant
diagrams at a given order of the G-matrix expansion.
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The ordering criterion of resummed diagram is thus the equal number of
hole-lines. The interactions, inserted in particle lines, compose the ladder
diagrams. This procedure finally yields the correct contributions at the de-
sired order. The underlying physical lead is that two particles are strongly
correlated - i.e. the 1) state is considerably different from the unperturbed ®
- only when the distance between them is smaller than some characteristic
correlation parameter. In the case of nuclear forces, such a scale length is of
the same order of the hard-core, ¢ &~ 0.4fm. The average spacing ry among
the nucleons can be estimated at every value of pg: within a sphere of radius
ro one can find one particle in average; the probability that it is strongly
correlated is of the order of P ~ 4pmc?; a second correlated particle can be
found with probability P?, a third with probability P2, and so on. The prob-
ability of finding strongly correlated particles within the hard-core range is
thus a good perturbative parameter to obtain converging expansions and can
be found once per hole-line in the diagrams; the rough estimate given is a
good tool to understand the success probability of the Brueckner-Goldstone

expansion.
The new G-matrix series can be analytically defined introducing the @, e
operators:
pq) ifp>Aandq> A,
Qlpg) = pa) (3.40)
0 elsewhere;
elpg) = (E,+ E,—W). (3.41)

respectively responsible of the forbidding of the interaction for particles that
are not above the Dirac sea, and of stating the correct energy determinant
for every ladder-diagram class. By means of their use, the G-matrix can be
expanded as:

GW)=v—v(Q/e)v+v(Q/e)v(Q/e)v — .. .; (3.42)

the label “matrix” used so far must recall the generalisation of the T-matrix
scattering in the vacuum, recalled when eliminating the Pauli-blocking with
the position ) = 1. But the G-matrix is an operator defined in infinite
dimensional spaces, so it admits a continuous representation by means of the
Bethe-Brueckner-Goldstone (BBG) integral equation:

GW) = v~ v(Q/e)G(W) = v — vy ) @k o (|

2w ) GW);  (3.43)
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the right hand side is the form commonly used in the applications; a sum
is shown instead of the proper integral: this is due to the fact that the
integral equation is commonly solved approximating the Fredholm method,
thus discretising the momentum-space and substituting the integral Kernel
with a finite dimensional matrix, and an integral equation with a very large
system of coupled algebraic equations.

When turning to practical calculations, the matter of specifying a proper
single particle potential U comes back. It is very important as it appears in
the single quasi-particle spectrum:

) =2 4 ug). (3.44)

2m

A proper choice of U is very important in accelerating the convergence of the
series, as it is responsible for the cancellation of a given class of diagrams in
the G-matrix expansion. But this is not the only point to look at when going
to actual calculations: it is necessary to study the character of the series and
to choose at which order to stop the expansion to obtain reliable results.

§ 3.2.3. Brueckner Hartree-Fock.— The three points stated in the end
of the previous paragraph can be treated separatedly, in order to give the
guidelines of a reliable calculation scheme for Nuclear Matter applications.
Briefly, the Leading Order is the first; the correct choice for U is the Hartree-
Fock single particle potential; the convergence of the expansion was proven
numerically.

e No NLO contributions: the second order diagrams do not give any
contributions to the expansion. This is due to a peculiar property of
Nuclear Matter: an infinite system of interacting nucleons with bound-
ary periodic conditions has plane waves as single particle wavefunctions
[— § 3.1.1]. It can be proven that p is a cyclic coordinate for the Hamil-
tonian (3.32) and that any consequent Slater determinant must thus
have vanishing total momentum, i.e. the Dirac vacuum, in which every
particle is counterbalanced by an anti-particle of inverse momentum.
Even the diagrams that would give non-zero contributions, like the (b)
diagram of fig. 3.4 when carefully removing the bubble on the right,
are redundant in the G-definition: this particular example is already
included in the (a) diagram of fig. 3.5, that pertains to the first order
of the BG series.
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0V Vs O-—---X
{a) {b) (c)

Figure 3.5: First order diagrams in the hole-line BBG expansion; (a,b) Hartree-Fock ap-
proximation relevant diagrams - (c¢) diagram dropped due to the Upp choice.
Taken from ref. [67].
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Figure 3.6: Symmetric matter Equation of State: the diamonds are the LO calculations;
the squares are the NNNLO calculations (fourth order in the hole-line number).
Taken from ref. [64].

e Hartree-Fock: back in the early times of Brueckner Theory, many
single particle potential U choices have been discussed. Nowadays cal-
culations are always performed - or at least begun - with the Hartree-
Fock choice. This particular choice cancels all the diagrams in which
a bubble line is attached to a hole line, thus all the diagrams carrying
one or more interactions and bubble-interactions exchange. The choice
corresponds to the form:

Upm) = D (mn|G(W)|mn). (3.45)
n<A
clearly leading to a self-consistency, as discussed in § 3.1.3, when in-
serted in the BBG equations. The scheme consequently takes the name
“Brueckner Hartree-Fock” (BHF).

e Convergence: a series of works on this issue was produced by the
Catania group during the 1990s, whose results are summarised in the
work [64](1998), appeared on Physical Review Letters. The conver-
gence of the series was therein numerically proved; the Leading Order
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Figure 3.7: Equation of State for Symmetric Nuclear Matter with the Argonne v18 realistic
potential [54]. The solid lines represent respectively gap and continuous choice
BHF approximations, while the dots show the contributions up to NNLO.
Taken from ref. [68].

was fixed already at the first, as the second order diagrams do not
give any contribution and the third diagrams contributions can be ne-
glected; the results have an accuracy of 12 MeV: this can be checked
in the bottom panel of fig. 3.6. Finally, the authors proved the valid-
ity of a procedure in which the energy contributions are summed even
above the Fermi surface k > kp, called “continuous choice”, against
the common scheme, called “gap choice”, that led to the cancellation
of a higher number of high-order diagrams.

§ 3.2.4. Three-Body Forces.— A rapid eye at figs. 3.6-3.7 can better
explain the point stated in the introduction: Brueckner theory successfully
reproduces the nuclear saturation behaviour starting from Nucleon-Nucleon
bare interactions. The presented scheme however fails in reproducing good
quantitative results, as required by the observations reported in eq. (2.16).
Furthermore, slightly above saturation it shows too much attraction. This is
due to the fact that the realistic NN forces describe the nucleon as a point-like
particle. To overcome this problem, contributions due to three and four-body
forces were included, recovering an idea due to D. Day [67], in order to take
into account for the possible internal structure of the nucleon, responsible
for resonances or nucleon/anti-nucleon vacuum polarisations. In a seminal
work by the Liege group [65], the three-body diagrams of fig. 3.8 were added
in a microscopic fashion, then treated as a two body effective interaction by
means of a Wick contraction and summed to the usual v potential.
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Figure 3.8: Three body-forces contribution diagrams: nucleonic resonance, virtual N, N
vacuum excitation and two meson-exchange [69].

The contributions used in this thesis come from the more recent work by
W. Zuo et al. [69], in which the three-body forces are constructed consistently
with the Bonn and Nijmegen NN potentials, to pair up the input of the
microscopic calculations.

§ 3.2.5. Thermodynamic consistency.— Brueckner Hartree Fock cal-
culations end up modifying the single particle energy spectrum, like predicted
in § 3.1.4, as the nucleon bare mass is renormalised due to the mean field
interaction. The first calculations by Brueckner showed a similar thermo-
dynamic inconsistence, that led N. M. Hugenholtz and L. van Hove to the
formulation of a theorem [70]:

For a system with zero pressure (i.e. a Fermi liquid at absolute
zero) the Fermi energy ep is equal to the average energy per
particle Ey/N of the system. This result should apply both to
liquid *He and to nuclear matter.

that can be seen as a generalisation to Nuclear Matter of a famous theorem
by T. Koopmans for the closed shell states in Hartree-Fock theory [71], ac-
cording to which the first ionization energy of a molecular system is equal to
the negative of the orbital energy of the highest occupied molecular orbital.
According to the authors, the problem arose from the fact that Brueckner
neglected important cluster terms contributing to the single particle energy;
a good calculation asset was found by M. Baldo et al. [72], in the frame-
work of an approximation scheme which includes single-particle correlations,
finally satisfying the Hugenholtz-van Hove theorem. Furthermore, it can be
formally proven that the problem lies in the choice of the single particle po-
tential, because Brueckner theory satisfies the Hugenholtz-van Hove theorem
at Hartree Fock level for any potential not depending on density; a concise
proof is given in the appendix of ref. [73].
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3.3 Quark Matter

The approach to describe Quark Matter is analogous to the hadronic

case; its properties are unconstrained though, due to the lack of empirical
observations of free coloured systems. Recalling the discussion of § 2.1.4,
Bulk strange-Quark Matter is an infinite aggregate of u, d, s quarks at the
Thermodynamic Limit, thus with net baryon number A, — oo, in a global
colour singlet state, and within a volume V' — oo, so that the quark density
py = A,/V is a well-defined finite real number. Clearly the “bulk” label
refers to the absence of any surface effect, plausible assumption for large
Macroscopic-scale systems as the interior of Neutron Stars.

The starting point is the Gibbs Grand-potential €2, = QS + Q;“t, sum of
a free-gas term plus an interaction term. The latter should come from a
QCD-Many Body problem; the difficulties in solving the Gauge Theory of
Strong Interactions in non-perturbative regime makes necessary to use some

effective theories that reproduce a basic set of the full QCD properties.

§ 3.3.1. MIT Bag Model.— The first, and most crude approach, is what
nowadays is referred as the “MIT Bag Model” [74], briefly used in § 1.2.1 to
calculate the Equation of State of quarks; its whose basic idea is to suppose
that quarks are confined within a spherical region, called “bag”, of the QCD
vacuum. Outside the bag, lies the true QCD vacuum; inside the quarks
interact weakly, so that they are immersed in some perturbative vacuum, an
excited state of the true QCD vacuum, characterised by a constant energy
density B, called “Bag Constant”, accounting in a phenomenological way
for the non-perturbative aspects of QCD. The quarks in such scheme exert
an outgoing pressure on the surface of the bag with their Fermi motions,
while the different vacuum energy density gives rise to an inward counterterm
Pp = —B. In principle quark dynamics inside the bag can be calculated by
means of perturbative QCD, so that the thermodynamic potential can be
calculated from two contributions: Q;nt ~ QqNP + Q?F, one Non-Perturbative,
the other in Asymptotic Freedom regime.

As a first, crude approximation is to treat neglige any interactions among
the quarks, thus treating them as the free-flavours of a Fermi Gas, and to
approximate the non perturbative effects as:

ot = Q" = B; (3.46)
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this prescription lies at the base of the Bag Model. The assumption, despite
being extremely simplistic, is thought to be reasonable at very high densities,
while obviously fails at the density regimes typical of hadron formation, i.e.
around the first-order phase transition of colour confinement / chiral sym-
metry breaking.

In this thesis - having in mind a comparison with Nambu-Jona Lasinio re-
sults - the three flavours are treated in exact SU(3) chiral symmetry - i.e.
the quarks are massless. From the Free Gas theory of § 3.1.1, the potential

ds:
reads {1

0 4
=— — 4
% = =3 gt (347

i

where the flavour index i = {u, d, s}; correspondingly, one can calculate from
thermodynamics the flavour densities:

b= - (89) , (3.48)
alu’z TV

so that the total quark density is p, = >_; p;. The Equation of State has the
very simple form:

1 1
P(qua Hd; ,us) = —Qg + Z (hc)3 H/L? - B (349)

€q(Hus fas p1s) = +Qg + 3 pipi + B. (3.50)

The last step comes applying the proper relations for the quark matter [-
stability:

d—u+e + Ve, s—=u+te + Ve, s+u—d+u,

that leads - in the considered case - to degenerate quark-flavour densities and
chemical potentials, and to a total suppression of the electron density. The
Equation of State can thus be expressed by means of the total quark density
pq analogously to the hadronic case.







The assertion that a theory is the only correct
one can only be an expression of our subjective
conviction that there can be no other equally
simple and equally fitting picture.

L. E. Boltzmann

Viscosity

The term “fluid” comes from the ancient greek verb @idew, literally mean-
ing “to bubble up”, describing a liquid that overflowed the recipient in which
it was boiling. Physics speaks of “fluids” referring to a subset of the phases
of matter that do not have a definite shape; a substance has a fluid behaviour
when it continually deforms under an applied shear stress. Viscosity is a key
property of a fluid, representing a measure of its dissipative behaviour. A
liquid, for example, flows in layers so that a force applied on the upper layer
is transferred to the next with a small defect due to friction. In this setup
Shear Viscosity n is defined in terms of the friction force F' per unit area A
created by a shear flow with transverse flow gradient V,v,:

F

Z = vavx, (41)

Ls=1. A discussion about

and is measured in the S.I. of units as Pa-s=kg-m~
its conversion in other unit systems can be found in the Appendices [—
App. A.2]. The relative importance of inertial vs. viscous forces in given
flow conditions for different systems is expressed by the Reynolds number

Re, a dimensionless parameter, as the ratio:

oL

v

Re (4.2)
between a property of the fluid, the kinematic viscosity v = n/p and a prop-
erty of the flow, expressed in terms of the product between a characteristic
velocity v and a characteristic length of the system L. For example in a pipe
the characteristic length L ~ D is of order of the diameter D; experimental
observations show that laminar flow occurs when Rep < 2300 and turbulent
flow occurs when Rep > 4000.

But the macroscopic properties of a fluid are very sensitive of the microscopic
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interactions among their corpuscular constituents. This leitmotiv is carried
out throughout this thesis, it can be seen as a sort of underlying principle:
again, hydrodynamics and transport theory will be the microscopic frame-
works that link the sketching of the interactions by means of many body
theories, to devise thermodynamical and macroscopic properties of a fluid.
Recent discoveries by RHIC show that the Quark-Gluon Plasma produced
in heavy ion collisions is the most perfect liquid ever observed [— § 1.3.2];
in the low 7', finite p regime the properties of QGP are unconstrained, so
the calculations presented in this work are meant to give some insight in this
very open field of Physics. General arguments come from the textbooks of
P. Nozieres [41], G. Baym and C. Pethick [42] on Normal Fermi liquids, and
from the excellent review article by T. Schéfer and D. Teaney [75].

4.1 Hydrodynamics and Transport Theory

For illustrative purposes, Hydrodynamics here will be briefly sketched in
the case of a one-component non-relativistic fluid of Equation of State at
thermal equilibrium P = P(¢, p). The idea is to give the general guidelines
to solve a transport problem for dynamical properties. In such a picture, five
conservation laws (2 4 3) are given:

Oe .
dp B
9y -

in terms of the energy density € and its relative current j¢, of the mass-density
p, of the three momentum-density g; components, and of the stress tensor
I1. These equations fundamentally rule the dynamical evolution of the fluid,
whose properties are expressed by means of “constitutive relations” that re-
late derivatives of the flow velocity v and thermodynamic variables (such as
e, P, p, etc.) with the conserved currents (j¢, g, etc.).

In practical matters the currents are expanded with respect to their associ-
ated thermodynamical variables so that the contributions at the various or-
der, plugged inside the evolution relations, describe fluids in different regimes;
the first two orders account for most of the known physical systems. Viscosity
appears at second order as a dissipative effect.
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4.1. HYDRODYNAMICS AND TRANSPORT THEORY

§ 4.1.1. ldeal fluid.— Ideal hydrodynamics is the result of constitutive
equations stopped at the Leading Order in the thermodynamic relations;
they describe the behaviour of a fluid that has no dissipative term. This
represent an extremely simplified model and is suitable for few applications to
real systems. The corresponding constitutive relations are fixed by Galilean
invariance, rotational invariance and conservation of entropy as:

j - =wv(e+ P) (4.6)
g=pv (4.7)
ILi; = Poy; + puiv; (4.8)

with € = ¢ + %p v? depending on the energy (density) in the rest frame of
the fluid. This equations, together with the Equation of State P(e, p) must
be coupled with the conservation equations:

dp

T V- (pv)=0 (4.9)
ov 1

Os

5tV (vs) =0 (4.11)

the first is called “continuity equation” and the second describes momentum
conservation; the third replaces the energy conservation equation, that can
be rewritten at leading order in terms of entropy conservation. The set of
first-order constitutive relations (4.6),(4.7) and (4.8) substituted inside the
conservation equations specify completely the fluid-thermodynamics; they
are named “Euler equations” and describe the evolution of a “perfect”, i.e.
non viscous fluid.

§ 4.1.2. Dissipative fluid and definition of viscosity.— Dissipative con-
tributions arise at the next order, and are called “transport coefficients”. To
the next order then, the constitutive relations become:

2
oll;; = —U(Vﬂ)j — Vjv; — g(sz‘jv V) — C 0;j (V-v), (4.13)

depending on the two viscosities: the first (or shear) n and the second (or
bulk) ¢. The energy current becomes:

]€:UZ(€+P)—|—U] (5H2]+Q2, (414)
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in which appear a contribution of the temperature gradient Q = —xVT),
mediated by the thermal conductivity x. The third relation remains simply
g = pv, and this is set by Galilean invariance, whose breaking cannot be
coupled to any observable effect. The three transport 1, ¢ and x coefficients
are constrained to be positive from the second principle of thermodynamics.
The equations of evolution including the new terms describe the hydrody-
namics of a dissipative viscous fluid; they are a system of coupled Partial
Differential Equations called “Navier-Stokes equations”.

§ 4.1.3. Transport Theory.— L. Boltzmann pioneered the studies of
non-equilibrium Statistical Mechanics being the first to study the dynamical
features of dilute-gases by means of his “Transport Equation”. The derivation
comes from the set of assumptions:

e Dilute system: The gas consists of a large number N of hard elastic
spheres occur; the system is dilute, so that only binary elastic collision
are relevant for its dynamics.

e Distribution function: at the time instant t*, a state of the gas is
represented by the distribution function f, so that:

. 1
fila, ¢")0pda = =, (4.15)
where N is the number of particles in the infinitesimal configurations-
space volume dpdgq.

e Stosszahl-ansatz: later justified by Boltzmann as a “Molecular Chaos
assumption” is the statement that at every time instant ¢, the number
of particle-pairs that are going to collide in the time interval t + dt is:

N2 ,
Efk(% ) fir(q',t) |k — prr| 0802 (4.16)

expressed in terms of the infinitesimal solid angle variation 0€2. The
label k accounts for momentum quantisation - as in the case of Fermi
liquids.

The third assumption is essentially introduced to treat collisions in a simpli-
fied and non-realistic way, as if it breaks time-reversal. Subsequent studies
from Jeans (1902) tried to justify it in the context of statistical mechanics,
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reformulating the Stosszahl-ansatz as an independent particle approximation
for the two-body distribution function:

f(pkaqat;pk’aq/at) ~ fk(Q7t) fk’(q,at)7 (417)

not overcoming anyway the problem of time-reversal symmetry breaking. For
the non relativistic fluid sketched in this section, the three energy, momentum
and stress-tensorial currents are given in components by:

0.0 = [ S e fulant) (4.19
i0.0) = [ g mons flant) (1.19)
IL(q.t) = / (S;Z) mvkve Fold, ) (4.20)

in which the label £ is relative to the single-particle energy spectrum ¢; and
v = Oe/Op; is the quasiparticle velocity. The equation of motion for the
distribution function is the Boltzmann Transport Equation:

Ofk

¥+U'ka+F‘kak:I[fk] (4.21)

where F' is the contribution for external forces and I[f] is the collision term,
that accounts for quasiparticle collisions, suddenly changing their momenta.
Thanks to the Stosszahl-ansatz, the collision term can be expressed as:

Ifw] = %/[fk(q,t)fw(d,t) = filar, ) fi (. )] e — prw| 092 (4.22)

in which the subscript f refers to the final coordinates of the outgoing par-
ticles after a collision, so that f(q)f(¢') — f(qr)f(q}). The distribution
function is determined by the local temperature, chemical potential and flow

velocities as: 1

fila,t) = Py EY (4.23)
as the usual Fermi-Dirac distribution, describing the statistic behaviour of
fermions. The Transport equation in absence of collisions is just the conti-
nuity equation (4.4) for the distribution function f; it was applied to many
systems and generalised to include quantum effects or to describe relativistic
systems. One of the most famous generalisations is briefly presented here, as
it leads to the calculation of the transport coefficients for a Normal liquid.
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§ 4.1.4. The Landau-Boltzmann approach for Fermi Liquids.— The
Boltzmann approach in this formulation was found by Landau to be unsuit-
able to describe the properties of weakly interacting quantum liquids. His
generalisation of the theory started from a fluid-dynamical analogy between a
dilute gas and a normal liquid, that lead to a more refined approach: the ba-
sics of Landau Normal Fermi liquid theory were given in Chapt. 3 [— § 3.1.2]
to elucidate how the concept of quasi-particle arises in a free system with an
adiabatic switch-on of the interaction. If the interactions met the require-
ments of Landau theory then the fluid can be described in terms of weakly
interacting quasiparticles around the Fermi surface and the hydrodynamic
variables can now be written in terms of quasiparticle distribution functions
nk(g,t) in coordinate space, substituting the particle distribution functions
fr(q,t) of Boltzmann dilute gas theory. New degrees of freedom are thus
quasiparticles, for which one can define velocity and momentum variation
as the time derivatives of 3-position ¢ and 3-momentum p coordinates. The
assumption of quasiparticle kinetic theory is that e, the single particle spec-
trum, plays the role of quasiparticle Hamiltonian; the usual quasiparticle
velocity term is now put alongside with a new force-term Fj, that is very
important in actual calculations of quantum liquid properties:

ur(¢,t) = +Vie(q,t) (4.24)
Fi(q,t) = =Vgerl(q,t); (4.25)

This aspect is later discussed in the case of the insertion of an external
potential U. Under this ansatz, the Boltzmann-Landau classical equation
can be written as:

OD1) (a0, mela. ) = 1] (4.26)
where the symbol {-,-} stands for the usual Poisson brackets of Analyti-
cal Mechanics. The right hand side is again a term taking into account
the role of quasiparticle collisions in determining the time evolution of the
quasiparticle distribution function nj. Thus, again ignoring spin degrees of
freedom, an elastic collision between two quasiparticles from the initial states
142 — 3+ 4 to the final would yield a rate of events in the system that in
general depends on some quantum collision probability W (12;34), on some
fitting Dirac delta d(¢;), 6(p;) to impose energy and momentum conservation
in a given volume V', and on the relative populations of the quasiparticle
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states n;, with i = {1,2,3,4}:

Rip 1 = %W(l?; 34) Opy+papstpa 0 (€1 + €2 — €3 — €4) manp(1 — ng) (1 — ny);

(4.27)
the collision term I[ny] is the net rate at which two-body collisions increase
the occupation of the state p;; this is given by:

I = > Rsaia — Riaaa (4.28)

2.3,4

as the difference of the collisions populating the 1,2 states and those that
depopulate them, summed over any quasiparticle momentum states 2,3, 4.
The full term becomes:

% ™ W(12: 34) 8(6)3(p) [nama(1—na)(1—n) — s (1—ng)(1—n)]: (4.29)

2,34

the quantum transition amplitude matrix is supposed symmetric. An ad-
ditive ¢ accounting for spin angular momentum conservation completes the
picture (supposing that the interactions is spin-independent). The new trans-
port equation (4.26), with collision term specified by eq. (4.29), includes two
interesting features: the first is a dependence on position and time for the
quasiparticle velocity Vy ex; the second is related to the inclusion of effective
field contributions in the force field V, €. Indeed, upon the insertion of an
external scalar potential U acting on the system, the total energy acquires a
term:

/d3q U(q,t)ng(gq,t), (4.30)

so that the quasiparticle spectrum ¢, is shifted by U. This in turn yields an
additional term when one computes the term V, ¢;:

d3p’
V=V, U+ /W For Vo 1 (4.31)

the first term is also present in the dilute gas equation (4.17), while the
second appears only in the present case and acts as a mean-field term, re-
sponsible for many of the Fermi Liquid properties.

§ 4.1.5. Linearisation and Momentum Relaxation.— In practical ap-
plications, the Landau-Boltzmann transport equation (4.26) is very hard to
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solve for analytical solutions, due to the complexity of the collision term
specified by eq. (4.29). The first solution for the shear viscosity of a low tem-
perature Normal Fermi liquid were given by A. A. Abrikosov and I. M. Kha-
latnikov by means of a variational estimate [76]; a full analytic solution was
finally devised by G. Brooker and J. Sykes [77] that could finally solve the
integral equations of Abrikosov-Khalatnikov. Before any solution is sought,
it is clever to follow the historical methods of the cited authors, linearising
the transport equation and simplifying further the collision term by means
of the “Relaxation time approximation” The details about the first task will
be skipped, as the calculation is tedious and can be found in the textbooks
cited at the beginning of the chapter. It is much more interesting to present
the physical idea, that recalls the small oscillation studies in the static part of
classical mechanics. In many applications the system is almost at equilibrium
on small scale, i.e. the distribution function differs only by an infinitesimal
amount dny from its value nf in uniform equilibrium. The transport equation
must then be linearised in dny, introducing a first-order linear deviation:

0
ong = ony — % O€g
0ek
on d3p’
S T

as the linear deviation of the distribution function from the value it would
have for a quasiparticle of energy €(q,t) in a system in equilibrium. Under
this assumption the Boltzmann-Landau linearised equation is:

06nk
ot

+ Vg - Vq 5ﬁk = Il [nk/], (433)

in which the linearised collision term is evaluated with the same prescription
in terms of a local equilibrium, and reads as:

—TLVQ S W(12: 34) 6(6)5(p) nama(1— 1) (1— 1) [By + By — By — Ba], (4.34)

with all the appearing ny, € and W have their local equilibrium values and
the ® can be defined from a prescription similar to eq. (4.32) but in the much
more complicated formalism of local equilibrium:

on

0
6714'6' = k (I)Z 4.
e =0k, (1)
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due to the generally complex relation between local equilibrium and global
equilibrium, clearly beyond the scope of this treatment (the details can be
found in [42], pag. 27).

The linearised collision term, expressing the microscopic complexity of the
system, has a full energy dependence that is anyway to hard to be treated in
a large number of practicals matters, so that often a further simplification is
introduced:

ony®

I[nk]R,T. = — - (436)

known as “Relaxation Time approximation”: the collision term does not
include anymore a complex quantum-collisional scheme of single-particle level
population, but simply describes the effects of collision as a restoration of
the equilibrium function nY from the non-equilibrium n;, on a timescale T,
independent of the particle energy.

§ 4.1.6. Viscosity of Normal Fermi liquids.— Shear Viscosity in a Nor-
mal Fermi liquid at low temperature can thus be calculated by means of the
linearised Boltzmann-Landau equation (4.33) for the quasiparticle local dis-
tribution function 7}, that in turn are inserted in eq. (4.20), valid also in
Landau scheme by making the substitution f — n; the shear stress tensor
components are defined in eq. (4.13) by its second-order dissipative expan-
sion in terms of P, p, v and obviously of the shear 1 and bulk ( viscosities.
The hypothesis here is that the system is in local equilibrium, with small
spatially varying fluid velocity v; under this assumption the term pv;v; - of
second-order in v - can be dropped in eq. (4.13), that reads:

2
I;; = Poij — n(Viv; — Vjv; — §5W’V ) — (64(V - v); (4.37)

a small deviation dny of the distribution function from global equilibrium
yields a change in the stress tensor II;;:

5[I1,,] / p o7 (4.38)
il = | 7o Pk, 0Tk :
J (27T3) pk, k‘,] k
once 0ny, is expanded in terms of the corresponding quantity for local equi-
librium 7} yields a term accounting for pressure variation, plus a term:

3

d°p e
oll;; = — /w Dk,iVk,j 5”}; g (4.39)
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Here 611;; refers to the second order dissipative contribution to the hydrody-
namical shear stress current of tensorial components II,;, while the previous
notation §|-] refers to the functional derivative of the tensor components with
respect to the small variation dng. Shear Viscosity can be computed from
this equation retaining only the 77 = xy components, i.e. assuming that v is
in the x direction and that v, = v,(y):

0y / d3p

ay = na—y = o3 PhaUk,y o7y (4.40)

oIl 2m9)

The problem is solved by integrating the linearised Landau-Boltzmann equa-
tion (4.33) for the quasiparticle local equilibrium distribution variation dnk®;
this was approximately estimated by Abrikosov and Khalatnikov with a vari-
ational approach and exactly calculated by Brooker and Sykes, whose full
result reads [77]:

-1

(1 —cosf)?sin®¢| C(N\); (4.41)

;6 Wpd [ dQ w(b, @)

T BmkET? ) 27 cos(0)2)

in which appear back the constants h and kg; C'(\) is a correction factor
for the Abrikosov-Khalatnikov form. Aside from the very complex integral,
arising from the complex-energy dependencies of the collision factor, at low
temperature the Shear Viscosity of a Normal Fermi liquid goes like n ~ 1772

§ 4.1.7. Nuclear Matter calculations.— The Shear Viscosity for Nu-
clear Matter was calculated in the framework of Brueckner Theory by U. Lom-
bardo et al. [78] simply extending the Brooker and Sykes result of eq. (4.41)
for a multicomponent system of asymmetric constituents in 3 equilibrium.
The corresponding equations are:

|
nT* = 5508 vr Wips)™ C(V) (4.42)

where pp is the density, vp = prp/m* is the Fermi velocity of the system
calculated in terms of the effective mass m* and:

2r 46 1

1 dep
w = —/ dE e ——
(p5) 2ep Jo 0o 2w /1 — E /4ep

to be evaluated in terms of the in medio cross section o(E,#), function of

o(E, 0) (4.43)

the energy in the laboratory frame and of the scattering angle in the center-
of-mass system; the upper integration limit 4ep restricts the quasi-nucleon
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Figure 4.1: Shear Viscosity of Nuclear Matter. Left: Proton and Neutron matters: com-
parison between the free result and the in medio calculation. Right: Cal-
culation for Asymmetric Nuclear matter in § equilibrium, confronted with
Symmetric Nuclear matter and Proton Matter. Taken from ref. [78]

excitations to the Fermi surface. In Brueckner theory the in-medium cross
section can be evaluated separately for two scattering channels starting from
the effective mass m* - arising from the mean field treatment of interactions
and here defining the single-particle level densities in the pre-factor - and from
the G-scattering matrix in the medium for the S wave channel, defined by
the integral eq. (3.43) in terms of the bare potential uyy. The corresponding
cross-sections for neutron-neutron and neutron proton scatterings are:

m*Z

oun(E,0) = 1o573 SSZS, G2 (0) + (—1)°G g (m — O)? (4.44)
m*2
onp(E,0) = = SSZS, |GE.5(0) . (4.45)

But, as stated, in practical matters Nuclear Matter is an asymmetric two-
component system in § equilibrium. The two given relations lead to calcula-
tions that cannot be combined to yield the viscosity in asymmetric matter,
so that a third calculation must be performed for future use in calculations:

1 2mym; 2
(. 6) = ( ) S G OF  (446)

16720* \ my, +m, sss
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containing a term that accounts for the blending of neutrons and protons by
means of their effective masses m*. The results for the discussed limits are
reported in fig. 4.1.

4.2 Shear Viscosity in Quark-Gluon Plasma

During the first years of the 1990s G. Baym, C. J. Pethick and H. Heisel-

berg spent many efforts on a model for the solution of the transport problem
in a Quark-Gluon Plasma based on the “dynamical screening” of transverse
interactions at small momenta [79-81]. The model was developed for high
temperatures, i.e. much larger T > p, than the typical quark-chemical
potential and the momentum relaxation rates were calculated by means of
a perturbative approach in which the gluon propagator is dressed with a
Debye in medio mass m%, ~ ¢*T?; when applied to the T' ~ 200 MeV situ-
ation, clearly T' ~ Aqcp and non-perturbative effects become non-negligible
as a; = 0.6, but analogously to QCD Lattice studies, the n/s ~ 0.2 ratio
is estimated to be safely within a factor 2 from experimental evidences and
more sophisticated calculations.
Later, in 1993, C. J. Pethick and H. Heiselberg extended the model to the
complementary regime 7 < pu, [82], describing two further physical situa-
tions arising in dependence of the relative values of 7" and of the dressed
gluon mass m2, = gZNq,ug /272, In conditions sketched in Chapt. 2, T < mp
so that the shear viscosity is found to be:

2 _ Mg mp'
40m a2 |73 /4 + a (T /mp) ]

in term of the constant a = I'(£)((2)(27)*?3/6 ~ 1.81 and significantly de-
viating from the n ~ T2 behaviour of Normal Fermi liquid theories (4.41).
This can be explained by the fact that the Fermi Liquid behaviour is com-
puted assuming a constant scattering cross-section: any realistic calculation
thus should deviate from this behaviour, and the present case does particu-
larly at low T.

§ 4.2.1. Dynamical Screening of Transverse Interaction.— As briefly
anticipated, the problem of calculating transport parameters in the 7" < pi4
limit is complicated from the fact that although almost no thermal gluons
are present in degenerate quark matter, there effects of dynamical screening
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Figure 4.2: Feynman diagram for quark-quark scattering including the gluon self-energy
I1,,,,, of which the leading order is just the qq bubble. Putting intermediate
states in the bubble on the energy shell gives the imaginary part of II,,, due to
absorption of the exchanged gluon by scattering on a quark (Landau damping).
[82].

are more pronounced and there are three scales T', 1, and mp.

The starting point is the Boltzmann equation (4.21) with collision term (4.29)
written for a three-component system of free, relativistic massless wu,d, s
quarks. Any quasiparticle effects of the Landau-Boltzmann approach can
be neglected. No particular colour-spin channel is relevant in calculations, so
that the probability W (12;34) is summed over final states and averaged over
the initial ones (IW). The relevant scattering process is depicted in fig. 4.2
and it yields two contributions that, in terms of the Mandelstam invariants,
can be expressed as:

4 u?+ s?
N
W(g.d) =593 (4.48)
4 w4+ 52 1242 8 s°
<W(qa Q)> - 594 ( 2 + 2 — 2_7E (449)

as two singular contributions, respectively for quarks of different flavour
(¢,q') and of the same (q,q). The screening of interactions in the plasma
is included as a polarisation insertion II,, in the gluon propagator D, : this
can be seen as a relativistic generalisation of the proper self-energy insertion
in Many Body problems. The Dyson equation for the propagator defines a
perturbative scheme:

D) = guw(w —¢*) + 11, (4.50)

in terms of the metric tensor g,, and of the exchanged momentum ¢?; the
propagator can be split into longitudinal (/) and transverse (¢) parts, accord-
ing to a method devised by H. Weldon [83]; recalling that W (q, ¢') = [ My |%
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i.e. the amplitude W is the square of the (averaged) scattering matrix M:

JeIE JLIE

My =J9D,, JI = — :
aq TRV Sy C_I2+Hl q2_w2_|_Ht

(4.51)

the polarization insertions are then evaluated by means of the Random-Phase
Approximation (RPA):
I, = m3 yu(x) (4.52)
I, = m7, x:(x) (4.53)

in which the x functions are defined in terms of the variable x = w/q:

(@) = [1-%111 (ii)] (4.54)

ilz) = l%2+ ”“"(1;”“"2) In (ifm (4.55)

The currents J{ of fig. 4.2 are evaluated to first order in the coupling g; the
spin sums are performed neglecting the magnetic moment contributions to
the currents and the colour averages are performed by means of the expec-
tation values of the Gell-Mann matrices connected with each vertex. Such
manipulations plus geometrical considerations lead to the result:

2 1 (1 — 2?)cos¢ 2
W / = / 2 = — 4 -
(W(g,q)) = (Mg [") 99 P41, @ — w41

(4.56)

in terms of * = w/q and (1 — 2%)cos¢ is the scalar product between the
transverse velocity vectors of the incoming particles. This term is actually in-
serted in the Boltzmann equation to yield transport properties, and simulates
a Quark-Gluon Plasma as a dynamically screened medium due to Landau
damping of the exchanged gluons. The RPA treatment of the polarisation
insertions yields a gluon mass term in its propagator m?% = gZNq,u?I /272, that
behaves as a characteristic scale-length of the system.

§ 4.2.2. Transport Parameters.— The transport problem of eq. (4.21),
(4.29) cannot be solved exactly with the scheme presented in § 4.1.6 because
of the singular interaction, that does not allow to decouple the integration
over angles from those over particle energies. Heiselberg and Pethick solved
a linearised Boltzmann problem in the assumption of local equilibrium both
by variational estimate and of momentum relaxation approximation. The
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two results coincide in the T < mp limit of interest here, so that the very
simple result of eq. (4.47) is recovered.

The Boltzmann equation is linearised by expanding the distribution function
for the specie i = {u,d, s}:

af? ?, OV,
O¢; y

fi = fle + (4.57)

in terms of the local equilibrium function and of the derivative of the ground
state distribution function f; this expression is the analogous of eq. (4.35) for
Normal Fermi liquids; the procedure is carried on in the same fashion as the
Landau-Boltzmann case, developed in § 4.1.5. The corresponding problem is
then solved in a variational approach, like the original Abrikosov-Khalatnikov
solution [42, 76]:

-2

1 of° s
’)7 - ( > p:c'Uy aep Wp) 2T <|qu | >

qp1p2

X fLf(L = f) (1= f)0(e) [Ty + Wy — Uy — Uy)?, (4.58)

in which the equal sign is for the exact result ¥ = ®; the complete solution
for shear viscosity is thus:

1 _
i 40m o2y,  TL(T /mp) (4.59)

in which g, is the degenerate quark chemical potential and I,(7"/mp) is the
following integral:

it = [ [ [0 -

" ' 1 B cosS®
L+ (xmp/w)xi(z) 1+ (@mp/w)*xi(x)/(1—=2?)]

that cannot be solved analiticly, but can be evaluated in the two limits 7" <

(4.60)

mp and T > mp. In the actual calculations this was solved numerically and
confronted with the relaxation time result of eq. (4.47) to test the goodness
of the approximation.
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With all reserve we advance the view that a
super-nova represents the transition of an ordi-
nary star into a neutron star, consisting mainly
of neutrons.

W. Baade and F. Zwicky - (1934)

Neutron Stars

This chapter is focused on Neutron Stars, compact astrophysical objects
whose interior is very likely to be composed by bulk strongly-interacting
matter. The first part is devoted to their general properties, as they are
understood from actual observations and measurements. The second part
contains the theoretical tools to build static stable configurations of NS start-
ing from a well-defined Equation of State of Nuclear Matter; the results are
an interesting application of Nuclear Theories and can be used to test their
properties. The last part contains a discussion about the effect of Nuclear
Matter viscosity on Neutron Star oscillations; this is again a very interesting
test of microscopic viscosity calculations and a way to apply the resulting
knowledge to observable systems. All quantities, unless differently pointed
out, are supposed to be calculated in the cgs scheme [— App. A]. General
arguments are taken by the excellent books by S. Shapiro and S. Teukolsky
[84], N. K. Glendenning [85] and from Chapt. 8 of the book by M. Baldo et
al. [47], written by 1. Bombaci.

5.1 Generalities and empirical facts

Neutron Stars are astrophysical objects composed by very dense matter

and believed to be produced in Type II Supernovae, i.e. the endpoint of stars
that possessed a mass between 8 <25 M, at the age they ignited thermonu-
clear fusion reactions in their cores or, in the stellar evolution terms, entered
the Zero Age Main Sequence in Hertzsprung-Russel Radius-Luminosity dia-
grams. The symbol M, refers to the Solar mass [— § A.2].
Typical Neutron Stars have masses of about 1.4 M and radii of the order of
10+12 Km: the matter in their interior is among the most dense in the Uni-
verse, and generally larger than the density of stable nuclei pg = 0.17 fm=3 =
2.8 10" g/cm?, the reviewed nuclear saturation point [— § 2.2.4].
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Figure 5.1: Oppenheimer-Volkoff limit calculated by means of various theoretical ap-
proaches: it is interesting to note that the inclusion of more degrees of freedom
(triangles, squares) leads to smaller values of maximum mass, if compared to
nucleonic matter calculations (circles and diamonds). Taken from ref. [86].

§ 5.1.1. Some History.— The term “Neutron Star”, coming from the
hypothesis about their composition, was coined by W. Baade and F. Zwicky
in 1934 [87], only one year after the discovery of neutrons by Sir J. Chad-
wick. In that paper the authors proposed for the first time that Neutron Stars
could come from Supernovae, a name by which themselves called a the most
bright non-periodic novae. The first theoretical calculation about Neutron-
Star structure came a few years later, when R. Tolman calculated some static
solutions of Einstein’s Field Equations for spherical fluid configurations [88]
and J. Oppenheimer and G. Volkoff, applying his results, calculated static
Neutron Star configurations sketching the matter inside them as a Fermi Gas
of non-interacting neutrons. They could estimate an upper mass limit around
0.8 Mg, not so far from the observed objects. Such a limit is today called
“Oppenheimer-Volkoff limit”, as a generalisation on neutron-degenerate com-
pact objects of the Chandrasekhar limit.

All of this studies remained theoretical investigations until 1967 when J. Bell,
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at that time Ph.D. student in Cambdridge, revealed a regularly pulsed Radio-
signal with a period of 1.377 seconds, pointing at a fixed point in the space:
the discovery of the first Radio Pulsar [89]. Later, in 1974, R. A. Hulse and
J. H. Taylor discovered the PSR B1913+16 Pulsar binary system; they could
accurately measure a period of 59 ms for B1913, and suggested that the sys-
tem was losing energy due to Gravitational Wave emission, a task for which
they received the Nobel Prize for Physics in 1993.

Since then a lot of Pulsars were discovered; the last striking observation
was made in 2010 by P. B. Demorest et al. and published on Nature [90];
they could measure, with a technique called “Shapiro Delay”, the mass of
the binary millisecond Pulsar J1614-2230, finding a very precise value of
1.97 £ 0.04 M. The discovery gave new interest to all the theoretical de-
terminations of the Oppenheimer-Volkoff limit that predicted a value higher
than ~ 1.6 Mg; the situation is sketched in fig. 5.1.

§ 5.1.2. Formation.— The intuition by Baade and Zwicky turned out
to be correct: Neutron Stars indeed are originated in Supernovae explo-
sions. Such phenomena are categorised into two categories by the Astro-
physicists, that differentiate on the resolvable light spectrum that they send:
the Type II show the typical Hydrogen lines, while the Type II don’t. Stars
of both classes end up their days with a spectacular explosion that enriches
the surrounding space of gas and heavy elements that can in turn be stage
for second-generation stars formation, but only Type II Supernovae leave
a Neutron Star among their remnants. Further on, a large parte of Type
I Supernovae, called Type la, has its origins in binary systems in which a
White Dwarf absorbs mass from its companion, until its mass overcomes the
Chandrasekhar Limit of 1.4 M,. Type II supernovae are instead the evolu-
tive end-product of single stars that could ignite in their core all the fusion
reactions up to °°Fe, thanks to their high ZAMS initial mass. The Iron core
is fusion-inert, as °°Fe is the last producible by fusion, as it has the highest
value of Binding Energy per Nucleon among the observed nuclei: by con-
trast fusion reactions continue in the upper shell of the star, until the lack
of radiation pressure cannot sustain anymore the upper layers against falling
on the centre, and the system collapses creating a shockwave, with subse-
quent photo-disintegration reactions that leave only neutrons and a smaller
percentage of protons and electrons, composing the hot Neutron Star.

The new-born Neutron Star, whose temperature is estimated to be around
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30 + 40 MeV, suddenly cools down in timescales of the order of 10 seconds,
by suddenly becoming transparent to highly energetic neutrino emissions,
that transfer part of their energy to the superficial layers of the remnant
star, casting them in the space: this is a qualitative discussion to explain
how a star with 15 M can yield a Neutron Star of a tenth of its initial
mass. The observations describe such picture as a very luminous nebula of
fast-escaping material, with a cold Pulsar lying at its centre, rapidly rotating
due to pre-collapse angular momentum conservation.

§ 5.1.3. Phenomenology.— The actual knowledge about compact stars
has been built upon the observations made of the over 1500 Pulsars discovered
and catalogued in our galaxy. Their characteristics are profoundly different
from common stars, yielding phenomena like 1 second-period rotation, Radio-
wave emissions and high magnetisation. A comprehensive list is:

e Rotation and emissions: the biggest part of the known objects is
catalogued as a Radio Pulsar - name coined on the crasis Pulsating
Star - from the periodic Radio emission on a timespan of about 1 s;
the first observation referred to this phenomenon as “Lighthouse effect”
and it is believed that its origin lies in the strong magnetic fields that
embeds in the surrounding space. But about 100 objects have much
shorter periods, of the order of 1072 s, like the discussed Hulse-Taylor
Pulsar [89]. Two-hundred additional stars emit radiation up to the X-
ray and gamma wavelengths in bursts: this happens in binary systems
in which one the Neutron Star continuously draws hydrogen from the
companion star, that deposits in 1 meter shells on its surface, whose
sudden compression due to the strong gravitational field ignites very
rapid fusion reactions, that end up in flashes. This phenomenon is
addressed with the name “X-Ray Burst”. Systematic observations of
certain objects led to the discovery that the highly regular spinning
periods are not constant on galactic-life timescales: they indeed slowly
decrease.

e Magnetisation: Neutron Stars generate very intense Magnetic Fields:
on their surface these can vary in the range 10° = 10*® Gauss and they
are responsible for the Synchrotron radiation emission.

e Temperature: Neutron Stars are rated as “cold objects”, even if the
temperature in their first stages interior is believed to reach the 101 K,
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decreasing of one order of magnitude within a few days due to neutrino
emission, later to approach lower values of 10° = 10° K in elder objects.
The reason has already been discussed when talking of the 7" — 0 limit
in Nuclear Matter [— § 2.1.2]: nucleonic matter at such temperatures
behaves like a liquid as Temperatures are of the order of 1 + 10 MeV,
and the Fermi Energies of Neutron Stars approach the value of 50 MeV.
Matter is thus degenerate, i.e. the constituents occupy uniformly the
single particle energy levels below the Fermi Surface, in accord with
the Pauli Principle.

§ 5.1.4. Internal structure.— The internal structure of compact ob-
jects is hardly investigable and therefore explained on theoretical grounds
in a model-dependent way. The success of the Oppenheimer-Volkoff scheme
makes the assumption of being composed by neutron matter very reasonable,
and further realistic investigations can help in giving a comprehensive sys-
tematic description. On general grounds, it is possible to infer that density
grows when going towards the centre of the star, that must be formed by
layers of the most thermodynamically favoured phase at every step. Here a
tentative slice of NS matter is sketched:

e Surface (psop, = 7.9g/cm® < p < 10°g/cm?): below a 1 cm thick
atmosphere, compressed by gravity, lies the most outward layer, about
~ 0.3 Km thick, composed by a lattice of **Fe nuclides immersed in
a degenerate electron gas, remnant of the last thermonuclear reaction-
product of the progenitor star.

e Outer Crust (10°g/cm?® < p < p¥P = 4.3 . 10" g/cm?): this is a layer
of moderate thickness composed by solid-state nuclear matter, in a lat-
tice similar to the previous but this times with increasing number of
neutrons per ion (A > 56) in [-equilibrium with the electron degen-
erate gas. This is due to the highly energetically favoured process of
electronic capture e”+p — n+v,, that moves the equilibrium towards
neutron enrichment.

e Inner Crust (pi"P < p < po): this layer begins when the neutron drip
density is surpassed. From this point on the nuclear force saturation
cannot anymore bind neutrons to the highly n-rich nucles of the lattice,
with the appearance of a free-unbound neutron gas. Highly exotic
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species here appear, that could not resist to (57) decay in normal
conditions: they are kept bound by the Pauli Principle.

e Outer Core (py < p < pexo =~ 2.5pp): the largest part of the star
mass is here concentrated. Trespassing the nuclear saturation points
nucleons are the dominating degrees of freedom and no nuclide can
anymore survive; thus matter is isospin asymmetric, with a lepton-bath
(electrons and possibly also muons) to maintain local charge neutrality
and [-stability. Some studies point out that in such conditions neutrons
should be in superfluid, protons in superconducting phases.

e Inner Core (p > pexo,): more exotic degrees of freedom should appear,
including pion/kaon condensates or stable A, ¥ and = hyperons; more
likely, from the discussion carried on in Chapt. 1, after a certain density
the relevant degrees of freedom should be coloured quarks and gluons,
i.e. hadrons should undergo a first order QCD phase transition to de-
confined matter, with restoring of Chiral Symmetry.

§ 5.1.5. Mass measurement systematics.— What are the measurable
observables connected to the study of Neutron Stars? The answer to this
question naturally fits in the scheme of theoretical calculations as empirical
constraints that a model should reproduce in order to describe compact ob-
jects at a satisfactorily degree of accuracy. Despite being very exotic objects,
their relative abundance puts mass on top of the list of the most interesting
parameters, followed by the rotation frequency, temperature, radius and par-
ticle/radiation emissions; they are usually measured indirectly. For example
Pulsar temperatures are estimated from blackbody fits of X-Ray emission
spectra (found to be a fair approximation); in principle, neutrinos emitted
during the cooling phase can be detected - so far, only 20 neutrinos coming
from SN1987 were revealed, though these weren’t originated by any Neutron
Star phenomenon - but this is subdued to Type II SN explosions, that are
not so frequent in the surrounding Universe. Among the stated observable
the most accessible - thus the most precisely determined - is the rotation
frequency.

The most successful theoretical effort is the construction of static Neutron
Stars configurations. The predictions are often put in Mass-Radius diagrams
such as the one reported in fig. 5.2, showing the importance of the corre-
sponding measurements in the process of judging the quality of an Equation
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Figure 5.2: Non-rotating mass versus physical radius diagram for several Equation of State
models: blue, pure nucleons; pink, nucleons plus exotic matter; green, strange
quark matter. The horizontal bands show the observational constraint from
different millisecond pulsars. Any EOS line that does not intersect the J1614-
2230 band is ruled out by this measurement. In particular, most EOS curves
involving exotic matter, such as kaon condensates or hyperons, tend to pre-
dict maximum masses well below 2 Mg and are therefore ruled out. Other
theoretical constraints are displayed as grey-scale shaded areas. Taken from
ref. [90].

of State model. It is disappointing that no accurate measurement of radii ex-
ist, due to the huge difficulty in determining a length of 10 Km at a distance
of 15 orders of magnitude longer. Theoretically inferred estimates exist; an
example is given by a work by J. van Paradijs [91], in which the radius of 10
X-Ray bursters is calculated assuming that they radiate as blackbodies. The
result is in average 8.5 Km, but strongly error-affected due to the simplifica-
tions introduced in the procedure.

The mass is instead measured for about 100 objects on the more than 1500
known. The first systematic work was done by S. Thorsett and D. Chakra-
barty [92] in 1999; they catalogued and reviewed the measurement of 50
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objects, concluding that all the measurements were consistent with a remark-
ably narrow Gaussian mass distribution, showing normal mass M = 1.35 +
0.04 M. Later on their work was reprised by J. Lattimer and M. Prakash
[93], that built a larger systematics including objects in Optics/X-ray, double
Neutron Stars and White Dwarf/NS binary systems, calculating new aver-
ages and including large-mass candidates whose mass measurements were
still propositions. They recently took up the subject again, updating with
new measurements - like the very accurate result of 1.97 M, for PSR J1614-
2230 [90] - and with high-mass candidates - like the estimated 2.4 M, of the
so-called “Black Widow Pulsar” B1957+20. Their work [86] is reported in
fig. 5.3.

§ 5.1.6. Basics of Mass measurements.— The empirical determination
of Neutron Star Mass is often based on the analysis of the motion of objects
in binary systems, that are indeed very common environments. The method
is based on the possibility to measure with high accuracy five Keplerian
parameters: the binary system revolution period P, the projection of the
major semi-axis of the Pulsar orbit on the view line z = q;sin(i/c), the
orbital eccentricity e and finally time and longitude of the periastron, T and
wp. These parameters appear in the so-called “mass function”:

f= (7712]\5471;12)3 = n32? (%@) Mg (5.1)

in which M = m; 4+ ms is the total mass of the system, expressed in Solar
Masses units My and T, = (GMy)/c® = 4.925-107% is a constant. Five
more Post-Keplerian parameters come from General Relativity; the system is
solved for the two single-components mass when eq. (5.1) is known together
with any two of the PK parameters. One of the systematic error sources
lies in the relative motion of the Solar System with respect to the Binary
System, that is in general ignored. Other, more sophisticated methods can
be devised when this simple scheme is not applicable. P. B. Demorest et al.
[90] could measure with very high precision the mass of the binary millisecond
Pulsar J1614-2230 by means of a general-relativistic increase in light travel
time through the curved space-time near a massive body, known as “Shapiro
delay”. This method turn out to be very fruitful for highly inclined (nearly
edge-on) binary millisecond radio pulsar systems.
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Figure 5.3: Neutron Star mass systematics by J. M. Lattimer and M. Prakash for vari-
ous kinds of binary systems; vertical dashed line are the mean values for the
different bins. Updated 2010. Taken from ref. [86].

5.2 Static properties: Mass-Radius configurations

Reprising the idea of R. Tolman, J. Oppenheimer and G. Volkoff, Neu-
tron Stars macroscopic properties such as Radius and Mass can be put in
correspondence with the thermodynamic - thus static - properties of the
matter that composes them, i.e. strongly interacting matter, that is made of
- depending on the total baryon density pp - nucleons or quark and gluons
degrees of freedom. Just as the Equation of State requires a microscopical de-
scription of the interaction among its constituents, to be sketched by means
of some Many-Body approach, in the presented task it is Hydrodynamics,
either Newtonian or Relativistic, that links the bulk properties of a nucle-
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onic fluid, to hydrostatic stable configurations. The important discovery in
this field is that strongly interacting matter has a strong repulsive character;
what makes Neutron Stars bound is thus Gravitational Interaction.

The term static, often used throughout this thesis, recurs to indicate all those
situation in which the total energy of the system and other integrals of the
stated differential problems, do not depend explicitly on time. But aside
from mathematics, the problem can be thought from the perspective of a
ooupoviov that stops time and interactions, aggregating particles in a “cor-
rect”, “natural” way, so that the corresponding configuration, back in time,
does not lose any of its property.

The method assumes that Neutron Stars are cold, non-rotational sferic, and
non-magnetic objects. Their phenomenology, described in § 5.1.3, seems to
contradict this picture for the second and third assumptions; rotation can
be taken in account by means of a separated equations, here dropped due to
non-centrality of the procedure in the scheme of the work outlined here; the
last hypothesis can be relaxed observing that the strong magnetic fields have
mainly effect on the external crust layers.

§ 5.2.1. Newtonian structure.— A small fluid element of volume dV =
Adr, surface A and height dr in spherical coordinates is subjected to the
gravitational attraction of the lower layers, thus experiencing a pressure that
grows with decreasing distance from the centre r. The set of differential
equations to be solved for the equilibrium configurations of a given fluid in
classical Newtonian mechanics is:

dp _ Gp(r)M(r) Ge(r)M(r)

= - — 2
dr 72 c2r? (5:2)
dm ) 4rrie(r)

in which appears the Universal Gravitational constant G = 6.673-10~® dine-cm? /g?
in cgs units; p(r) is the density of mass closed at distance r from the centre

and €(r) = p(r)c? is its corresponding energy density. The function M(r)
represents thus the Total Gravitational Mass closed within a sphere of radius

r; the total star mass is given then by:

M(R) =4nm /ORd'r’ r? p(r) = 4w /ORdr r?e(r)/c? (5.4)

where R represent the final star Radius. The label “Gravitational”, when
accosted to the mass, is used to distinguish it from the “baryonic” mass,
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that is the total mass due to the nucleons, in excess of the binding energy per
nucleon calculated from the theoretical approaches of Chapt. 2. The system
given by egs. 5.2,5.3 is made by two first order differential equations in p(r)
and M (r), to be integrated in the [0, R] interval with boundary conditions:

0, defining R, the star radius (5.5)
0, trivially. (5.6)
The structure equations are to be integrated parametrising p. = p(R), i.e.
the central pressure reached in the star, depending on the central density p..
The static configurations are calculated by trying different values for p(R),
on which both the total mass M and pressure p depend. Every value thus
yields a different star model, whose internal characteristics are univocally
determined. These equations are commonly used for stellar structure calcu-
lations; they are unsuitable for Compact Stars estimates, as in such objects
the General Relativity effects become relevant and non-negligible.

§ 5.2.2. Relativistic Tolman-Oppenheimer-Volkoff equations.— In-
deed, the Newtonian equations lose their validity when the star mass is high
enough to “bend” the spacetime; a measure of this event conditions can be
found confronting the Schwarzschild radius RY and the star radius R: the
relativistic corrections are unavoidable when R°/R ~ 1. A typical star like
our sun has R° ~ 107%; for a White Dwarf it grows to 10* and approaches
the unity in a typical Neutron Star. The first two classes of objects are then
described in terms of Newtonian structure equations, while compact objects
require the use of a new set of equations, to be presented here.

In the same assumptions of the previous case, for which a small fluid element
experiences a hydrostatic equilibrium between the gravitational force and the
layer-pressure, the Einstein Field-Equations assume the form:

dp  Gpl(r)M(r) l - p(r))] ll . 47?7‘329(7“)] [1 B LM(T)] B (5.7)

dr 72 Ap(r c2r

2 M(r)
dM

P 472 p(r) (5.8)

generally known in literature as “Tolman Oppenheimer Volkoff equations”
(TOV); eq. (5.8) conserved the same form of eq. (5.3) of the Newtonian
case. In the first equation three factors appear: the first two constitute
the General Relativity corrections of the order v?/c?; the third represent a
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correction related to Schwarzschild radius. All the considerations about the
boundary conditions and integrability of the Newtonian set can be applied
also in this case.

A very important remark, left to be discussed in this section, is the following:
the TOV equations can be soluted provided a full punctual knowledge of the
relation p(r) = p[pp(r)] between the pressure and baryon density; in other
terms, the stellar structure depends on the Equation of State for the matter
that composes it. A bijective relation between NS structure and Nuclear
Matter EoS arises in the problem, in which constraints on one side lead to
knowledge on the other. The solutions yield a certain set of Mass-Radius
static configurations that can be drawn in a diagram similar to fig. 5.2; such
a curve must respect the hydrodynamic stability condition:

dM
o >0 (5.9)

by means of which one can individuate its maximum: it is the so-called

“Oppenheimer-Volkoft” upper limit for the Neutron Star mass, and expresses
the maximum degeneracy pressure of that interacting nucleon matter can
support in the competition with gravity in a particular Many-Body scheme
to sketch the interactions. This can be confronted with the ones obtained by
different approaches in fig. 5.1 and with the systematics of mass of fig. 5.3 to
see if it fits the known constraints.

5.3 Dynamical phenomena: Oscillation Modes

The interior of Neutron Stars can also be studied from a dynamical point
of view. Compact objects are made for their quasi-totality by strongly in-
teracting matter in liquid state, and are thus subject to deformations. Their
supra-nuclear density, and the average-built asteroid-size make them very
massive: as seen in the previous section, they are bound by Gravity. Gen-
eral Relativity predicts the emission of tensorial Gravitational Waves (GW)
for mass distributions of interacting matter with a non-vanishing quadrupole
moment, i.e. a measure of the deviation from the spherical shape. The detec-
tion of GW emission from Neutron Stars can help to constrain the presence
of a Quark-Gluon Plasma in their interior, as the properties of the oscillation
are sensitive to the Equation of State and to the relevant degrees of freedom
at a given phase. The phenomenon here presented is a candidate for observa-
tions at the Laser Interferometer Gravitational-Wave Observatory (LIGO),
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built in 2002 in the U.S. from the joint efforts of Caltech and MIT.

§ 5.3.1. Brief Classification of Oscillation Modes.— A very complete

review of the Oscillating Modes of a Neutron Stars in comparison with Black-
Hole Modes can be found in the work of K. Kokkotas and B. Schmidt [94].
The first distinction individuates toroidal and spherical modes, with respect
to the direction of the displacement along the radial direction of the star: the
first have perpendicular displacements, the latter parallel. Spherical modes
are the most experimentally accessible and also the most interesting from
the perspective of GW radiation emission; they can be further divided into
radial or non-radial modes, depending on whether they preserve or not the
shape of stars in the oscillations.
The study of the interior of normal stars from Helioseismology lead to the
discovery of three main modes of oscillations inside our Sun, that have typical
periods of a few minutes and can be found, with much shorter periods, in
Neutron Stars as well. These are:

e Pressure p-modes: they are infinite in number and can be both ra-
dial and non-radial. They are driven by mechanical perturbations and
powered by internal pressure fluctuations, depend on the local speed of
sound of the stars, so they can be seen as generalised “acoustic modes”.

e Gravity g-modes: they appear from the tendency of the gravitational
interaction to destroy matter inhomogeneities on equipotential surface.
They happen in the interiors of stars with a solid crust and have grav-
itational buoyancy as restoring force.

e Fundamental f-modes: they are stable g-modes that exist only for
non-radial perturbations, constrained on the star surface. Their restor-
ing force is not gravity, but the surface tension, like small perturbations
on a pond surface. The frequency of such modes depends on the mean
density of the star, but is not particularly sensible to the details of the
interaction.

A fourth mode can exist only in Neutron Stars, and has a central role in the
study of the instabilities driven by GW emission:

e Rotational r-modes: they appear in rotating stars where the Coriolis
force acts as inertial-restoring force along the surface. They are con-
nected with liquid matter viscosity and for orbital number [ > 2 are
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generically unstable to the emission of gravitational radiation. The r-
bR A

modes are commonly called also “rotation dominated modes”, “inertial
modes” or “Rossby waves” in literature.

§ 5.3.2. Gravitational Radiation instability.— In the third work of a se-

ries about General Relativity stellar models properties, K. S. Thorne pointed
out that non-radial pulsations of Neutron Stars can couple to Gravitational
Wave emission [95], and that such phenomenon can carry away energy and
angular momentum from the spinning systems. In non-rotating stars the
emission is found to be dissipative, so that it damps the star oscillations.
But S. Chandrasekhar in 1970 noted that in rotating objects the picture can
be quite different, with the Gravitational Wave emission feeding certain os-
cillation modes, whose amplitude can grow to originate instabilities of the
system [96]. This Gravitational Radiation-driven instability was first stud-
ied for the f-modes of rotating stars, and it was found that every rotating
perfect fluid star is - according to General Relativity - unstable; this process
can be not-detectable at all, as in real stars, the viscosity of liquid matter
can easily damp any GW-induced pulsation, so that the consequent emission
is suppressed.
The investigation field gained new insight from the works of N. Andersson
[97], J. Friedman and S. Morsink [98], that showed that all the r-modes are
driven unstable by Gravitational Radiation in all rotating perfect fluid stars.
Later, phenomenological calculations by L. Lindblom et al. [99], confirmed
the picture and predicted that such an instability is strong enough to over-
come most of the common internal dissipation processes, due to shear and
bulk viscosities of matter, even in intermediate-speed rotating stars.

§ 5.3.3. Damping timescales of r-modes.— Observed Neutron Stars
are stable and resist the cooling era: this suggests that the Gravitational Ra-
diation instability mechanism must be damped by some phenomenon inside
them. The origin - according to calculations - may be attributed to the vis-
cosity of a strongly-interacting liquid, in general dependent on the Equation
of State model. The mechanism of viscous damping Neutron Stars oscilla-
tions is described by means of Newtonian fluid dynamics; here it is sketched
following the treatment of L. Lindblom and C. Cutler [100].

The idea here is to calculate, by means of Newtonian Relativistic Hydro-
dynamics for a viscous incompressible fluid, the dissipation time-scales of
the r-modes, dependent on the viscosity and temperature of the star, and
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to confront them with the typical timescales of the Gravitational Radiation
instability, estimated to be dependent only on the rotation frequencies of the
compact objects, and generally lying in the range 10 < 100 s.

The Lagrangian displacement ¢ is defined as the relative displacement of
a fluid element in two flows starting from the same space-time point; for
non-radial oscillations of matter inside a Newtonian star it is expressed as a
covariant four-vector:

2 l
£, = # et VGK%) Y;L] , (5.10)

in terms of the spherical harmonics Y, with € being a small dimensionless
parameter, R the total radius of the star and w the frequency of the mode.
Such displacement gives rise to a contravariant-vector velocity perturbation:

v = 1wl (5.11)

The kinetic energy associated to the oscillations is in Newtonian limit simply
given by:
1
Ex = 5 /6@25v“pd3:c (5.12)

in which the usual Einstein convention of summation over repeated indices is
implicitly used in the calculation of the dv? scalar product. The oscillations
are supposed to be harmonic: the potential and kinetic contributions can
be simply be considered of the same order of magnitude, so that the total
Energy is simply E = 2Ek; the integral in eq. (5.12) can be quickly evaluated
for a rough estimate by means of the assumption:

3M
47 R3

p=p (5.13)
of constant density for the Neutron Star; the Energy of the mode is then
simply evaluated as:

E=1"pu*¢R. (5.14)

The total energy E in general must be evaluated by means of the full integra-
tion of eq. (5.12), provided that the Mass M, Radius R and density profile
p(r) of the Neutron Star are known. The equation that defines the timescale
7 depends on such quantity:

de  2F

* ab 2 K a * 3
P . /(27} dou 00" + C|00]" + T V0T VT ) d’z  (5.15)
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where 7,  and & are the first, second viscosities and the thermal conductivity,
so that the corresponding three terms account for their separate contribu-
tions; T is the temperature of the star; do® and 60 are the shear tensor
and expansion of the perturbed fluid motion. In a Newtonian scheme only
the term due to shear viscosity survives, so that the theory is suitable for
calculations related to this variable.

The shear tensor of perturbed fluid motion is related to the Lagrangian dis-
placement of eq. (5.10) as:

000 = 1wV o&p; (5.16)

again, assuming a constant shear viscosity n = 17 = 1n(p, Teore), the integral
in eq. (5.15) is immediately evaluated, yielding the approximated estimate:

(] = / 20 607,00™ B = 2711 — 1)(20 + 1) 2ER. (5.17)

Under this simplification the timescale can be obtained by eq. (5.15) from
the very simple relation:
1 (=12 +1)n

n

Obviously, a much better estimate can be given knowing the Shear Viscosity
n for the strongly interacting liquid at every density, thus radial distance r
from the centre. This will be the input for calculations and it is the expres-
sion containing effects from a phase transition to quark matter, evaluated
in Chapt. 4. The corresponding 7 can still be calculated from eq. (5.15),
provided that the integrals in both E and I[n] are fully solved. A discussion
about the change of its units can be found in [— App. A].
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189 - Er ist ein Denker: das heisst, er versteht
sich darauf, die Dinge einfacher zu nehmen, als
sie sind.

F. W. Nietzsche - (1882)

Results

The results displayed in this chapter are mainly based on the calculations
of Shear Viscosity performed in year 2011 in collaboration with Prof. U. Lom-
bardo, Dr. V. Greco, Dr. S. Plumari and A. B. Santra, in part written in an
article submitted to Phys. Rev. D. They are part of a larger scheme that
should continue pursuing microscopic Shear Viscosity calculations for Quark
Matter, this time sketched by the Nambu-Jona Lasinio effective model of
QCD.

6.1 Strongly Interacting Matter at Equilibrium

The static properties of Nuclear Matter were presented in Chapt. 2; their
complete knowledge is obtained determining the correspondent Equation of
State: in this work this was done with the Brueckner-Hartree-Fock method
presented in Chapt. 3. Quark Matter was described as a Free Gas of Fermions
in the MIT Bag Model scheme of § 3.3.1. The two approaches were combined
to yield an Equation of State including a phase transition in the Glendenning
scheme.

§ 6.1.1. Equations of State.— The starting point is a system of n, p
and e~ in [-equilibrium and local charge neutrality. The calculations were
performed following Refs. [69, 101], that provided the Binding Energy per
Nucleon for pure Neutron Matter (I = 1, maximum asymmetry) and of
Symmetric Matter (I = 0) at given, parametrized p}; by means of the quasi-
free gas relation:

B 3 k. 1

AWE) =55, 5,

Re Z (kK'|Gle(k) + e(K'); pp]|kk) 4 (6.1)

in terms of the Brueckner G-scattering matrix in medio, defined in the BBG
equation (3.42) starting from the two-body potential vyy in the vacuum.

109



CHAPTER 6. RESULTS

400 ———r
" [— BHF

L[ — MIT (B"*=180 MeV)
300 — MIT (B"*=200 MeV)

p (MeV/fm’)
(]
(@)
(e}
|

100

Figure 6.1: Equation of State for Hadronic and Quark Matter (for two values of the Bag
Constant B). The dashed lines are obtained with the Glendenning procedure
for the First Order phase transition of the second kind.

For the latter, the Bonn B realistic potential was used [102]; the cited works
employed a consistent scheme for the external parameters of the Many Body
theory, i.e. the bare potential and effective three-body forces parameters,
yielding a particularly satisfactory result for the saturation point of Nuclear
Matter and obtaining a high level of compatibility with the Relativistic Dirac-
BruecknerHF calculations.

The equation of state was constructed in steps with a simple numerical code,
evaluating the Symmetry Energy from the difference of the given quantities,
then solving for the asymmetry parameter I the proton-fraction equation
(2.14) and finally plugging them all in the expression for the total Binding
Energy per Nucleon. The obtained curve is reported as Plpp] in fig. 6.1; it
can be catalogued as a super-stiff Equation of State. The Equation of State
at very low densities confrontable with psop, is devised from the works of
J. Negele and D. Vautherin, to obtain a realistic description of the Neutron
Star crust [9].

Quark Matter was sketched in this work as a free gas of massless u,d, s
quarks in the chiral limit; the extreme choice was dictated by the later use in
viscosity calculations: the Heiselberg-Pethick approach was devised in this
limit. The Equation of State is straightforwardly calculated by means of a
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0,01

o

Figure 6.2: Composition of Strongly Interacting Matter with a First-Order phase tran-
sition; in the pure Quark Phase, with B'/* = 200 MeV, the electrons are
suppressed: this is due to the exact SUy(3) (chiral) symmetry employed in the
calculations.

simple numeric code; two values BY/* = {180,200} MeV of the Bag Constant
were chosen; the results are reported in the coloured solid lines of fig. 6.1.
The second value was kept in what follows, as the first - once put in the
Glendenning scheme - yields highly unphysical results, setting a QGP phase
transition immediately after the Nuclear Saturation point py = 0.17 fm 3.

§ 6.1.2. First Order phase transition.— The calculations for both the
two phases were performed at 7" = 0: it can be proved - also operatively, by
means of actual evaluations - that the equilibrium thermodynamics evaluated
in this limit is valid up to temperatures of T ~ 5 MeV<K er ~ 100 MeV,
still very low with respect to the typical Fermi Energies of the considered
systems. The phase transition among the two phases is in this work imposed
in this limit, under the assumption that it is of First Order and Second Kind,
as proposed by Glendenning [— § 2.3.1]. The evaluation was done by means
of a Fortran code that blends the two phases in the context of the correct
Gibbs conditions with Global Charge conservation for the Mixed Phase; the
results are the dashed curves of fig. 6.1. The transition sets in at p5'>" ~ 0.2
fm= and pEQZO ~ 0.38 fm~3 for the two Bag Constant choices: very early in
the first case, that is therefore discarded from now on (the first Hybrid Star
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configurations appear at 0.4 Mg!); the second case is quite standard for a
realistic choice of the Bag Constant and is typical of phenomenological quark
models.

It is very interesting to note the composition of the Strongly Interacting
Matter at various densities for the model considered: at low densities, around
saturation and before the phase transition sets in, the picture is dominated by
neutrons, with an equal fraction of protons and electrons to satisfy neutrality
conditions. When the transition begins strange s quarks begin to appear in
the composition of matter and this changes equilibria, initially favouring the
growth of proton concentration up to the 25% and the quick suppression of
electrons. When the transition ends, pure quark matter is degenerate in its
composition: the three chemical potentials are equal, due to the exact chiral
SU(3) limit for the quark bare masses.

6.2 Transport properties of the QCD liquid

It is important to remark that the transport properties of the two phases
were calculated in a low-temperature scheme with fitting quasiparticle-approaches,
while the corresponding static-input quantities - like the G-Matrix, were cal-
culated in the T' = 0 exact limit. Such a procedure, that might seem inconsis-
tent, was partly already justified. To strengthen the point, however, it must
be noted that the low-temperature n ~ T2 behaviour of a Normal Fermi
liquid essentially descends from the action of the Pauli Blocking, so that the
feeble contribution of the Equations of State can be totally neglected.

§ 6.2.1. Shear Viscosity in the two phases.— Three temperatures were

chosen to evaluate the Shear Viscosity of the two phases: T'= {107°,107%, 1}
MeV, even if essentially only the two extremes were kept in actual calcula-
tions; the results are displayed in fig. 6.3. This is closely related to the
study of the r—mode oscillations damping in Neutron Stars and is discussed
in the next section. Hadronic Viscosity is always larger than the corre-
sponding Quark-Matter calculation This is accounted for the different low-
temperature behaviours: exact n ~ T2 Fermi liquid for the first, realistic
screened 1 ~ T~%/3 liquid the latter.
The calculation for quarks is worth a little more insight. Two things must be
noted: (i) the goodness of the relaxation momentum approximation against
the variational estimate given from the linearised equation and (ii) what
choice of a, suits best the calculations.
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Figure 6.3: Shear Viscosity of the various phases at T =1 MeV and T = 10~® MeV. The
grey squares are the results of the calculation performed in ref. [78], on which
a fit was performed (black solid line); The coloured dashed lines correspond
to the calculations for quarks performed at different values of . The grey
short-dashed line is the result for the mixed phase.

e Scale-Hierarchy: the three scale parameters for the finite p regime in
the present conditions fulfil the inequality 7" << mp ~ p,. Thus, the
calculations of Shear Viscosity can be performed by means of the much
easier momentum-relaxation approximation eq. (4.47); the full integral
from the variational estimate of eq. (4.59) was anyway solved by means
of a complex numerical algorithm, yielding results well within the 1%.

e Coupling constant: the choice of the oy value to be used in the cal-
culation was a tricky problem to deal with. Strictly speaking, no per-
turbative approach has any sense at finite p so far, due to the non-
perturbative regime of QCD. Nevertheless here the chemical potential
(1t is the relevant energy scale: imagining to employ this assumption for
the evaluation of ay in eq. (1.22), one can conclude that with typical
fg ~ 600 MeV ~ 3 Agep non perturbative effects begin to be non-
negligible and the predictions may be not reliable; but in Lattice QCD,
for ' ~ 200 MeV and p — 0, good predictions can be made for the 7/s
ratio and this remains valid also naively using perturbative schemes
with ag ~ 0.6: thus, taking a fiducial oy, = 0.5, the predictions can be

113



CHAPTER 6. RESULTS

considered accurate within a factor of 2 also in the present case. On
absolute grounds this can be a risky procedure; the aim of this work is
to give an estimate for Astrophysical later use, so that this degree of
approximation can be considered satisfactory.

The coloured curves for 7' = 1 MeV reported in fig. 6.3, are obtained with
as = {0.5,0.8} (red, blue curve) and with a running approach between the
two, calculated by means of:

_ 7
o;t = In(42/Mop) (6.2)

(shown as the green curve), and all the three seem to support this view,
especially from the point of view of the further applications.

§ 6.2.2. Total Viscosity.— In absence for any lead on how the onset of
a Mixed-Phase in Strongly Interacting matter alters the known behaviour of
the two separated phases, an ansatz was deliberately formulated to overcome
the problem. The total viscosity in this work is just the y-meshed sum of
the viscosities of the two phases:

nna(ps),ne(pe)l = (1 — x)nu(ps) + x1q(rq); (6.3)

such an assumption has no intuitive microscopic origin and is therefore
mainly a method to investigate the properties of a mixed phase without
any Analytical pathology in the corresponding functions. The results are
shown in the grey short-dashed curves of fig. 6.3.

6.3 Astrophysical Applications

The Equation of State is the input of the Relativistic Hydrodynamical
structure equation set known as “Tolman Oppenheimer Volkoft” equations,
through which static stable Neutron Star configurations can be calculated.
One finds that Strongly Interacting matter is too repulsive to be self-bound
above the saturation point, but when a macroscopic drop is formed, Gravity
succeeds in binding it. Neutron Stars can be thus seen as giant nuclei, with
A ~ 10°%, bound by the gravitational interaction. But also non equilibrium
properties can be studied, by means of the Oscillation Modes discussed in
Chapt. 5: some of them, like the rotational r-modes, are sensitive to the
features of the Equation of State.
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Figure 6.4: Results of the TOV Equations integration for the Hadron and Hybrid Phase
Equations of State. Left: Mass-Radius panel of the static stable configura-

tions. Right: Parametrized central densities vs Mass for the calculated Neu-
tron/Hybrid Stars.

§ 6.3.1. Static Configurations and Oppenheimer Volkoff limit.— The
TOV system integration is performed parametrizing the unknown central
density p. for a certain number of desired configurations, that works as input
for a Runge-Kutta algorithm stopped at fourth order. The Neutron Star
crust is simulated attaching smoothly a suitable realistic Equation of State
to the microscopic calculations; in the present work the crust was modeled
in accord with a work by J. Negele and D. Vautherin [9]. The results are
then put in a Mass-Radius plot such as the left panel of fig. 6.4 and then
trimming the configuration branch not satisfying the Hydrostatic condition
dM /dp; the input central densities are shown in the right panel. A number
of 10 hadronic configurations (black diamonds) and of 5 more hybrid stars
(red circles) were selected for further r-mode damping calculations.

e Upper mass-limit: the points to the extreme left in the left panel of
fig. 6.4 correspond to the Oppenheimer Volkoff limits calculated with
the two theories: the purely Hadronic Equation of State can yield Neu-
tron Stars with a maximum mass of 2.53 Mg, while the corresponding
upper limit for Hybrid Stars is 1.81 M: the latter value is lower than
the recent 1.97 My, of the J1614-2230 Pulsar, so that its equation of
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Figure 6.5: Density profiles for a selected number of purely Hadronic / Hybrid stable

configurations.

state seems not to stiff enough to reproduce observed data.

Possible signal of QGP: this cannot obviously be extended on general
grounds, i.e. to the general question whether there can be deconfined
quarks and gluons inside a Neutron Star, as the Bag Model is a very
rough and phenomenological way to describe quark phase. It might -
on the contrary - be seen as a supporting argument for the presence
of a transition, as purely hadronic scenarios lose their meaning when
the density approaches pp ~ 1 fm~3: super-stiff Equations of State
such as the BHF+3BF and the DBHF (that yield similar predictions
in the discussed BonnB consistent approach) give too high limits ~ 2.5
Mg, but can reach the observed configurations around 2 Mg once a
transition is imposed.

Role of the Phase transition: this can be seen referring to the two
~ 1.8 My configurations in the left panel of fig. 6.4: the purely Hadronic
configuration has a larger radius (13 Km) with respect to the 12.5 Km
of the hybrid one. This can be explained observing the corresponding
central densities in the right panel of fig. 6.4 or the density profiles of
fig. 6.5: the transition allows stable configurations that can reach an
higher density in their cores, i.e. they can pack much more matter
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Figure 6.6: Integrated r-mode dissipation timescales at the temperatures 7' = 104 MeV
and T'= 107> MeV. The blue diamonds are obtained by averaging the density
of the Neutron Stars, like in ref. [78]: this approximation fails for intermediate-
low mass stars. The green band is the predicted range for Tgw.

keeping stability. A precise measurement of Neutron Star radii for
some object could help clarifying the picture, adding one or more dots
in the M-R plot and therefore ruling out all those models that don’t
cross them.

§ 6.3.2. Damping of r-modes.— The timescale estimate of Oscillations
damping in Neutron Stars is performed for the [ = m = 2 rotational r-mode;
the Energy of the mode is given by twice the integral eq. (5.12), performed
with the density profiles of the stars p(r) shown in fig. 6.5 for the 15 total
configurations selected (here p stands for the matter density inside the star
and not for the total baryon density pgp). The corresponding timescale is
evaluated by means of the integral (5.15), dropping the contributions for the
bulk viscosity ¢ and the thermal conductivity x. The input is the total Shear
Viscosity of Strong Interacting matter, shown in fig. 6.3. The calculations
were performed for T' = 10~% MeV and T' = 10~° MeV, to have a comparison
with the Gravitational-Wave emission instability timescale 7qw, estimated to
for the present case 10100 s, generally function of the revolution frequency
of the star € and not of its temperature. The two mechanisms compete in the
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dynamical evolution of a given configuration; the dominating one at a given

temperature 7' is thus the one with the smallest timescale, as its the most

rapid and effective in making the other ineffective. The resulting timescales

for the 15 configurations (10 purely hadronic + 5 hybrid stars) in the two

temperatures are reported in fig. 6.6, to observe the effect of temperature

and of a phase transition in Nuclear Matter. General considerations can be

made:

Goodness of the approximation: the purely hadronic timescales in
Ref. [78] were evaluated by means of an average estimate; here this cal-
culation was performed together with the exact one (black diamonds)
discussed above, and is reported in the blue diamonds of the 7' = 10~*
MeV top part of the figure. The approximation is overall fairly good for
the top-mass configuration, while breaks down around 1.5 Mg, i.e. for
the mass of the most abundant Pulsars observed so-far in our Galaxy.
The full calculation is performed for quarks (red circles), as a similar
estimate should carefully deal with the mixed content of the configu-
rations.

Dominating mechanism: a star at 7' = 10~* MeV, so at the end-point
of the cooling process, seems to be - in this picture - dominated by
the Gravitational Radiation emission, as the Y3-driven r-mode alone
cannot overcome such instability; this picture is valid also for new-
born Neutron Stars, that are candidate objects for the observations of
Gravitational Waves. When corrected with other Oscillation damping
modes the picture should heal, as no Gravitational Wave signal has ever
been detected in the observed stars. The selected r-mode can instead
dominate alone in old Neutron Stars (at least the most massive), that
reach ultra-cold temperatures of 7' = 107> MeV: this is essentially
an effect of the Shear Viscosity, that for low temperatures behaves
approximately as T2

Effect of quarks: the onset of a phase transition has a visible effect on
the timescales. This can be checked in the lower part of fig. 6.6: the
timescales get lower - this depends anyway also on the viscosity, and
the model employed is not determinant in the quantitative-predictive
power of this estimates - due to the higher central pressure reached
inside Hybrid Stars. Such objects can damp r-modes as well as higher
mass-NS of more than 2 M.
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6.4 Conclusions

Recalling the title of this work, calculations can reach a satisfactory de-
gree of accuracy, but none of them can ever be considered “Complete”; the
adjective here refers to the unified scheme in which, starting from micro-
scopic basic constituents such as nucleons and quarks, one ends up calculat-
ing macroscopic properties of Strongly Interacting matter and applications
in Neutron Stars, that are in principle verifiable by means of proper obser-
vations.

§ 6.4.1. Remarks.— Apart from the overall quantitative quality of the
predictions, the scheme presented has been tested with other calculations and
is generally reliable. Previous astrophysical estimates - given for example in
the works of Lindblom [99, 100] - were performed by means of strong approx-
imations and unphysical Equations of State models. Very few calculations
exist for the Shear Viscosity of quark matter at finite pu: other applications
often used approximate fits calculated by Heiselberg and Pethick in Ref. [82];
here the reliability of the perturbative scheme was analysed electing i, as the
relevant energy scale and testing the goodness of the model with a confiden-
tial choice of ag = 0.5, in comparison with similar calculations in the high
T, vanishing ;4 regime. Furthermore, super-stiff hadronic Equations of State
like BHF+3BF and DBHF have received new attention after the measure-
ment of the high-mass J1614-2230 PSR object [90]: they are by far the most
realistic, and can account for NS mass observations once a proper softening
mechanism is introduced, i.e. new degrees of freedom, such as Hyperons, ,
K condensates or a transition to QGP, like in the present work.

§ 6.4.2. Future investigations.— In the next evaluations Quark Matter
should be investigated by means of a microscopic effective theory such as
the Nambu-Jona Lasinio model, that incorporates a mechanism of Chiral
Symmetry restoration; if one finds a way to extract a complex self-energy
2, Viscosity can be calculated by means of the Kubo Formula, and this can
be done consistently also for the Hadronic sector. New predictions should
lead to more reliable r-mode damping timescales, hopefully combined with
other mechanisms to solve the strict 7" dependence problem in the comparison
with the Gravitational Radiation instability timescale. Observations from the
LIGO facility could help in constraining this very open, and very challenging
field of contemporary Theoretical Physics.
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Appendices






Units of Measurement

A.1 Natural Units

It is common in theoretical physics to suppress - or more properly to leave

out - two of the constants that appear more often: A, the reduced Planck
constant, and ¢, the speed of light in vacuum:

h=6.5821 x 1072 GeV - s (A1)
c=2.9979 x 10® m/s. (A.2)

This is sought in order to avoid annoying rewriting and iterating errors in the
algebraic passages, and to generally make them more readable. It consists
in a careful dimensional redefinition of all the physical observables obtained
incorporating the mentioned constants; in a more concise way it is resumed
by the position A = ¢ = 1. In this way for example the following equations

become:
E2:p2c2+m2c4 5 E2:p2—1—m2
h
A= — — A=m"!
me

so that, indicating with [X] the dimensions of the observable X, the previous
relations imply a flattening of the units system:

[E] = [p] = [m] with E ~ GeV
(L] = [m] ™" with L ~ fm;

all the interesting physical quantities have dimensions given by a certain
product of powers of GeV and fm, and more generally the mass itself could
be used as the only scale.

When dealing with thermodynamic problems, one can in addition include the
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Boltzmann constant kg = 1.380 x 10723 J/K in the scheme, incorporating it
into the Temperature 7', that in this way gets the dimensions of a thermal
energy kgT'.
When turning back to calculations, i.e. phenomenological estimates or nu-
meric crunch, it is useful to revert back to the original quantities using powers
of the quantity:

he = 0.197327 GeV - fm, (A.3)

and then eventually convert them to S.I. units. In astrophysics it is usual
to express quantities by means of the cgs system, but this and the related
constants require a separated treatment.

A.2 Astrophysical Units: the cgs system

In Astrophysical applications it is customary to use the cgs unit system.
Chapt. 5 is all formulated under this assumption and all the usual physical
constants appear. The passage between the two systems can be tricky, as one
must remember the A, c powers and pure numbers that were “left behind” in
nuclear units. For example, the conversion of density is:

[yl 1.67493 x 102 g

[1fm]?, 10-39 cm?

1fm™2 =1 = 1.67493 g/cm® (A.4)

that simply yields for the nuclear saturation density:

po =017 fm™> =2.8-10" g/cm”. (A.5)
Viscosity is the most delicate quantity, as it is calculated in MeV? in nuclear
units, but must be expressed in:

kg N-s dyne - s
[n]mks = = =10 x [n]cgs = 5 (A6>

m-s m?2 cm?

In order to perform the calculation it must be noted that:

ec=1 = 29979x10°m/s=1 = 1m= 5l

_ —13 :__ 1.6021x10~13 .
o 1 MeV= 1.6021 x 10 13 = m N'S,

e he=1 = 19718 MeV-fm =1 = 197.18 x 107'* MeV-m = 1;
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so that finally, combining these results, the final conversion factor is evaluated

as.
1.6021 x 10-13 N-s
1 MeV? =
¢ 29979 x 10° - 197.182 x 103 m?
d .
— 1.3745 x 10° =2, (A7)
cm

To avoid writing explicitly powers of 10, a practical notation shortcut is often
introduced. The values the observable O, measured by means of the X unit,
whose values typically range in the power p can be specified in values of the
O, variable, in which it is implicitly meant that it is measured in units of
10P. In this fashion the temperature of the centre of the Sun is:

T, =157 x 10°K = 15.7 T, (A.8)
implicitly meaning “million kelvins”. Other experimental parameters of our
star are:

Mg = 1.989 x 10 kg (A.9)
R, = 6.960 x 10°m (A.10)
L = 3.850 x 10* W (A.11)
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